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Abstract: Mental disorders are a global problem that widely affects different segments of the popula-
tion. Diagnosis and treatment are difficult to obtain, as there are not enough specialists on the matter,
and mental health is not yet a common topic among the population. The computer science field has
proposed some solutions to detect the risk of depression, based on language use and data obtained
through social media. These solutions are mainly focused on objective features, such as n-grams
and lexicons, which are complicated to be understood by experts in the application area. Hence, in
this paper, we propose a contrast pattern-based classifier to detect depression by using a new data
representation based only on emotion and sentiment analysis extracted from posts on social media.
Our proposed feature representation contains 28 different features, which are more understandable
by specialists than other proposed representations. Our feature representation jointly with a contrast
pattern-based classifier has obtained better classification results than five other combinations of fea-
tures and classifiers reported in the literature. Our proposal statistically outperformed the Random
Forest, Naive Bayes, and AdaBoost classifiers using the parser-tree, VAD (Valence, Arousal, and
Dominance) and Topics, and Bag of Words (BOW) representations. It obtained similar statistical
results to the logistic regression models using the Ensemble of BOWs and Handcrafted features
representations. In all cases, our proposal was able to provide an explanation close to the language of
experts, due to the mined contrast patterns.

Keywords: depression detection; social media; natural language processing

1. Introduction

According to the World Health Organization (WHO), an estimated 264 million people
around the world suffer from depression [1]. Depression is one of the most troublesome
and common mental disorders; it is the principal cause of disability worldwide and has a
significant impact on the index of morbidity. This is because depression can lead to suicide
and is the leading cause of suicide death. The number of suicides by depression reaches up
to 800,000 per year worldwide [2].

The number of people suffering from mental disorders, including depression, is
continually growing, and this has an impact on human rights, the economy, and society [3].
This is especially true in low-income countries. The exponential growth of the population
and the fact that a large group of people is arriving to the age when depression is more
likely to appear are factors that contribute to that growth [2]. Other factors, such as political,
social, cultural, and economic factors, play a significant role in the development of such
disorders. That is why minority groups, such as people suffering from discrimination for
their ethnicity, sexual orientation, gender identification, people suffering from domestic
abuse, and people exposed to conflict or high stress, are at higher risk of developing major
depressive disorder (MDD)[4].
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The disease’s characteristics are feelings of sadness, guilt, worthlessness, and self-
loathing, loss of interest in usually interesting tasks, change in eating and sleeping habits
leading to significant weight loss or gain, tiredness, lack of concentration, inability to take
decisions, agitation or slowing of the psycho-motor activity, and recurrent thoughts of
death. This symptoms can be a sign of MDD [1,5].

The consequences of depression are also a subject of concern. Individual consequences
are present when a patient suffers from MDD; people with MDD are 40% to 61% more
likely to die prematurely [4]. However, there are also consequences that affect the patient’s
environments, both social and economic, especially due to the growth of the number of
people suffering from mental disorders. According to the World Economic Forum, the
global economic impact of mental disorders climbed to USD 16.3 trillion in the period
between 2011 and 2020 [6]. Due to the lost in productivity in the work life of the patient,
and according to the WHO, “depression and anxiety have a significant economic impact;
the estimated cost to the global economy is US $1 trillion per year in lost productivity” [7].

Given the gravity of the symptoms and consequences of MDD, the implementation
of preventive measures, as well as diagnosis and treatment aids, have become critical.
However, due to the increasing number of people suffering from MDD and other mental
disorders, the number of specialists in the subject has become insufficient to diagnose and
treat all patients with mental health needs. In 2005, 0.6 psychiatrists graduated per 100,000
population [8], meaning that every psychiatrist in the world would need to treat more than
100,000 patients in order to cover the world’s mental health needs. The estimate has not
improved. According to the Mental health action plan 2013–2020 of the WHO [4], in half
the countries of the world, on average, there is one psychiatrist to serve 200,000 or more
people. That is why the exploration of alternative solutions is key to solving this problem.

The computer science field has proposed the use of artificial intelligence (AI) to detect
the risk of suffering MDD by using social media. The exponential growth of social media
use [9], coupled with research that links depression with the use of language [10,11] has
made this proposal possible. Several workshops have proposed shared tasks [12,13] in
which new solutions arise. Nevertheless, in the literature, the proposals are mainly based
on representations that contain, in their majority, objective features, that is, features based
on the structure of the text, or quantitative aspects of it, such as n-grams [14], parts-of-
speech, and number of words [15,16]. Even though in the literature there are proposals that
use sentiment analysis, these proposals do not use only subjective information of the posts.
These proposals combine them with other objective features and have limited information
on sentiment, emotion, and other subjective features [17–20].

