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Abstract: In this paper, a neuroadaptive robust trajectory tracking controller is utilized to reduce
speed ripples of permanent magnet synchronous machine (PMSM) servo drive under the presence
of a fracture or fissure in the rotor and external disturbances. The dynamics equations of PMSM
servo drive with the presence of a fracture and unknown frictions are described in detail. Due to
inherent nonlinearities in PMSM dynamic model, in addition to internal and external disturbances;
a traditional PI controller with fixed parameters cannot correctly regulate the PMSM performance
under these scenarios. Hence, a neuroadaptive robust controller (NRC) based on a category of on-line
trained artificial neural network is used for this purpose to enhance the robustness and adaptive
abilities of traditional PI controller. In this paper, the moth-flame optimization algorithm provides
the optimal weight parameters of NRC and three PI controllers (off-line) for a PMSM servo drive.
The performance of the NRC is evaluated in the presence of a fracture, unknown frictions, and load
disturbances, likewise the result outcomes are contrasted with a traditional optimized PID controller
and an optimal linear state feedback method.

Keywords: modeling uncertainty; computational optimization method; inertia degradation; fissure
mechanism; B-spline neural network; trajectory tracking; on-line learning

1. Introduction

The Permanent Magnet Synchronous Motors (PMSM), have extraordinary efficiency,
excellent performance, wide speed range, fast response, great accuracy compact construc-
tion, and higher torque per volume ratio. This motor plays an important protagonist in
industrial applications such as chip mount machines, scraper conveyors, marine propul-
sion, aerospace, hard disk drives, and semiconductor production machines [1–3]. The
linear control scheme such as vector control with proportional-integral (PI) loops is the
industrial standard control of the PMSM due to its simplicity, excellent performance, and
efficiency [2,4]. Nevertheless, the large trouble of the traditional PI controllers is its sensi-
tivity to the parametric variations of the plant (PMSM) [5]. Another issue that is getting
interested is faults in electric motors due to vibration problems produced by an imbalance
that is caused by degradation in the rotor shaft, which last will origin a fissure in the rotor
shaft by the fatigue phenomena [6]. A topic of great interest in the field of engineering is
to know and determine the dynamic behavior of a crack in solid materials to contribute
to the preservation of the life of mechanical devices [7]. However, designing a precise
control scheme for a PMSM is a challenging task due to the complexity of the system
caused by nonlinearities, unpredictable parameter variations, external load disturbances
and unmolded nonlinear dynamics of the motor.

The set of differential equations that describe the dynamic response of electromechan-
ical systems with the presence of a fissure in the rotor depict a non-linear behavior, causing
that traditional tuning techniques for PI controllers present a poor performance, for which
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it is necessary to use techniques of tuning based on heuristic algorithms or artificial intelli-
gence techniques [8,9]. Rotor failures have been studied by different groups of researchers.
Classical control has been applied to deal with the presence of degradation problems,
fault, and broken rotors in electromechanical systems, such as optimal linear quadratic
regulator [9,10], sliding mode control [11], feedback linearization controller [12], and fuzzy
logic control [13]. In [9] an optimal linear state feedback control scheme was designed
using the optimal linear quadratic regulator technique, for a PMSM with rotor failure. A
sliding mode control (SMC) for a quad-rotor with a rotor failure has been presented in [11].
The controller has a good performance to a total rotor failure, uncertainties and different
weather conditions caused by wind speed. However, by its nature, the SMC has some
inherent problems in its operation such as the chattering phenomenon due to the disconti-
nuity in the switching strategy of the control law. In [12] a feedback linearization controller
was made to offer better precision control for induction motor drive subject to short circuit
faults in the stator winding and some broken bars in the rotor. An observer based on the
feedback of states with the capability to compensate for some failures was designed for
two coupling PMSM systems [14]. The controller is based on a robust adaptive observer to
estimate the PMSM faults. The controller compensates for the faults and allows the motors
to track the reference. In [13] a fuzzy adaptive controller was designed to reject the effects
caused by electrical faults for PMSM based on dynamic surface technology. Fuzzy logic
control (FLC) has been used because it is simple to implement and this controller does not
require an accurate mathematical model of uncertain nonlinear systems [15]. However, the
gains of an FLC are fixed, require knowledge or experience into membership functions,
fuzzy rules, or fuzzy inference system databases. These issues are the main disadvantages
of FLC systems design. Some groups of investigators try to overcome this drawback using
hybrid PI controllers or novel tuning rules to improve their performance against faults and
parameter variations. In [16] an adaptive control structure with neural data processing
was designed for two converter-fed DC machines coupled by a flexible connection. The
controller is based on a recurrent neural network and is inspired by the Elman model.
For the selection of constant coefficients of the controller, the particle swarm optimizer
is applied.

In the last twenty years, various control schemes based on B-Spline neural network
(BSNN) have been designed because BSNN can compute different control signals due
to its adaptability nature through proper online training. The diverse shapes of BSNN
have been used to constitute the control schemes for mechatronics and electromechanical
systems [17–21].

Recently, in [18] an adaptive PI controller is used to compute on-line the parameters
of the regulator structure using a BSNN for a CD motor. The procedure for the BSNN
online learning algorithm (OLA) is to calculate the weights and base functions of the
neural network at each instant of time while the PI controller is working. Depending
on the structure and size of the BSNN, the algorithm computes the different weights
of the network considering only the values of the inputs and the desired output, thus
obtaining a faster result and at a lower computational cost, in relation to the ANN based
on a backpropagation algorithm [20,21].

