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Abstract: Soil salinization is the main reason for declining soil quality and a reduction in agricultural
productivity. We derive the spatial distribution of soil moisture from the temperature vegetation
dryness index (TVDI) of Landsat TM-8 OLI images to analyze the effect of spatial heterogeneity
of soil moisture on the retrieval accuracy of soil salinity. We establish five soil salinity inversion
models for different soil moisture levels (drought levels) based on the canopy response salinity index
(CRSI), normalized difference vegetation index (NDVI), and automatic water extraction index (AWEI)
derived from Landsat TM-8 OLI images. The inversion accuracy of soil salinity is assessed using
42 field samples. The results show that the average accuracies of the five inversion models are higher
than that of the traditional soil salinity inversion model of the entire study area. The proposed model
underestimates soil salinity in high-moisture areas and overestimates it in drought areas. Therefore,
inversion models of soil salinization should consider spatial differences in soil moisture to improve
the inversion accuracy.

Keywords: soil salinity; soil moisture; vegetation indices; image processing

1. Introduction

Soil salinization describes the process of soluble salts accumulating on the soil sur-
face. It is the most common type of land degradation in arid, semi-arid, and sub-humid
areas, representing an environmental issue of common concern worldwide and a source of
ecological problems. Soil salinization is the result of a combination of natural conditions
(such as hydrology, topography, and climate), farming practices, and irrigation practices. It
typically occurs in areas with dry climates, low rainfall, high surface evaporation, and high
levels of soluble salts. Elevated levels of soluble salts (such as Na+, Cl−) in the soil are a
major threat to agricultural production worldwide [1,2]. Even in small amounts, soluble
salts can cause a decline in soil fertility and inhibit the growth of crops, resulting in greatly
reduced crop yields [3]. In addition, the pH value of the soil indicates the intensity of
soil salinity, regulating the abundance of toxic substances such as aluminum and man-
ganese and essential nutrients, e.g., phosphorus, calcium, magnesium, and potassium [4].
Soil salinity resulted in taking land out of agricultural production, a decline in animal
husbandry, the deterioration of the ecological environment, and adverse impacts on the
economy and social development.

Remote sensing techniques have several advantages over traditional field sampling
and electromagnetic induction methods for measuring soil salinity, such as low cost, large
extent, and repeated coverage. Many techniques have been used to measure the spatial
distribution of soil salinity using multi-source satellite images, such as MODIS, Landsat
8-OLI, Sentinel-1 A/B, and Hyperion [3,5,6]. For example, Whitney et al. established a soil
salinity model in the western San Joaquin Valley (WSJV), California, USA, based on time-
series data [3]. Scudiero et al. developed a regional soil salinity prediction model using
multiple linear regression, Landsat7 ETM+ canopy reflectivity, and the canopy response
salinity index (CRSI) [7]. Wang et al. produced accurate regional salinity maps using partial
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least-squares regression (PLSR) and spectral indices derived from Sentinel-2 multi-spectral
instrument (MSI) data [6].

Previous studies found that many environmental factors influenced the spectral char-
acteristics of saline and alkaline lands, such as soil organic matter, soil type, land use,
rainfall, temperature, evapotranspiration, and vegetation cover [8–12]. Many studies have
integrated these factors with the spectral features of remote sensing imagery to create
salinity inversion models and improve the accuracy of salinity monitoring. Ma et al.
developed an empirical salinity simulation model using spectral features, precipitation,
evapotranspiration, and a digital elevation model (DEM) [13]. Chi et al. established an
improved surface salinity model consisting of spectral indices, spatial location, and land
cover type [14]. These study showed that the accuracy of salinization inversion have been
affected by environmental indicators such as climate, evapotranspiration, and groundwa-
ter [15,16]. The spatial heterogeneity of soil moisture is a manifestation of the changes in
these environmental indicators, which will significantly affect the spectral characteristics of
remote sensing images and the accuracy of soil salinity inversion results [17,18]. However,
few studies focus on the influences of the spatial heterogeneity of soil moisture on the
inversion accuracy of the soil salinity. As far as we known, this is the only study to construct
a quantitative retrieval model of soil salinity according to the gradients of soil moisture
and discuss the influences of the spatial variation of the soil moisture on the uncertainty of
the soil salinity inversion based on field gauged samples.