Moreover, several problems arise in the use of AI for decision making when such
decisions are not interpretable. The psychological field requires an AI model that provides
explanations so that experts understand the reason behind a decision made by it because
they need to assess its validity [21]. Since the psychological field is a medical field, the
decisions taken by the specialist affect human lives. If they use a model to help with
diagnosis, they need supplementary information to support and validate their diagnosis.
Although some algorithms that can provide explanation have been used in the literature,
the explainability of the algorithm has not been exploited or taken into consideration using
only information linked with emotions and sentiment [16,22].

Hence, in this paper, we propose a contrast pattern-based classifier using only features
based on emotion and sentiment analysis, which are easier to understand by human
experts. The patterns extracted from this representation are used as an explanation of
the final decision and are associated with human language, making them understandable
to experts.

The contributions of this paper are as follows:

• A feature representation based on sentiments and emotions, allowing an accurate
classification for detecting depressive posts.
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• An explainable model based on contrast patterns achieving better area under the
curve (AUC) and F1 regarding other state-of-the-art classifiers designed for detect-
ing depression.

• A set of extracted contrast patterns describing depressive posts in a language close to
experts in the application area.

The paper is organized as follows. Section 2 presents the previous works in the
topic. Section 3 presents the databases, representations, and classifiers used to construct
the models used for evaluation. Section 4 presents the results obtained in AUC and F1
measures and the statistical comparison between our model and other state-of-the-art
models. Section 5 presents a demonstration on how the contrast patterns extracted can be
interpreted. Finally, Section 6 presents our conclusions and future work.

2. Previous Works

This section provides a general overview of previously conducted research related to
the detection of mental health diseases with the use of information extracted from social
media. As the use of AI for detecting depressive posts is still a little-studied topic, most of
the papers were proposed in workshops. We also reviewed those papers using objective
information and sentiment analysis as feature representations for detecting people with
depressive behavior on social media.

2.1. Workshops on the Detection of Depression on Social Media

There have been multiple workshops on the detection of mental health problems
using social media information. One of the most known workshops is from the CLEF’s
(Conference and Labs of the Evaluation Forum) Early Risk Prediction on the Internet (eRisk)
lab [23] wherein the task for early detection of depression consisted of processing Reddit
posts sequentially and detecting depression signs as early as possible.

Multiple solutions were given to this task; the best solutions are summarized in the
following subsections.

2.1.1. LIDIC Participation in the CLEF’s eRisk Pilot Task

This research group proposed a semantic representation of posts and a method named
temporal variation of terms (TVT) [24]. The representation includes an unweighted BOW,
3 g character representation, features extracted using the linguistic inquiry and word count
(LIWC) tool, and concise semantic analysis. The LIWC tool is “a transparent text analysis
program that counts words in psychologically meaningful categories” [25]. This research
group used it to extract linguistic markers of depression. Concise semantic analysis is a
technique used to represent terms as vectors in a space of concepts close to their category
labels. This technique represents posts as the central vector of the vectors representing
the individual terms it contains [26]. TVT uses concise semantic analysis to create concept
spaces for both the depressed and non-depressed class. It then classifies the new entries
based on those spaces. This technique reported a F1 measure of 0.59 [26].

2.1.2. Dortmund University Participation in the CLEF’s eRisk Pilot Task

The Computer Science Group of Dortmund University proposed four different repre-
sentations of social media posts. The representations included linguistic metadata extracted
manually. These data included the following:

• Number of past tense verbs.
• Number of possessive pronouns.
• Number of personal pronouns.
• Number of “I” in the text.
• Number of “I” in the title.
• Text length.
• Month in which the post was made.
• Linsear Write Formula score.
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• Flesch Reading Ease score.
• Dale–Chall Readability score.
• Gunning Fog Index score.
• Boolean value that represents whether or not the post includes the name of a medica-

tion linked to depression.
• Boolean value that represents whether or not the post includes a phrase that implies

the diagnosis of depression (“I was diagnosed with depression”, “My diagnosis of
depression”, etc.).

• Boolean value that represents whether or not the term “My therapist” is included in
the post.

• Boolean value that represents whether or not the term “My anxiety” is included in
the post.