Seeking to contribute to the diagnosis and control of PMSM subject to temporary
degradation due to the effects of a load of use. In this work, we analyze the behavior
of PMSM with the presence of fissure in the rotor shaft and unknown frictions; with the
analysis and proposed theory. In the work, a detailed analysis of the PMSM modeling
with the presence of a fracture in the rotor is carried out, and the procedure to obtain
a precise, robust and stable control scheme under different operating conditions, con-
tributing to obtain a more precise mathematical description of the dynamic behavior of
the PMSM. Therefore, to solve the aforementioned problem, we design a neuroadaptive
robust trajectory tracking controller to reduce speed ripples of PMSM servo drive based
on traditional PI controllers with the ability to update their parameters through a BSNN.
The principal contribution of the work are: (a) introduction of an adaptive robust neural
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trajectory tracking controller for a PMSM with the presence of fissure in the rotor shaft,
abrupt changes of load torque disturbance, and unknown frictions; (b) a novel approach is
used to simultaneously for adjust multiple parameters of a PMSM control scheme; (c) with
the methodology used, the behavior of an adaptive controller with self-tuning capacity is
obtained in a practical approach; and (d) with the most optimal search of the PIBSNN pa-
rameters, the algorithm learns online, avoiding the use of additional stages for its training.
The shapes curve of the activation functions of the BSNN presents several advantages in
relation to the radial functions, where the curve changes only in the neighborhood of some
control points that have been modified. But the BSNN functions are limited in relation
to the maximum and minimum values of the desired rotor speed that can be selected
as input signals to the BSNN, then using the gradient descent rules the neuroadaptive
controller weights are updated in line. Therefore, the neuroadaptive controller can reject
internal and non-parametric disturbances that happen in the PMSM during its operation,
warranting a globally stable system against limited disturbances. The controller takes
advantage of BSNN to compensate for the abrupt changes of load torque disturbance and
unknown frictions.

The remainder of this paper is prepared as follows: In Section 2 an overview of the
mathematical model of the PMSM in the dq reference frame with the presence of fissure
in the rotor shaft, abrupt changes of load torque disturbance, and unknown frictions are
presented. In Section 3, the proposed neuroadaptive controller based on BSNN is set out in
detail. To identify the efficiency of the proposed control scheme, numerical simulations are
presented in Section 4. Finally, conclusions are detailed in Section 5.

2. Dynamic PMSM Model with Presence of Rotor Fissure

The typical mathematical model of the synchronous machine can be described in the
rotor reference frame (dq) coordinates as [1,2]:

did
dt

=
Vd
Ld
− rs

Ld
id +

Lq

Ld
ωriq (1)

diq
dt

=
Vq

Lq
− rs

Lq
iq +

Ld
Lq

ωriq −
λm

Lq
ωr (2)

where Ld is the d-axes stator inductance and Lq represent the q-axes stator inductance, id is
the stator current in d-axes, iq represent the stator current in q-axes, Vd is the stator voltage
in d-axes and Vq represent the stator voltage in q-axes, rs represent the stator resistance per
phase, ωr is the rotor mechanical angular speed and λm is the rotor flux. The differential
equations that define the dynamics of the PMSM rotor with respect to angular velocity and
the angular position (θ) of the rotor are determined as follows [1–3,9,10]:

dθ

dt
= ωr (3)

dωr

dt
=

1
Jt

[
Te − TL − Ff (ω)− βωr

]
(4)

where P is the number of pole pairs, Jt is the moment of inertia taking into account the
degradation of the rotor shaft, Ff (ω) are other disturbances caused by coupling the load
torque, β is the viscous friction coefficient and TL is the load torque. The term TL can
deteriorate the control performance if it is not appropriately estimated. The friction model
has been used in [22,23] to describe the compensation of the unknown frictions. In the
control law, it should be considered that the mathematical models of friction can be defined
as intermittent or continuous events in some instants of time during the operation of the
motor, causing the control scheme to calculate non-smooth control signals. Therefore, the
friction torque Ff (ω) can be given by

Ff (ω) = a1tanh(c1ω)+a2[tanh(c2ω)− tanh(c3ω)] (5)
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where ω represent the speed rotor; a1 and a2 are different friction levels; and c1, c2, and
c3 represent coefficients to estimated different friction effects and are positive constants.
In this work, the following assumptions are made: (a) ωr, id and iq are available; (b) TL is

unknown,
.
TL is continuously differentiable; (c) Ff (ω) is continuously differentiable and

(d) the desired speed ωrd is constant and
.

ωrd,
..
ωrd are continuously differentiable. The

input of dynamic Equation (4) is the motor torque vector Te which is calculated by

Te = P
[

3
2
(

Ld − Lq
)
idiq +

3
2

λmiq

]
(6)

Fracture Dynamics in the Rotor Shaft

To estimate how the crack works inside the PMSM rotor, the effects caused by stress
generated by the load torque Tl on the rotor will be considered. Then, when there is a
crack in the rotor, the fracture opens and closes due to the moment of inertia and the
rotational effects of the rotor mass, which over time the rotor failure will behave as a weak
fracture. [9,10,24]. The mathematical expression that defines the dynamic behavior of the
fissure within the rotor can be described with the Paris equation, as follows [24,25].

da
dt

= c f ∆Kn (7)

where a is the fissure size, c is the proportional coefficient which depends on the type of
rotor material, ∆K is the variation of the stress concentrator, n is the proportional exponent
which depends on the type of rotor material and f is the fundamental rotor frequency. The
stress intensity factor is defined as [10]:

∆K = ∆τmax
√

πa (8)

where ∆τmax is the torsional stress variation on the rotor shaft. Considering that the crack
will increase its size depending on the degradation dynamics and from Equation (8), the
variation of torsional stress ∆τmax is defined, taking into account that the fault is in a hollow
circular section, for which [26].

∆τmax =
16(Te − TL)D
π(D4 − d4)

(9)

where D is the root of rotor shaft diameter and d is the size of the cavity in the rotor shaft
due to the fissure, which the smaller diameter of d is defined as a function of the variation
in the length of the fissure as [9,10,26]:

d = gaa (10)

where, ga defines the crack respiration ratio used by Mayes and Davis [10,26] represented
as [10]

ga =
l + cos(ωrt)

2
(11)

Therefore, the existence of a crack in the PMSM rotor will result in the variation of the
rotational inertia coefficient of the rotor and can be represented as follows [9,10,26]

Jt =
1
8

ms

(
D4 − d4

)
(12)

where ms is rotor mass.

3. Control Strategy

The PMSM generally works with different speeds, torque conditions, and unpre-
dictable parameter variations. These operating conditions cause speed ripples in the
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PMSM rotor. To reduce PMSM servo drive speed ripples under the presence of degradation
in rotational inertia, parameter variations and, external disturbances, this work uses an
adaptive robust neural trajectory tracking controller. To achieve this goal, it is essential to
create a controller with the ability to maintain precision and robustness under the presence
of fissure in the rotor shaft, abrupt changes of load torque disturbance, and unknown
frictions. To provide these demands, we introduce a neuroadaptive robust speed trajectory
tracking controller based on PI B-Spline neural network (PIBSNN), where its weights and
PI parameters are adjusted using a traditional optimization algorithm called moth-flame.