The main objective of the current study is to analyze the influence of the spatial
heterogeneity of soil moisture on the inversion accuracy of soil salinity. An understanding
of the spatial distribution of soil moisture can improve the inversion accuracy of soil salinity.
In addition, detailed information on soil salinization obtained from remote sensing data can
prevent further degradation of salinized soil and ensure the sustainable development of
regional ecosystems. This approach also provides decision support for various departments
to prevent and control salinization.

2. Materials and Methods
2.1. Study Area

The Songnen Plain is located in the southwestern part of Heilongjiang Province, China,
between the Greater Khingan Mountains, Lesser Khingan Mountains, and Changbai Moun-
tains (119◦45′~129◦36′ E, 42◦50′~49◦18′ N) and covers an area of about 23.75 × 104 km2

(Figure 1). The study area is located in a semi-arid sub-humid zone and has a temperate
continental climate. The annual average precipitation is 400–500 mm, and the annual aver-
age evaporation is 1250–1650 mm. According to the field survey conducted by the ministry
of water resources and agriculture of China, the area of saline-alkali land in the Songnen
Plain was about 2.40 million hm2 in 1950. It was dominated by a slightly salinized reed
marsh with almost no alkaline soil. The area of saline-alkali land reached 3.20 million hm2

in 1990 and 3.94 million hm2 in 2006 [19]. Most of the saline-alkaline land is located at
altitudes of 150 m or less (primarily at 130–140 m) and near rivers [20]. Land salinization
in the Songnen Plain is caused by several factors. Plate tectonics affected the structure and
properties of the Earth’s crust, influencing material sources and transport paths [21]. The
groundwater acted as the solvent and carrier for the dissolved salts. Since the groundwater
level is close to the surface, the salt was deposited on the surface. [22,23]. An arid or
semi-arid climate promotes the rise of the water and salt in the soil profile [24,25]. In the
last several decades, land salinization has significantly increased and threatened the local
food security because grain is an important commodity in Heilongjiang Province.
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2.2. Data Sources
2.2.1. Satellite Data

Nine Landsat 8 OLI images acquired from April to May 2015 were used in this study.
The Landsat 8 satellite was launched by NASA on 11 February 2013. It carries two sensors,
the OLI terrestrial imager and a thermal infrared sensor (TIRS). Landsat 8 images have a
high spatial resolution, rapid revisit time, and easy data acquisition. The L1T data product
has been radiometrically and geometrically corrected. It includes a metadata file (.txt),
11 single-band files (.tif), and band quality assessment (BQA) information. The spectral
bands and resolutions of the Landsat-8 OLI data are listed shown in Table 1. The path/row
numbers of the nine images were 118/29, 119/27, 119/28, 119/29, 120/27, 120/28, 120/29,
121/27, and 121/28, and the cloud cover was less than 2% for all images. The images were
rectified to the Universal Transverse Mercator (UTM) coordinate system using the World
Geodetic System (WGS) 1984 datum in the north UTM Zone 36. The multi-spectral bands
were fused with the panchromatic band. Radiometric and atmospheric corrections were
performed using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
algorithm in the ENVI 5.1 to remove atmospheric artifacts produced by molecules and
aerosols. The images were geometrically corrected (accuracy: ±0.5 pixels).

Table 1. The 11 bands and their resolutions of the Landsat-8 OLI data.