• Boolean value that represents whether or not the term “My depression” is included in
the post.

The other three representations were three different BOWs. The first BOW used, as
terms, the 200,000 unigrams, bigrams, trigrams, and four-grams with the highest informa-
tion gain (IG), and its weights are calculated with the following formula:

tt,d = lt,d · gt · nd.

where ld,t is the local weight of term t in post d given by the raw frequency of the term in
the document, gt is the global weight of term t given by IG, and nd is a normalization factor.

The second BOW used, as terms, all the unigrams in the training set and the aug-
mented term frequency (atf) multiplied by the inverse document frequency as shown in
the following formula:

at f − id f (t, d) =

(
a + (1− a)

t ft

max(t f )

)
· log

nd
d f (d, t)

.

The third BOW used all unigrams in the training set as terms, and it used the logarith-
mic term frequency as the local weight and the relevance frequency as the global weight,
as shown in the following formula:

logt f − r f (t, d) = (1 + log(t f )) · log2

(
2 +

d ft,+

max(1, d ft,−)

)
.

All the BOWs used l2 − norm or cosine normalization as the normalization factor.
The handcrafted features and all BOWs were used separately as input of different

logistic regression classifiers. These classifiers had a class weighting given by 1
1+w for the

not depressed class and w
1+w for the depressed class, with w being equal to 2, 6, 2, 4 for each

of the classifiers respectively. The highest F1 reported measure is 0.64, while the lowest is
0.55 [16].

2.1.3. University of Quebec in Montreal Participation in the CLEF’s eRisk Pilot Task

The University of Quebec in Montreal proposed a representation which included
the following:

• Unigrams.
• Bigrams.
• SenticNet dictionary [27].
• A dictionary of antidepressants obtained from Wikipedia (https://en.wikipedia.org

/wiki/List_of_antidepressants accessed on 2 December 2020).
• A dictionary of depression-related diseases obtained from Wikipedia (https://en.wik

ipedia.org/wiki/Depression_(mood) accessed on 2 December 2020).

https://en.wikipedia.org/wiki/List_of_antidepressants
https://en.wikipedia.org/wiki/List_of_antidepressants
https://en.wikipedia.org/wiki/Depression_(mood)
https://en.wikipedia.org/wiki/Depression_(mood)
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• A drug dictionary obtained from Wikipedia (https://en.wikipedia.org/wiki/Ps
ychoactive_drug accessed on 2 December 2020).

• Parts of speech (adjectives, nouns, predeterminer, particle, or verb).

The research team used three different classification algorithms: logistic regression, an
ensemble of sequential minimal optimization, and an ensemble of Random Forest. Each of
the ensembles used 30 classifiers. The highest reported F1 measure is 0.53, while the lowest
is 0.39 [28].

2.1.4. UAM Participation in the CLEF’s eRisk Pilot Task

The UAM (Universidad Autónoma Metropolitana by its acronym in Spanish) research
team proposed a graph representation of the posts as in [29], where each term is represented
by a node. The edges represent the number of co-occurrences of the pair of nodes they join
within a contextual window. The terms the research team used for the graph representation
were 1 g and 3 g with a contextual widow of two terms to the right and two to the left.

They made a graph for each class (depressive and non-depressive) and each node.
Afterward, they compared the individual post graphs with the class graphs measuring
its similarity using containment similarity, value similarity, normalized value similarity,
and dice similarity. Containment similarity refers to sequences of shared nodes and edges.
Value similarity refers to how many of the edges on the graph of the post are contained
in the prototype graph. Finally, Dice similarity refers to the number of shared nodes
between graphs.

The four features were then fed to a k-nearest neighbors classification algorithm in the
Weka platform with k = 1 and Euclidean distance. The highest reported F1 measure is 0.16,
while the lowest is 0.08 [30].

2.2. Machine Learning and Mental Disorders

Researchers have used machine learning and AI to detect multiple mental health
issues. In this subsection, we present some of the works conducted using not only text, but
also physical markers. This subsection shows some of these works.

2.2.1. Tackling Mental Health by Integrating Unobtrusive Multimodal Sensing

An investigation team from the University of Rochester proposed a model that could
link mental states and a set of signals extracted from different sources [17]. These signals
included the sentiment analysis of the tweets and tweet replies posted by the users. This
feature was extracted with an NLP tool called Sentiment 140 [31], which returns the polarity
of the text (positive, negative, neutral). For the sentiment in images, they used an algorithm
described in [32]. In addition to the sentiment features of the tweets, they used the following
signals using different devices:

• Heart rate.
• Eye blinking rate.
• Pupil radius variations.
• Head movement rate.
• Facial expressions.
• Keystroke rate.
• Mouse moving distance.
• Mouse click rate.
• Mouse wheel slide.