3.1. Conventional PI Controller

As shown in Figure 1, the controller technique is based on three cascaded adaptive
PI loops one external speed loop and two internal current loops [27]. As conventional in
PMSM regulator, the d-axis current desired (i∗d) is set to zero and the quadratic current
desired (i∗q ) is get from the speed external controller.
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The dq-axis entry current controls are computed by two PI decoupling controllers
defined as [28]

ud = kp,id(i∗d − id) + ki,id

∫ t

0
(i∗d(τ)− id(τ))dτ − iqωrLq (13)

uq = kp,iq

(
i∗q − iq

)
+ ki,iq

∫ t

0

(
i∗q (τ)− iq(τ)

)
dτ + idωrLd + λmωr (14)

where kp,id and ki,id are proportional and integral parameters of the current on d-axis,
respectively; kp,iq and ki,iq are proportional and integral parameters of the current on q-axis,
respectively; and

ud = Ud + iqωrLq
uq = Uq − idωrLd − λmωr

(15)



Appl. Sci. 2021, 11, 11090 6 of 18

where Ud and Uq are two new auxiliary control variables given by the two inner current
control loop PI controllers. To determine the q-axis current reference (for Equation (14)),
the rotor speed (ωr) is used as the feedback signal, which is compared with the desired
speed ω∗r and the speed error (eωr) drives a PI controller. The action described above is
performed with the external control loop that can be defined as

i∗q = kp,ωr (ω
∗
r −ωr) + ki,ωr

∫ t

0
(ω∗r (τ)−ωr(τ))dτ (16)

where kp,ωr and ki,ωr are the proportional parameters of rotor speed and the integral
parameter of rotor speed, respectively. Thus, kp,ωr , ki,ωr , kp,id, ki,id, kp,iq and ki,iq are
computed simultaneously online using the BSNN to reject internal or external disturbances
and obtain excellent performance in tracking the desired trajectory.

3.2. B-Spline Neural Networks

In the past two decades, adaptive controllers based on BSNN have been used in many
industrial, electronic, mechatronics, and electromechanical control systems to regulate
output variables, such as parallel kinematic manipulators, electrical power systems, shunt
DC motors, UPS inverters, quadrotor, power control of wind turbine and induction mo-
tor [16–21]. The typical structure of a BSNN is shown in Figure 2. The main feature of the
BSNN is adjusting its weights iteratively on-line in an attempt to reproduce a particular
function using a conjugate gradient. The adaptability feature of the neural network gives
the ability to learn from previous events, by interconnecting the input data to output, as
shown in Figure 2. However, the initial values of weights of the BSNN are often generated
randomly or adjusted based on the designer’s experience to get excellent performance for
a specific controller [16,17,19].
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The BSNN can compute its response on-line, based on a modest structure and a
short number of basic mathematical operations that are an important desirable feature
for efficiently controlled physical systems. To design the BSNN is a priority to define
the size of the input space lattice, which is defined by a set of nth knot vectors (KV). In
this work, a KV is used for each one of the three control loops. To define the number of
knots, the interval between them, and the value of each one, this can be calculated using an
optimization algorithm or through the user’s experience knowing the magnitude and the
input signals to the neural network. Thus, each control loop has a KV but they must be
adjusted in relation to the maximum and minimum values of the reference signals. The KV
are distributed in groups of 4 elements and 8-knot points, to form 3 B-spline functions that
between them must share one or more knot points. The univariate base function for the
B-spline can be defined in the following expression [17]

Sj
K(u) =

( u−λj−k
λj−1−λj−K

)
Sj−1

K−1(u) +
(

λj−u
λj−λj−K+1

)
Sj

K−1(u)

Sj
1(u) =

{
1 if u ε Ij

0 for other cases

(17)
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where u is the input, λj is the jth knot point and I j =
[
λj−1, λj

)
is the jth interval between

two-knot points, and K corresponds to the order of the output function. The output of each
BSNN can be written as follows [29,30]:

σi =
P

∑
m=1

amwm = aT
i wi ∀i = 1, 2, 3

where ai corresponds to P-dimensional vector which have the outputs of the basis func-
tions and, wi corresponds to the weights vector which is updated through the selected
instantaneous learning instruction

wi = wi(t− 1) +
γσi(t)

||ai(t)||22
ai(t) ∀i = 1, 2, 3 (18)

where ‖·‖ is the Euclidean norm and the increment, γ corresponds to the learning rate,
wi(t− 1) is the previous weight, and σi corresponds to the BSNN output error. The process
to carry out the instantaneous training (IT) that uses the neurocontroller based on the BSNN,
is used to calculate the value of the weights of the active base functions. The algorithm
for the instant learning rule works to minimize the estimated value of performance metric
mean square error (PMMSE) function of the output vector, and the values are adjusted
using the descending gradient criterion (DGC) [30]. Following the rules defined above,
the online training algorithm for the BSNN can be summarized in the next pseudocode
(Algorithm 1).

Algorithm 1 B-Spline Neural Network on-line training rules.

Input Define: space lattice with n knot-vectors
Define: basis functions (K order, shape and distribution)
Define: number of knot-vector
Define: nodes of hidden layer
Define: Initial conditions (weights)
Define: error signal and minimum and maximum values
Define: threshold error

Load weights, K order, threshold error, error signal
while t < simulation time do

Calculate the input and output value of each layer
Calculate the errors between target and current value
if ex < threshold error

return kx
else

Update weights Equation (18)
Calculate the input and output value of each layer

return kx
end

For the initial training stage, the weights and PI parameters are calculated randomly
and the off-line training proceeds with DGC in evaluating the PMMSE. The PMMSE is
defined as:

PMMSE =
1
N ∑N

i=1(xrc − x∗) (19)

where N corresponds to the number of input data, xrc corresponds to the computed output,
and x∗ is the desired output signal. The entire algorithmic process is carried out until the
considered performance metric MSE comes to a near possible minimal value. At the time
of training off-line, simultaneously the weights of the PIBSNN model are trained for their
best values using the classic moth-flame optimization algorithm. In the second stage, the IT
rules offer an alternative so that the weights are recurrently updated and reach convergence
at finest values. Hence, the PIBSNN training process is continuously carried out online,
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while the weight’s value is computed occupying only two feedback variables for each PI
controller. This can be attained with the BSNN to update kp,ωr , ki,ωr , kp,id, ki,id, kp,iq and
ki,iq, of (13, 14 and 16) at every sampled time. It is important to mention that; if the error
signal is less than 3%, the algorithm does not update the corresponding controller weights.