Band Name Spectral Range/µm Spatial Resolution/m

Band1 Coastal 0.43–0.45 30
Band2 Blue 0.45–0.51 30

Band3 Green 0.53–0.59 30
Band4 Red 0.64–0.67 30
Band5 NIR 0.85–0.88 30

Band6 SWIR1 1.57–1.65 30
Band7 SWIR2 2.11–2.29 30

Band8 Pan 0.50–0.68 15
Band9 Cirrus 1.36–1.38 30
Band10 TIRS1 10.60–11.19 100
Band11 TIRS2 11.50–12.51 100

2.2.2. Ground Truth Data

Field investigations were conducted in late April, 2015 to coincide with the acquisition
time of Landsat TM-8 OLI remote sensing images. The date of the field work was selected
at the early spring to avoid the impact of frozen and the vegetation on the spectral charac-
teristics of the saline-alkali land. In this case, 42 sampling sites were evenly distributed at
the study area and were located on both sides of the roads considered its representatives
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and accessibility (Figure 1). The geographic coordinates of the sampling sites were ob-
tained using a handheld Trimble Geo Explorer GPS device (Trimble Navigation Ltd., Inc.,
Sunnyvale, CA, USA). The land cover type and vegetation communities were recorded
at the sample sites. Surface soil samples (0–30 cm) were collected, and the soil salinity
(electrical conductivity (EC)) was measured with a conductivity meter (REX DDS-307).
The water content of the surface soil samples was obtained in the laboratory using the
drying weighing method. It was converted to relative humidity (%) using the following
formula [26]:

RH =
WM(
ds−rs

ds

) × 100% (1)

where RH is the relative soil moisture, WM is the mass water content of the soil, ds is the
density of soil particles. A constant of 2.65 g/cm3 was used according to the empirical
calculation. rs is the soil bulk density.

2.3. Inversion of Soil Relative Humidity Based on TVDI from Landsat-8 OLI Image

The simplified temperature vegetation dryness index (TVDI) proposed by Sandholt
et al. was used for the inversion of soil relative humidity in the study area based on the
Landsat-8 OLI image [27]. The TVDI is calculated as follows:

TVDI =
LST − LSTmin

LSTmax − LSTmin
(2)

LSTmax = a + b×NDVI (3)

LSTmin = c + d×NDVI (4)

where LST is the land surface temperature of a pixel; NDVI is the normalized difference
vegetation index. LSTmax and LSTmin are the dry edge (the upper fitted line in Figure 2)
and wet edge (lower fitted line in Figure 2), respectively. The data were obtained by least-
squares linear regression of the LST and NDVI values with a small NDVI interval (0.05).
The Equations (3) and (4) were used to calculate the LSTmin and the LSTmax where a and
c are their intercept and b and d are their slope, respectively. Subsequently, curve fitting
was performed between the TVDI data obtained from Equation (2) and the field-measured
soil moisture to obtain the spatial distribution of soil relative humidity. Compared with
other soil moisture inversion methods, the advantage of this method is that the relationship
between the relative changes of TVDI and soil moisture is more stable under different
climatic conditions and surface cover conditions [28].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 11 
 

characteristics of the saline-alkali land. In this case, 42 sampling sites were evenly distrib-
uted at the study area and were located on both sides of the roads considered its repre-
sentatives and accessibility (Figure 1). The geographic coordinates of the sampling sites 
were obtained using a handheld Trimble Geo Explorer GPS device (Trimble Navigation 
Ltd., Inc., Sunnyvale, CA, USA). The land cover type and vegetation communities were 
recorded at the sample sites. Surface soil samples (0–30 cm) were collected, and the soil 
salinity (electrical conductivity (EC)) was measured with a conductivity meter (REX DDS-
307). The water content of the surface soil samples was obtained in the laboratory using 
the drying weighing method. It was converted to relative humidity (%) using the follow-
ing formula [26]: 

%100

d
rd

s

ss

×








 −
= MWRH

 

(1)

where RH is the relative soil moisture, WM is the mass water content of the soil, ds is the 
density of soil particles. A constant of 2.65 g/cm3 was used according to the empirical cal-
culation. rs is the soil bulk density. 