The team then used these features to feed a logistic classifier to infer the mood of the
user based on them. Using the leave-one-subject-out approach, the F1 and AUC measures
are shown in Table 1.

https://en.wikipedia.org/wiki/Psychoactive_drug
https://en.wikipedia.org/wiki/Psychoactive_drug
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Table 1. F1 and AUC measures for the use of multimodal features and logistic regression.

Class F1 AUC

Negative mood 0.84 0.95
Neutral mood 0.59 0.79
Positive mood 0.75 0.91

2.2.2. Detecting Mental Disorders in Social Media through Emotional Patterns: The Case of
Anorexia and Depression

This proposal uses the categories of the lexicon EmoLEX [33] listed below:

• Negative.
• Positive.
• Anger.
• Fear.
• Anticipation.
• Trust.
• Surprise.
• Sadness.
• Joy.
• Disgust

These categories were used to create a sub-emotion lexicon by clustering words by
the emotion level. This new lexicon was used to vectorize social media posts and create
a BOW, using sub-emotions as features. They used SVM as classifier for their model and
obtained an F1 score of 0.61 when using unigrams and 0.63 when using n-grams [20].

2.3. Sentiment Analysis and Mental Health

The use of sentiment analysis on social media posts for detecting mental health
problems is present in current research. This subsection shows some of the previous works
on that matter.

2.3.1. Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique

Ref. [18] proposed a model for classifying Facebook comments as depressive indicative
or not, using features that were divided into three different categories: emotional variables,
temporal categories, and standard linguistic dimensions. Table 2 shows the features in
more detail.

These features were then fed to different KNN algorithms, both individually and
combined between each other. The best F1 measure was obtained with the Coarse KNN
algorithm, using the emotional variables with a value of 0.71.

2.3.2. Depressive Moods of Users Portrayed in Twitter

Ref. [34] extracted 37 sentiment categories using the tool LIWC and examined how the
variables were correlated with a user Center for Epidemiological Studies–Depression (CES-
D) score. CES-D is a survey that asks the frequency of depression-related symptoms that
the patient has suffered over the past week. The final score ranges from 0 to 60, with higher
scores indicating more severe depression symptoms [34]. A total of 18 sentiment predictors
were found out to be reasonably correlated with the topic. The predictor, example words
for each factor, and the coefficients of a multiple regression model for the CES-D score are
detailed in Table 3.
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Table 2. Features used for the model that classifies comments as depressive indicative or not [18].

Category Variable

Emotional variables

Positive

Negative

Sad

Anger

Anxiety

Temporal Categories

Present focus

Past focus

Future focus

Standard Linguistic Dimensions

Articles

Prepositions

Auxiliary verb

Adverbs

Conjunctions

Pronouns

Verbs

Negations

Table 3. Results of regression models for predicting CES-D scores. Table extracted from [34].

Predictor Example words Estimate p-Value

Positive feeling Love, nice, good 3.38 0.25
Anxiety Worried, fearful, nervous 4.02 0.45
Anger Hate, kill, annoyed 5.04 <0.05

Sadness Crying, grief, sad 6.33 0.20
Causation Because, effect, hence 12.1 <0.05
Inhibition Block, constraint, stop −4.29 0.11
Tentative Maybe, perhaps, guess −6.99 <0.05

Face Keep up appearances 5.63 0.14
Communication Tell, speak, claim −3.54 <0.05
Social reference He, she, who 4.98 0.12

Friends Buddy, friend, neighbor 15.1 <0.01
Family Aunt, mother, daughter 6.17 0.19

Humans Adult, baby, boy 2.17 0.55
School School, student, class 0.68 0.79
Work Job, majors, xerox −4.79 0.16

Achievement Earn, hero, win −6.47 0.087
Sleep and dream Sleep, nap, dream −0.98 0.66

Death Bury, coffin, kill −11.6 0.10

These features were used on a regression model to predict the CES-D scores of users
showing a high correlation between causation and friends words and depression. Accord-
ing to the coefficients, we can see that the more relevant predictors are anger, causation,
tentative, communication, and friends, increasing or decreasing the CES-D score by 5.04,
12.1, −6.99, −3.54, and 15.1 respectively.
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2.3.3. Mental Health Computing via Harvesting Social Media Data

An investigation team from the Tsinghua University used the features described in
Table 3 for their representation. Additionally they used features such as topic-level features,
features related to antidepressants and depressions symptoms, and features extracted with
the tool bBridge [35], which include the following:

• Age group.
• Gender.
• Education level.
• Occupation industry.
• Relationship status.