3.3. Overview of Moth-Flame Optimization Algorithm

The moth-flame optimization algorithm (MFOA) was introduced by Mirjalili [31]
which mimics the behavior of the moth-flame in the way of traveling during the night.
The method way of moving the moth-flame is called transverse orientation. The principal
elements in the MFOA are two: the moths and light sources (flame). It is important to high-
light that in each iteration of the MFOA, moths, and flames are part of different sequences
in the update process. For the above, they can fly in a 1-dimensional, 2-dimensional,
3-dimensional, or hyperdimensional area by changing the position vectors. In the MFOA
procedure, we consider that each month has a position in a solution space of dimension D.
An array can express the set of search agents, just as follows:

M =

 m1,1 · · · m1,d
...

. . .
...

mn,1 · · · mn,d

 (20)

where M is the position matrix of moths, mi,j is the value of j−th parameter of the i−th
moth, j = 1, 2, ... , d and i = 1, 2, ..., n; n is the number of moths and d represents the
number of dimensions (variables represented in the problem) in the solution space. The
corresponding fitness is represented as:

OM =

 OM1
...

OMn

 (21)

where the flame matrix is in the same dimension as the moth matrix. Flame also stores
the fitness value accordingly as a number of flames. Both the moth and the flame are
considered as part of the solution, the moth in the solution is the search agent and the
flame is the best position of the moth. The flames are considered the trigger that indicates
the dropped by the moth in the development of the search process and move around this
position to proceed to update. Due to this, the moths never lose the best solution. Moths
update their position with respect to flame according to Equation (22)

Mi,j = S
(

Mi, Fj
)

(22)

where Mi,j represents the i−th moth, Fj represents the j−th flame and S is the spiral function.
The movement of the moth can be expressed as a spiral logarithmic function represented
as:

S
(

Mi, Fj
)
= Diebtcos(2πt) + Fj (23)

where b is a constant to define the shape of the logarithmic spiral, t is a random number
between [−1, 1] and Di is the distance between the i−th moth and the j−th flame, can be
defined as:

Di =
∣∣Fj −Mi

∣∣ (24)

In order to avoid degradation of the most promising solutions, the following equation
represents the number of flames in this problem

Flame no = round
(

N − l
N − l

T

)
(25)
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where l represents = current number of iterations, N represent = maximum number of
flames and T represent = maximum number of iterations. The flowchart representation of
the MFOA is displayed in Figure 3.
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4. Simulation Results

The PIBSNN controller is applied for speed regulation of PMSM. When the PIBSNN
is required to generate a specific function in the output vector, it is necessary to train it
iteratively offline. The weights of the PIBSNN are adjusted off-line using the MFOA. The
complete simulations are implemented MATLAB R2020b and are implemented in a PC
with an Intel Core i9 processor with 2.40 GHz speed and 32.00 GB RAM.

The inputs to the PIBSNN are current error in q axis (eiq), current error in d axis (eid),
eωr, and their derivatives (

.
eiq,

.
eiq and

.
eωr) respectively. During the progress of training

on-line, the neurocontroller adjusts PI controller parameters kp,ωr , ki,ωr , kp,id, ki,id, kp,iq and
ki,iq and regulates the speed of the PMSM rotor efficiently against bounded disturbances.
Figure 1 displays the block diagram of PIBSNN controller strategy. This control scheme has
fourteen unknown parameters of three adaptive controllers that should be determined by
optimization techniques. The design parameters are weights factors (w1,kpx, w2,kpx, w3,kpx,
w4,kpx, w1,kix, w2,kix, w3,kix, w4,kix) and PI parameters (kp,ωr , ki,ωr , kp,id, ki,id, kp,iq and ki,iq).
Table 1 presents the parameters and simulation coefficients considered in the simulation of
the dynamic PMSM system.

Figure 3 is presented the process of searching for the parameters of the speed control
scheme for the nonlinear dynamic system of PMSM. Using the MFOA, the search and test
of the operation of the control scheme parameters are carried out. Table 2 displays the
parameters used to implement the MFOA. To find the initial conditions of the PI controllers
and weights factors on the PIBSNN controller using the MFOA algorithm; a reference
speed ωr = 400 rpm is employed, with a load torque of 4 N.m, a1 = 0.2, a2 = 3, c1 = 0.2,
c2 = 0.015, and c3 = 0.02.
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Table 1. Parameters for the PMSM model.

Parameters Value Units

Ld 6.73 Inductance [mH]
Lq 6.73 Inductance [mH]
rs 2.6 Resistance [Ω]
P 2 Pairs of poles
Jt 3.5 × 10−5 Initial rotational inertia [kg/m2]

ms 0.1 Rotor mass [kg]
λm 0.319 Magnetic flux [Wb]
f 188.5/2π Frequency [Hz]
β 1 × 10−4 Viscous friction coefficient [Nms]
c 10 × 10−11 Proportional coefficient
n 3 Proportional exponent
D 0.137409 Rotor diameter [m1/2]
TL 5 Nominal load torque [Nm]

120 Nominal voltage [Volts]
4 Rated current [Amp.]

VCD 250 Direct current voltage bus [Volts]

Table 2. Moth-flame optimization algorithm implementation parameters.

Parameters Value

Population dimension 50
Maximum of iteration 150

b 1.5
t 0.5

The set of transient responses delivered by the first iteration of the MFOA, which com-
ply with the parameters established in the algorithm, to find the most optimal parameters
of the neuroadaptive robust speed control for PMSM servo drives with rotor failure, are
shown in Figure 4 in different colors. The best transient response of the rotor speed when
the execution of the MFOA ends is shown in Figure 5. The optimal parameters for the neu-
roadaptive controller found by the MFOA are: w1,kpx = 390.5, w2,kpx = 130.5, w3,kpx = 9.1,
w4,kpx = 362.8, w1,kix = 21.45, w2,kix = 80.1, w3,kix = 127.85, w4,kix = 37.1, kp,ωr = 0.1839,
ki,ωr = 51.71, kp,id = 47.08, ki,id = 19.2, kp,iq = 25.12, and ki,iq = 5.11. In this work, to know
the performance and behavior of the neuroadaptive controller, two different contexts are
assumed. The first case evaluates when the PMSM has a variable load torque under normal
operating conditions. In the second context, to verify the robustness and efficiency of the
neuroadaptative controller, a load torque with abrupt variations is added to the rotor shaft
and PMSM presents unknown friction in the rotor. The convergence of the selected objec-
tive function for optimization by MFO is observed in Figure 6. MFO starts by assigning
the positions of the moths randomly within the solution space, as shown in Figure 4. The
figure shows that in the first iterations the value of the function is greater than 35, which is
in function to the transient response of PMSM as shown in Figure 4; but approximately
between iteration 20 and 90, the objective value of the function remains constant at a value
of 19.7852 and in the last 50 iterations the MFO algorithm continues updating the positions
of the moths and llamas and generating new positions, until the 150 scheduled iterations,
but always saving the best solution, shown in Figure 5.
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4.1. Simulation Result for Smooth Varying Load Condition