2.3. Inversion of Soil Relative Humidity Based on TVDI from Landsat-8 OLI Image 
The simplified temperature vegetation dryness index (TVDI) proposed by Sandholt 

et al. was used for the inversion of soil relative humidity in the study area based on the 
Landsat-8 OLI image [27]. The TVDI is calculated as follows: 

minmax

min

LSTLST
LSTLSTTVDI

−
−=

 
(2)𝐿𝑆𝑇 =  𝑎 + 𝑏 ×  𝑁𝐷𝑉𝐼 (3)𝐿𝑆𝑇 =  𝑐 + 𝑑 ×  𝑁𝐷𝑉𝐼 (4)

where LST is the land surface temperature of a pixel; NDVI is the normalized difference 
vegetation index. LSTmax and LSTmin are the dry edge (the upper fitted line in Figure 2) and 
wet edge (lower fitted line in Figure 2), respectively. The data were obtained by least-
squares linear regression of the LST and NDVI values with a small NDVI interval (0.05). 
The Equations (3) and (4) were used to calculate the LSTmin and the LSTmax where a and c 
are their intercept and b and d are their slope, respectively. Subsequently, curve fitting 
was performed between the TVDI data obtained from Equation (2) and the field-measured 
soil moisture to obtain the spatial distribution of soil relative humidity. Compared with 
other soil moisture inversion methods, the advantage of this method is that the relation-
ship between the relative changes of TVDI and soil moisture is more stable under different 
climatic conditions and surface cover conditions [28]. 

 
Figure 2. Linear regression between LST and NDVI to obtain the dry edge and wet edge fitted line to
estimate the temperature vegetation dryness index (TVDI).



Appl. Sci. 2021, 11, 11145 5 of 10

2.4. Drought Classification Based on Soil Relative Humidity

The study area was divided into five regions with different moisture gradients accord-
ing to the drought level standard formulated by the Ministry of Water Resources of the
People’s Republic of China (Table 2).

Table 2. Drought classification based on soil relative humidity.

RH Soil Moisture Conditions Drought Level

RH > 60% The surface is moist. No drought
50% < RH ≤ 60% The soil moisture is normal and the soil surface is dry. Slight drought
40% < RH ≤ 50% The soil surface is dry, and the vegetation lacks water and is yellow. Moderate drought
30% < RH ≤ 40% A dry soil layer exists, and the leaves are dry and yellow. Strong drought

RH ≤ 30% Extreme dryness and vegetation death. Extreme drought

2.5. Establishment and Validation of the Soil Salinity Model

In order to identify the influence of soil moisture on the quantitative retrieval of soil
salinity, we established 5 soil salinity models according to the different drought levels
based on soil relative humidity listed in Table 2. We also established the soil salinity model
with the field survey soil salinity data and remote sensing imagery in the whole study area
to compare the retrieval accuracy with that of the model considered the spatial variations
of the soil moisture. Multiple linear regressions were used to develop the soil salinity
models. The canopy response salinity index (CRSI) were included as explanatory variables
to highlight the information related to the soil salinity, while the automate water extraction
index (AWEI) and the normalized difference vegetation index (NDVI) were included as
independent variables to emphasize the impact of soil water on the soil salinity and depress
the noise and the vegetation background information at the same time. The CRSI, NDVI,
and AWEI (Figure 3) were calculated as follows:

CRSI =

√
(NIR× R)− (G× B)
(NIR× R) + (G× B)

(5)

NDVI =
(NIR− R)
(NIR + R)

(6)

AWEI = B + 2.5× G− 1.5× (NIR + SWIR1)− 0.25× SWIR2 (7)

where NIR is the near-infrared band reflectance, R is the red band reflectance, G is the green
band reflectance, B is the blue band reflectance, and SWIR1 and SWIR2 are the short-wave
infrared reflectance values derived from the Landsat-8 OLI images (Table 1).