These features were then fed to a binary classifier and tested in a dataset of 2804 users.
The model obtained an F1 measure of 0.85 [19].

3. Materials and Methods

In this section, we present the databases we used for the comparison, the tools we
used for extracting emotion and sentiment features, and the structure of the feature space
created. We also describe the state-of-the-art models we reproduced for the comparison.
Finally, we summarize the models used for the statistical analysis.

3.1. Databases

In this paper, we used five different publicly available databases; Table 4 summarizes
their characteristics.

Table 4. Summary of databases.

Ref. Name No. Users No. Posts No. Depressed Posts No. Non-Depressed Posts

[36] C-SRRS 500 2670 876 1793
[37] DDVHSM 1402 11,776 6,493 5282
[38] Kaggle Unknown 12,370 5618 6751
[39] LOSADA2016 892 530,881 49,529 481,351
[39] LOSADA2018 1707 543,732 40,620 503,111

The C-SSRS database was extracted by Gaur et al. [36] to distinguish the severity risk of
suicide in a user. They used four psychiatrists to classify Reddit posts into five categories:

• Indicative of suicidal ideation.
• Indicative of suicidal behavior.
• Indicative of an actual attempt of suicide.
• Suicide indicator (it contains reference to suicide but in an informative manner).
• Supportive of suicidal people.

We relabeled every post labeled as supportive or a suicide indicator as non-depressive
and every post labeled in any other category as depressive.

DDVHSM (depression detection via harvesting social media) is a database extracted
by Guangyao Shen et al. [37]. The research team labeled Twitter posts considering the
appearance of specific text related to depression diagnosis, such as “I have been diagnosed
with depression.”, “I am diagnosed with depression.”, and similar texts.

The Kaggle database is an open-source database of Twitter posts, annotated individ-
ually, as depressive or non-depressive. Since the posts were annotated individually, the
number of users is unknown. The labeling was made considering the appearance of the
stem “depress” on the text.

Both LOSADA databases are databases that were available in the eRisk lab of the CLEF
in the years of 2017 and 2018 [23,40]. As described in [39], to label a user as depressive or
not depressive, they searched for mentions of diagnosis, such as “I have been diagnosed
with depression.”, “I was diagnosed with depression.” and similar texts. Text such as “I
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am depressed.” or “I have depression.” were not considered, as they did not mention
an explicit diagnosis. This labeling did not include individual post labels; we relabeled
every post of a depressed user as depressive and every post of a not-depressed user as
non-depressive.

3.2. Extraction of Sentiment Features

After having the databases with every post labeled individually as depressive or
non-depressive, we processed the posts as shown in Figure 1. We removed HTML tags,
stopwords, and repeating punctuation. After that, some posts were left blank, so we
removed them, as they would give no useful information for the comparison.

We then extracted emotion and sentiment features using the tools MeaningCloud [41]
and Paralleldots [42]. The description of the features extracted with each tool is found in
Tables 5 and 6. We used five different APIs from Paralleldots: sentiment analysis, emotion
analysis, sarcasm detection, intent analysis, and abuse analysis. The emotion analysis API
uses a model based on Paul Ekman’s basic emotions theory [43], replacing disgust and
surprise by boredom and excitement [42]. From MeaningCloud, we used the sentiment
analysis API.

Table 5. Features extracted from Paralleldots.

Category Feature Description

Sentiment

Negative
Each feature has a numeric value representing the
probability that the text is negative neutral, or positive.Neutral

Positive

Emotion

Bored

Each feature has a numeric value representing the
probability that the text represents an emotion of bore-
dom, anger, sadness fear, happiness, or excitement.

Angry

Sad

Fear

Happy

Excited

Sarcasm
Sarcastic Each feature has a numeric value representing the

probability that the text is sarcastic or not.Not-sarcastic

Intent

News

Each feature has a numeric value representing the
probability that the text is news, query, spam, mar-
keting, or feedback.

Query

Spam

Marketing

Feedback

Feedback

Complaint If the text is feedback, each feature represents the
probability of the text being a complaint, a sugges-
tion, or an appreciation text.