To prove the efficiency and robustness of the neuroadaptive controller, the results of
the implementation in software are collated with a traditional optimal PI regulator design
technique based on metaheuristic techniques called PI-Op for short [29] and an optimal
linear state feedback control scheme (Opt-feed) based on the references [9].

In the first case, a load that varies between 1.7 and 2.1 N.m is coupled to the rotor
shaft, at a maximum speed of 400 rpm, considering unknown frictions and a fissure in the
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rotor. To generate a smooth path of the desired speed in the rotor between the motor start
intervals and the maximum speed, a Bézier polynomial ¥ is used, represented as follows:

ω∗r =

{
ω1 f or t ≤ T1

ω1 + (ω2 −ω1)¥(t, T1, T2) f or T1 < t ≤ T2
(26)

where ω1 = 0 rad/s, ω2 = 400 rpm, and ¥ is the Bézier interpolation polynomial

¥ = K5
[
r1 − r2K + r3K2 − r4K3 + . . .− r6K5

]
(27)

K =
t + T1

T2 − T1
(28)

with T1 = 0 s, T2 = 0.5 s, r1 = 252, r2 = −1050, r3 = 1800, r4 = −1575, r5 = 700 and r6 = −126.
The efficiency and robustness of the PIBSNN controller for closed-loop tracking of

the velocity reference trajectory are established in Figure 7. Simulated waveforms of
the dq axis current are plotted in Figure 8a and the simulated waveforms of the speed
tracking error eωr are displayed in Figure 8b. The performance of the PIBSNN controller is
calculated for path following in terms of performance indices: mean squared error (MSE),
integral squared error (JISE), and integral absolute error (JIAE). The PIBSNN controller
has presented superior transient response as the following error; JIAE and JISE are inferior
for the PIBSNN controller. The transient response of the electric currents for closed-loop
efficient motor operation exposed to unknown frictions and the presence of a crack in
the rotor shaft is suitable, as shown in Figure 8a. The magnitudes of the MSE, JISE, and
JIAE, corresponding to the rotor speed error, of the three control schemes, are shown in
Table 3. The load profile applied to the PMSM rotor, in case 1 is shown in Figure 9. The
MSE (0.5682), JISE (0.2841), and the JIAE (0.2904) are lower for the PIBSNN controller as
compared to PI-Op and Opt-feed controller as shown in Table 3.

Table 3. Speed error performance indices for case 1.

Controller MSE JISE JIAE

PIBSNN 0.5682 0.2841 0.2904
PI-Optimal 30.1113 15.0558 1.9064

Optimal linear state feedback 1.8120 0.9060 0.4839

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 

In the first case, a load that varies between 1.7 and 2.1 N.m is coupled to the rotor 
shaft, at a maximum speed of 400 rpm, considering unknown frictions and a fissure in the 
rotor. To generate a smooth path of the desired speed in the rotor between the motor start 
intervals and the maximum speed, a Bézier polynomial ¥ is used, represented as follows: 𝜔∗ = 𝜔 𝑓𝑜𝑟 𝑡 ≤ 𝑇𝜔 + (𝜔 − 𝜔 )¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇  (26)

where ω1 = 0 rad/s, ω2 = 400 rpm, and ¥ is the Bézier interpolation polynomial ¥ = 𝐾 [𝑟 − 𝑟 𝐾 + 𝑟 𝐾 − 𝑟 𝐾 + ⋯ − 𝑟 𝐾   (27)𝐾 =   (28)

with T1 = 0 s, T2 = 0.5 s, r1 = 252, r2 = −1050, r3 = 1800, r4 = −1575, r5 = 700 and r6 = −126.  
The efficiency and robustness of the PIBSNN controller for closed-loop tracking of 

the velocity reference trajectory are established in Figure 7. Simulated waveforms of the 
dq axis current are plotted in Figure 8a and the simulated waveforms of the speed tracking 
error eωr are displayed in Figure 8b. The performance of the PIBSNN controller is calcu-
lated for path following in terms of performance indices: mean squared error (MSE), inte-
gral squared error (JISE), and integral absolute error (JIAE). The PIBSNN controller has 
presented superior transient response as the following error; JIAE and JISE are inferior for 
the PIBSNN controller. The transient response of the electric currents for closed-loop effi-
cient motor operation exposed to unknown frictions and the presence of a crack in the 
rotor shaft is suitable, as shown in Figure 8a. The magnitudes of the MSE, JISE, and JIAE, 
corresponding to the rotor speed error, of the three control schemes, are shown in Table 
3. The load profile applied to the PMSM rotor, in case 1 is shown in Figure 9. The MSE 
(0.5682), JISE (0.2841), and the JIAE (0.2904) are lower for the PIBSNN controller as com-
pared to PI-Op and Opt-feed controller as shown in Table 3.  

 
Figure 7. Tracking performance of PMSM drives with a crack in the rotor and unknown frictions. 

r [r
pm

]

Figure 7. Tracking performance of PMSM drives with a crack in the rotor and unknown frictions.



Appl. Sci. 2021, 11, 11090 13 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 18 
 

 

  
(a) (b) 

Figure 8. Transient response of the PMSM for case 1 (a) dq axis current and (b) speed tracking error. 

Table 3. Speed error performance indices for case 1. 

Controller MSE JISE JIAE 
PIBSNN 0.5682 0.2841 0.2904 

PI-Optimal 30.1113 15.0558 1.9064 
Optimal linear state feedback 1.8120 0.9060 0.4839 

 
Figure 9. Load torque applied to the PMSM. 