The coefficient of determination (R2) and root mean square error (RMSE) (Equations
(8) and (9)) were used to evaluate the accuracy of the soil salinity estimation. The inversion
accuracy of the 5 soil salinity were compared with the soil salinity model of the entire study
area, which did not consider the impact of soil moisture to determine the impact of the
spatial heterogeneity of soil moisture on the inversion accuracy.

R2 =

 ∑N
i=1 (Xi − X)(Yi −Y)√

∑N
i=1 (Xi − X)

2
√

∑N
i=1 (Yi −Y)2


2

(8)

RMSE = [
N

∑
i=1

(Xi −Yi)
2/N]

1/2

(9)

where Xi represents the estimated value of the i sample, X is the estimated mean value, Yi
represents the measured value of the i sample, and Y represents the mean of the measured
values. N is the number of samples.
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Figure 3. Maps of the normalized vegetation index (NDVI) (a), canopy response salinity index (CRSI) (b), and automatic
water extraction index (AWEI) (c) obtained from the Landsat-8 images.

3. Results
3.1. Inversion Model of Soil Relative Humidity and Classification

The quadratic curve model to inverse the soil relative humidity is defined as follows:

RH = 3049.6× TVDI2 − 4936.5× TVDI + 2078 (10)

where RH is the soil relative humidity, TVDI is the temperature vegetation drought index.
The accuracy assessment results combined the soil moisture derived from Landsat-8 OLI
image with the field gauged soil moisture showed that the RMSE was 13.76 which proved
that the method is suitable to extract the soil moisture of the large-scale floodplain. Figure 4
shows the spatial distribution of the soil relative humidity, which have been divided into
five drought levels according to the drought standard provided by the Ministry of Water
Resources of the People’s Republic of China. The soil moisture of the study area is gradually
drying from northeast to southwest. The regions with low soil moisture often occurred in
the southwest of the plain, and the regions with high soil moisture are concentrated in the
middle of the plain.
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3.2. Assessing Soil Salinity for Different Soil Moisture Levels

The linear relationship between soil salinity and CRSI, NDVI, and AWEI was used
to evaluate the performance of the models for different soil moisture levels (Table 3). The
R2 values of the five soil salinity models that considered the spatial variations of the soil
moisture are higher than 0.744, whereas that of the entire study area is 0.712. Therefore,
using salinity models based on different soil moisture levels provides higher inversion
accuracy than using a model of the entire study area.

Table 3. Linear relationship between soil salinity and CRSI, NDVI, and AWEI for different drought levels (soil relative
humidity) and the entire study area.

Drought Level Model Formula R2 RMSE

Entire study area EC = 5098.246 × CRSI + 10290.813 × NDVI + 0.323 × AWEI − 1019.632 0.712 0.472
No drought EC = 2347.511 × CRSI + 8924.583 × NDVI + 0.790 × AWEI + 2810.863 0.921 0.505

Slight drought EC = 7283.681 × CRSI + 29848.471 × NDVI + 0.333 × AWEI − 4778.410 0.901 0.551
Moderate drought EC = 1019.427 × CRSI + 12226.786 × NDVI + 0.371 × AWEI + 1463.097 0.852 0.501

Strong drought EC = 6862.115 × CRSI + 12120.566 × NDVI + 0.106 × AWEI − 2906.257 0.930 0.492
Extreme drought EC = 4266.514 × CRSI + 10798.926 × NDVI + 0.456 × AWEI − 432.860 0.744 0.491

EC is the electrical conductivity, CRSI is the canopy response salinity index, NDVI is the normalized difference vegetation index, and AWEI
is the automate water extraction index.