4.2. Simulation Result for Abrupt Changes of Load Torque Disturbance 
The performance of the PIBSNN, the optimal linear state feedback control scheme 

and the optimal PI controller are evaluated for speed trajectory tracking application, when 
the rotor shaft is subjected to abrupt changes of load torque disturbance and unknown 
frictions. The velocity reference trajectory for a simulation time of 450 s is given by 

𝜔∗ =
⎩⎪⎪
⎨⎪
⎪⎧ 𝜔 𝑓𝑜𝑟 𝑡 ≤ 𝑇𝜔 ¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 − (𝜔 − 𝜔 )¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 + (𝜔 − 𝜔 )¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇

  (29)

T L [N
.m

]

Figure 8. Transient response of the PMSM for case 1 (a) dq axis current and (b) speed tracking error.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 18 
 

 

  
(a) (b) 

Figure 8. Transient response of the PMSM for case 1 (a) dq axis current and (b) speed tracking error. 

Table 3. Speed error performance indices for case 1. 

Controller MSE JISE JIAE 
PIBSNN 0.5682 0.2841 0.2904 

PI-Optimal 30.1113 15.0558 1.9064 
Optimal linear state feedback 1.8120 0.9060 0.4839 

 
Figure 9. Load torque applied to the PMSM. 

4.2. Simulation Result for Abrupt Changes of Load Torque Disturbance 
The performance of the PIBSNN, the optimal linear state feedback control scheme 

and the optimal PI controller are evaluated for speed trajectory tracking application, when 
the rotor shaft is subjected to abrupt changes of load torque disturbance and unknown 
frictions. The velocity reference trajectory for a simulation time of 450 s is given by 

𝜔∗ =
⎩⎪⎪
⎨⎪
⎪⎧ 𝜔 𝑓𝑜𝑟 𝑡 ≤ 𝑇𝜔 ¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 − (𝜔 − 𝜔 )¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇−𝜔 + (𝜔 − 𝜔 )¥(𝑡, 𝑇 , 𝑇 ) 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇𝜔 𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇

  (29)

T L [N
.m

]

Figure 9. Load torque applied to the PMSM.

4.2. Simulation Result for Abrupt Changes of Load Torque Disturbance

The performance of the PIBSNN, the optimal linear state feedback control scheme
and the optimal PI controller are evaluated for speed trajectory tracking application, when
the rotor shaft is subjected to abrupt changes of load torque disturbance and unknown
frictions. The velocity reference trajectory for a simulation time of 450 s is given by

ω∗r =



ω1 f or t ≤ T1

ω1¥(t, T1, T2) f or T1 < t ≤ T2

ω2 f or T2 < t ≤ T3

−ω3 − (ω2 −ω1)¥(t, T3, T2) f or T3 < t ≤ T4

−ω3 f or T4 < t ≤ T5

−ω3 + (ω2 −ω1)¥(t, T5, T6) f or T5 < t ≤ T6

ω4 f or T6 < t ≤ T7

(29)

where ω1 = 0 rad/s, ω2 = 800 rpm, ω3 = −600 rpm, ω4 = 600 rpm, T1 = 0 s, T2 = 18,
T3 = 135 s, T4 = 150 s, T5 = 290 s, T6 = 305 s, T7 = 450 s and ¥ is a Bézier interpolation
polynomial expressed by (25–26) [32]. The PMSM is subjected to variable load torque
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described by the sum of sinusoidal functions with different magnitude and frequency as
shown in Figure 10 and written as

Tl = k1 + k2 sin(1.9t) + k3 sin(0.8t), (30)

where k1 = 2.1, k2 = 0.47 and k3 = 0.42. In Figure 11 is illustrated the speed behavior angular
ωr and Figure 12 shows the dq axis current of PMSM with fissure and external disturbances
in the rotor, for case 2.
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Figure 11. Tracking performance of PMSM drive with presence of fissure in the rotor shaft, abrupt changes of load torque
disturbance, and unknown frictions.

Figure 12 shows the dynamic response of the currents delivered by the PI-Op, PIBSNN,
and Opt-feed controllers. The tracking error for the PIBSNN, PI optimal controller, and
Optimal linear state feedback are shown in Figure 12, when: (a) a torque of load with abrupt
changes, (b) it is subjected to unknown vibrations, and (c) there is an internal fracture in
the rotor. In Figure 12c it can be seen that the speed error delivered by the control scheme
based on a PIBSNNN is practically zero because it can compensate for internal and external
disturbances mentioned above. The adaptive control parameters computed by the BSNN
are shown in Figure 13.
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Figure 12. Transient response of currents in the reference frame dq and speed error for the PMSM subjected to abrupt
changes of load torque disturbance; (a) Opt.-feed; (b) PI-Op; and (c) PIBSNN.
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Figure 11 shows that the neuroadaptive controller based on a PIBSNN has the robust-
ness and precision necessary to precisely follow the reference speed, even if the motor is
subjected to stressful operating conditions produced by external disturbances. Whence, the
load is increased or decreased, the PIBSNN controller does not produce any undershoot
or overshoot.

The notable performance and robustness of the PIBSNN controller are anew demon-
strated in Figure 11 and Table 4. Hence, the PIBSNN depicts an excellent alternative for
speed trajectory tracking for the PMSM with fissure in the rotor shaft, subject to abrupt
changes of load torque disturbance and unknown frictions. The simulation results for the
trajectory tracking control are shown in Figure 11; and MSE, JISE, and JIAE are represented
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in Table 4. The MSE (0.0137), JISE (6.1708), and the JIAE (46.2230) are worse for the PIBSNN
controller as compared to PI-Opt and Optimal linear state feedback controllers as shown in
Table 4. When performing the contrasts of the controllers used in this work, it is easy to see
that the adaptive control scheme based on a PIBSNN presents better robustness and an
excellent performance against external disturbances, compared with PI-Opt and Optimal
linear state feedback controllers.

Table 4. Speed error performance indices for case 2.

Controller MSE JISE JIAE

PIBSNN 0.0137 6.1708 46.2230
PI-Optimal 0.6418 288.7876 289.7450

Optimal linear state feedback 1.7733 797.36 586.1754

The fissure behavior within the PMSM is presented in Figure 14. In Figure 14, the
dynamic response of the fissure inside the PMSM rotor is shown, the profile of the fissure
shows an exponential growth as a function of the time while the motor is working. From
the solution and response of the set of Equations (1)–(12), it is estimated that the crack will
continue to grow to cause a degradation in the rotational inertia of the rotor shaft.
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Figure 14. Dynamic behavior of the fissure inside the PMSM rotor.