We also compared the soil salinity obtained from field measurements with the model
results to demonstrate the influence of soil moisture on soil salinity inversion (Figure 5).
In the no drought and slight drought areas, 68% and 80% of the samples, respectively, are
underestimated by the soil salinity model. In the strong drought and extreme drought areas,
66% and 78% of the samples, respectively, are overestimated by the soil salinity model. The
soil salinity inversion model underestimates soil salinity in moist areas and overestimates
it in dry areas. The average accuracy of the inversion models of the five different soil
moisture levels demonstrate that it is essential to understand the spatial characteristic of
the surface soil moisture before assessing soil salinity using spectral vegetation indices
from remote sensing imagery.
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4. Discussion

We established soil salinity inversion models for different soil moisture levels to evalu-
ate the influence of spatial heterogeneity of soil moisture on the accuracy of soil salinization
inversion. The proposed salinity models based on drought levels provide more accurate
classification results than traditional soil salinity models. Many studies have found an
advantage in using remote sensing data to estimate soil salinity due to lithological and
meteorological settings [29]. In the current study, we investigated the influence of soil
moisture on the spectral characteristics of remote sensing images. Similar to the results
reported by Zhu [30], soil salinity was underestimated when the soil relative humidity was
higher than 50%. The likely reason is that the high soil moisture content affects the spectral
reflectance of the optical remote sensing images. We observed underestimations of soil
salinity in high-moisture regions, as expected. In contrast, we found a significant overesti-
mation of soil salinity in regions with soil relative humidity less than 40%. Oversaturation
was observed primarily in areas with bare soil and low vegetation density [31]. Therefore,
soil moisture and the associated vegetation conditions can bias salinity assessment models.

During the process of constructing soil moisture model, we found the soil relative
humidity decrease gradually with the increasing of TVDI (Figure 5). The TDVI derived
from the Landsat TM-8 OLI is highly correlated with the gauged soil moisture data which
indicate that it is reasonable to obtain the spatial distribution characteristic of the soil
humidity based on the remote sensing imagery and a soil moisture model. We also noticed
that some training plots are not coherence with the simulated quadratic curve. That is
partly because the bias between the locations of field survey soil moisture data with the
correspondent pixels in the remote sensing imagery. The difference time of field survey
and images derivations may also influence the in simulated results of the soil relative
humidity. However, the TVDI derived from the remote sensing imagery could reflect the
spatial distribution characteristics of the soil moisture in a large extent.

We believe that our approach of emphasizing the impact of environmental factors on
the inversion accuracy of soil salinity can improve the inversion accuracy of estimating soil
properties from remote sensing data using limited field sampling. However, soil salinity
is a complex process that integrates many environmental factors, such as soil type, soil
retention capacity, vegetation phenology and so on. There are different soil types in the
Songnen Plain, i.e., black soil, chernozem, meadow soil, dark brown soil etc. The spatial
distribution of soil moisture are influenced by the different soil retention capacity and soil
water suction for various soil types. However, the relationship between each element is
still not clear enough. In the following research, we should further integrate the soil factors,
the vegetation phenological factors, the agricultural production intervention factors and
other factors to provide more accurate soil salinity data.

5. Conclusions

Soil salinization is a serious land degradation problem. It adversely affects the ecolog-
ical balance, causes large-scale desertification and the decline or loss of land productivity,
and negatively impacts agriculture and the economy. Therefore, soil salinization moni-
toring is crucial. However, inversion models of soil salinization are affected by soil type,
rainfall, temperature, evapotranspiration, vegetation cover, and other factors. This paper
investigated the influence of spatial heterogeneity of soil moisture on the inversion accuracy
of soil salinization. The results showed the following: (1) the spatial distribution of soil
moisture in the floodplain could be accurately estimated using the TVDI derived from
Landsat 8 OLI images. Due to the influence of temperature, precipitation, soil type, and
vegetation cover, the soil moisture in the Songnen Plain showed a trend of wet-dry-wet
from the southwest to the northeast. (2) The spatial difference in the soil moisture signif-
icantly impacted the inversion accuracy of the soil salinity model. The inversion model
underestimated soil salinity in regions with soil relative humility higher than 50% and
overestimated it in very dry regions. (3) The spatial heterogeneity of soil moisture should
be considered in retrieval models of soil salinization. The establishment of soil salinity
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inversion models in areas with different soil moisture levels can improve the inversion
accuracy.
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