The PIBSNN controller is an excellent choice for situations where the machine presents
a fissure in the rotor shaft and is subject to abrupt changes of load torque disturbance and
unknown frictions. It is well known that the PIBSNN controller presents a robust and
efficient response because it can reject and compensate for abrupt disturbances of the load
coupled to the rotor, fissure in the rotor shaft, and unknown frictions; as compared to PI
optimal controller and Optimal linear state feedback controller. Another important aspect
to mention is that the profile of the response of the crack inside the rotor is adequate with
the expected result because the mathematical model assumes that the crack will continue
to grow gradually until the fracture or rupture of the rotor will eventually occur.

5. Conclusions

In this work, neuroadaptive robust speed control for PMSM servo drives with rotor
failure was presented. The control scheme of the neuroadaptive controller uses a BSNN
because it can adjust the weights of the NN based on the inputs at the low computational
effort. Another characteristic of BSNN to reduce computational effort is that it only updates
the weights of the neural network when the magnitude of the input signal increases about
a predetermined value. In the development of the work, a hybrid control scheme is used
where a PI controller and the profits of a BSNN are combined to obtain a neuroadaptive
robust speed controller with the ability to reject and compensate for internal and external
disturbances. The reference speeds for the motor were based on Bézier interpolation
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polynomial to obtain a smooth response from the mechanical and electrical variables of
the system.

To verify the performance of the neuroadaptive controller, simulation results con-
firmed an excellent trajectory tracking robustness against the presence of fissure in the
rotor shaft, abrupt changes of load torque disturbance and, unknown frictions. The control
scheme was evaluated in the different periods, for two case studies, the transient response
performance indices show that the neuroadaptive controller improves its performance by
25% over the other two controllers used. Considering the results presented in this work,
it can be concluded that the neuroadaptive controller based on PI and BSNN controllers
is an excellent option to regulate the speed of the PMSM, even if it is working in adverse
operating conditions such as a fissure in the rotor and abrupt changes in load torque. Fur-
thermore, the performance of the PIBSNN is fairly good according to the comparison with
the response of the PI optimal controller and optimal linear state feedback control scheme.

Incoming work, experimental implementations of the neuroadaptive controller to
regulate the speed of a PMSM will be developed in a laboratory. Also, we will continue to
work and explore the use of other recently published artificial neural networks to design
different hybrid controllers with other control techniques.

Author Contributions: Conceptualization, O.A.-M., P.F.P.-G. and R.T.-O.; performed the experiments
O.A.-M. and P.F.P.-G. analyzed the data, H.M.-P. and R.T.-O.; writing—original draft preparation,
O.A.-M., H.M.-P. and R.T.-O.; writing—review and editing, O.A.-M. and H.M.-P.; funding acquisition,
O.A.-M. and H.M.-P. All authors have read and agreed to the published version of the manuscript.

Funding: The authors thank those involved in the project CEMIE-Redes CONACYT-SENER Mexico,
B-S-50730 for their support. Aguilar-Mejia, O., Minor-Popocatl, H. and Pacheco-Garcia, P.F. thank the
Program for Research of UPAEP for their financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Aguilar-Mejia, O. and Minor-Popocatl, H. thank the Program for Research of
UPAEP and project CEMIE-Redes CONACYT-SENER Mexico, B-S-50730.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Pérez, Á.; Saenz-Aguirre, A.; Martín, F.; Vadillo, J. FOC-Droop control strategy for PMSM fed paralleled multi-inverter power

systems oriented to aeronautical applications. Electr. Power Syst. Res. 2020, 185, 106369. [CrossRef]
2. Verrelli, C.V.; Tomei, P. Global stability for the inner and outer PI control actions in non-salient-pole PMSMs. Automatica 2020, 117,

108988. [CrossRef]
3. Szczepanski, R.; Tarczewski, T.; Grzesiak, L.M. Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony

algorithm. Appl. Soft Comput. 2019, 83, 105644. [CrossRef]
4. Serkies, P.; Szabat, K. Effective damping of the torsional vibrations of the drive system with an elastic joint based on the forced

dynamic control algorithms. J. Vib. Control. 2019, 25, 2225–2236. [CrossRef]
5. Zhang, J.; Wang, S.; Zhou, P.; Zhao, L.; Li, S. Novel prescribed performance-tangent barrier Lyapunov function for neural adaptive

control of the chaotic PMSM system by backstepping. Int. J. Electr. Power Energy Syst. 2020, 121, 105991. [CrossRef]
6. Quiroz, J.C.; Maurin, N.; Rezazadeh, M.; Izadi, M.; Misron, N. Fault detection of broken rotor bar in LS-PMSM using random

forests. Measurement 2018, 116, 273–280. [CrossRef]
7. Bachschmid, N.; Pennacchi, P.; Tanzi, E. Cracker Rotors: A Survey on Static and Dynamic Behaviour Including Modelling and Diagnosis;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 4–14.
8. Villalobos-Piña, F.; Alvarez-Salas, R. Algoritmo robusto para el diagnóstico de fallas eléctricas en motor de inducción trifásico

basado en herramientas espectrales y ondeletas. Rev. Iberoam. De Automática E Inf. Ind. 2015, 12, 292–303. [CrossRef]
9. Manilla-García, A.; Rivas-Cambero, I.; Monroy-Anieva, J. Modelado y Análisis de Sintonización de Velocidad de un MSIP con

Presencia de Fisura Mediante Algoritmos Genéticos. Rev. Iberoam. De Automática E Inf. 2019, 16, 190–199. [CrossRef]
10. Aguilar-Mejía, O.; Manilla-García, A.; Rivas-Cambero, I.; Minor-Popocatl, H. Modeling and Speed Tuning of a PMSM with

Presence of Fissure Using Dragonfly Algorithm. Appl. Sci. 2020, 10, 8823. [CrossRef]

http://doi.org/10.1016/j.epsr.2020.106369
http://doi.org/10.1016/j.automatica.2020.108988
http://doi.org/10.1016/j.asoc.2019.105644
http://doi.org/10.1177/1077546319852472
http://doi.org/10.1016/j.ijepes.2020.105991
http://doi.org/10.1016/j.measurement.2017.11.004
http://doi.org/10.1016/j.riai.2015.04.003
http://doi.org/10.4995/riai.2018.9767
http://doi.org/10.3390/app10248823


Appl. Sci. 2021, 11, 11090 18 of 18

11. Hou, Z.; Lu, P.; Tu, Z. Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure. Aerosp. Sci.
Technol. 2020, 98, 105716. [CrossRef]

12. Harzelli, I.; Menacer, A.; Ameid, T. A fault monitoring approach using model-based and neural network techniques applied to
input–output feedback linearization control induction motor. J. Ambient Intell. Hum. Comput. 2020, 11, 2519–2538. [CrossRef]

13. Zhang, G.; Liu, J.; Liu, Z.; Yu, J.; Ma, Y. Adaptive fuzzy discrete-time fault-tolerant control for permanent magnet synchronous
motors based on dynamic surface technology. Neurocomputing 2020, 404, 145–153. [CrossRef]

14. Xiong, H.; Liao, Y.; Chu, X.; Nian, X.; Wang, H. Observer based fault tolerant control for a class of Two-PMSMs systems. ISA
Trans. 2018, 80, 99–110. [CrossRef] [PubMed]

15. Li, H.; Liu, H.; Gao, H.; Shi, P. Reliable Fuzzy Control for Active Suspension Systems with Actuator Delay and Fault. IEEE Trans.
Fuzzy Syst. 2012, 20, 342–357. [CrossRef]

16. Kamínski, M.; Szabat, K. Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft.
Energies 2021, 14, 3389. [CrossRef]

17. Escorcia-Hernández, J.M.; Aguilar-Sierra, H.; Aguilar-Mejía, O.; Chemori, A.; Arroyo-Núñez, J.H. A New Adaptive RISE
Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs. J. Intell. Robot. Syst. 2020, 100,
827–847. [CrossRef]

18. Tapia-Olvera, R.; Beltran-Carbajal, F.; Aguilar-Mejia, O.; Valderrabano-Gonzalez, A. An Adaptive Speed Control Approach for
DC Shunt Motors. Energies 2016, 9, 961. [CrossRef]

19. Tapia, R.; Aguilar, O.; Minor, H.; Santiago, C. Power System Stabilizer and Secondary Voltage Regulator Tuning for Multi-machine
Power Systems. Electr. Power Compon. Syst. 2012, 40, 1751–1767. [CrossRef]

20. Raya-Armenta, J.M.; Lozano-Garcia, J.M.; Avina-Cervantes, J.G. B-spline neural network for real and reactive power control of a
wind turbine. Electr. Eng. 2018, 100, 2799–2813. [CrossRef]

21. Deng, H.; Srinivasan, D.; Oruganti, R. A B-spline network based neural controller for power electronic applications. Neurocomput-
ing 2010, 73, 593–601. [CrossRef]

22. Wang, S.; Na, J.; Ren, X. RISE-Based Asymptotic Prescribed Performance Tracking Control of Nonlinear Servo Mechanisms. IEEE
Trans. Syst. Man Cybern. Syst. 2018, 48, 2359–2370. [CrossRef]

23. Yao, J.; Deng, W.; Jiao, Z. RISE-Based Adaptive Control of Hydraulic Systems with Asymptotic Tracking. IEEE Trans. Autom. Sci.
Eng. 2017, 14, 1524–1531. [CrossRef]

24. Arana, J.L.; González, J.J. Mecánica de la Fractura; Servicio editorial de la universidad del País Vasco: Bilbao, Spain, 2011; p. 186.
25. Andrade, A.A.; Mosquera, W.A.; Vanegas-Useche, L.V. Modelos de Crecimiento de Grietas por Fatiga. Entre Cienc. E Ing. 2015, 9,

39–48.
26. Barter, S.; White, P.; Burchill, M. Fatigue Crack Path Manipulation for Crack Growth Rate Measurement. Eng. Fract. Mech. 2016,

167, 224–238. [CrossRef]
27. Wróbel, K.; Serkies, P.; Szabat, K. Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite

Set Approaches. Energies 2020, 13, 1193. [CrossRef]
28. Aguilar-Mejía, O.; Minor-Popocatl, H.; Tapia-Olvera, R. Comparison and Ranking of Metaheuristic Techniques for Optimization

of PI Controllers in a Machine Drive System. Appl. Sci. 2020, 10, 6592. [CrossRef]
29. Brown, M.; Harris, C.J. Neurofuzzy Adaptive Modelling and Control; Prentice Hall International: New York, NY, USA, 1994;

Chapter 8.
30. Boukens, M.; Boukabou, A.; Chadli, M. Robust adaptive neural network-based trajectory tracking control approach for nonholo-

nomic electrically driven mobile robots. Robot. Auton. Syst. 2017, 92, 30–40. [CrossRef]
31. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
32. Beltrán-Carbajal, F.; Silva-Navarro, G. Arias-Montiel, Active Vibration Control in a Jeffcott-like Rotor with Variable Speed Using

an Electromechanical Suspension. Rev. Iberoam. De Automática E Inf. Ind. 2014, 11, 295–303. [CrossRef]

http://doi.org/10.1016/j.ast.2020.105716
http://doi.org/10.1007/s12652-019-01307-0
http://doi.org/10.1016/j.neucom.2020.04.009
http://doi.org/10.1016/j.isatra.2018.07.007
http://www.ncbi.nlm.nih.gov/pubmed/30041825
http://doi.org/10.1109/TFUZZ.2011.2174244
http://doi.org/10.3390/en14123389
http://doi.org/10.1007/s10846-020-01242-9
http://doi.org/10.3390/en9110961
http://doi.org/10.1080/15325008.2012.722582
http://doi.org/10.1007/s00202-018-0749-x
http://doi.org/10.1016/j.neucom.2009.10.019
http://doi.org/10.1109/TSMC.2017.2769683
http://doi.org/10.1109/TASE.2015.2434393
http://doi.org/10.1016/j.engfracmech.2016.04.020
http://doi.org/10.3390/en13051193
http://doi.org/10.3390/app10186592
http://doi.org/10.1016/j.robot.2017.03.001
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.riai.2014.05.002

	Introduction 
	Dynamic PMSM Model with Presence of Rotor Fissure 
	Control Strategy 
	Conventional PI Controller 
	B-Spline Neural Networks 
	Overview of Moth-Flame Optimization Algorithm 

	Simulation Results 
	Simulation Result for Smooth Varying Load Condition 
	Simulation Result for Abrupt Changes of Load Torque Disturbance 

	Conclusions 
	References