Suggestion

Appreciation

Abuse

Abusive
Each feature has a numeric value representing the
probability that the text is abusive or not.Hate-speech

Neither
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Table 5: Features extracted from Paralleldots.

We built three different representations. The first representation contains only321

Paralleldots features with 23 different features including the length of the post in words.322

The features in this representation are numerical and can take values from 0 to 1 and the323

sum of features in the same category is equal to one.324

The second representation contains only MeaningCloud features with 6 features325
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and Paralleldots [42]. The description of the features extracted with each tool is found in
Tables 5 and 6. We used five different APIs from Paralleldots: sentiment analysis, emotion
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uses a model based on Paul Ekman’s basic emotions theory [43], replacing disgust and
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analysis API.

Figure 1. Flowchart of the process followed to obtain the representations used in the experimentation.

We built three different representations. The first representation contains only Paral-
leldots features with 23 different features, including the length of the post in words. The
features in this representation are numerical and can take values from 0 to 1; the sum of
features in the same category is equal to one.

The second representation contains only MeaningCloud features with 6 features,
including the length of the post in words.

The third representation contains all features from both Paralleldots and Meanincloud
with a total of 28 features, 22 of which are numerical and 5 which are nominal.

Table 6. Features extracted from MeaningCloud.

Feature Description Possible Values

score_tag
A nominal value representing the
polarity of the text.

P+ (strong positive).

P (positive).

NEU (neutral).

N (negative).

N+ (strong negative).

NONE (without polarity).

Agreement
Whether there is agreement between the
polarity of the different elements in the
text or not.

AGREEMENT (A).

DISAGREEMENT (D).

Subjectivity
A nominal value that represents
whether the text has subjectivity marks
or not.

OBJECTIVE (O)

SUBJECTIVE (S).

Irony
A nominal value that represents whether
the text has irony marks or not.

IRONIC (I)

NONIRONIC (NI)

Confidence
A numeric value representing confidence
associated with the sentiment analysis
done by the tool.

0–100

3.3. Classifier

For the three previously explained representations, we used PBC4cip, a contrast
pattern-based classifier that addresses class imbalance problems [44].

A contrast pattern is a pattern that describes a proportion of objects inside a class that
differs significantly from other classes. Contrast patterns are a way of making a classifier
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explainable. This is because they can be interpreted in natural language and provide a
model that is easy to understand for human experts in the field of the problem being
solved [45]. Contrast patterns are used for the resolution of tasks, such as bot detection [45],
masquerader detection [46], image processing [47], medical diagnosis [48,49], and fraud
detection [50]. Moreover, they are proven to be a more accurate model than other state-of-
the-art models in certain problem resolutions [44,45,51,52].

PBC4cip (pattern-based classifier for class imbalance problems) is a classifier based
on contrast patterns designed to deal with class imbalance problems. Its main goal is to
avoid the model’s bias toward the most supported class by extracting a weight during the
training phase. It then uses the weighting obtained in the training phase to balance the
classes by rewarding the minority class by its low support and punishing the majority class
by its higher support [44].

We used a Random Forest miner by using Twoing as a splitting measure for the
decision trees. Due to the time-consuming nature of hyperparamenter optimization and
the fact that we used multiple representations and databases, we based our decision on an
extensive experimentation, where Twoing was shown to be the recommended measure to
build C4.5 decision trees [53].

3.4. State-of-the-Art Models

To compare the results with state-of-the art models fairly and precisely, we reproduced
some of the models found in the literature. For every database, we extracted every repre-
sentation, giving a total of 25 feature spaces. The representations extracted are described in
detail in the following subsections.

3.4.1. Ensemble of Handcrafted Features and BOWs

The first representation we obtained is the one described in [16], which is the best
representation of the database LOSADA2016. For all databases and for each post, we
extracted the features described in Section 2.1.2. That is, the linguistic metadata and the
three different BOWs with their correspondent weighting scheme. We then fed every
representation individually to a different logistic regression classifier. Each classifier had
its own class weighting defined. For the classifiers fed with the handcrafted features and
the second BOW, the weights were non_depressed = 1

3 and depressed = 2
3 . For the classifier

fed with the first BOW the weights werenon_depressed = 1
7 and depressed = 6

7 . For the
classifier fed with the third BOW, the weights were non_depressed = 1

5 and depressed = 4
5 .

These weights were used, due to imbalanced class distribution to increase the cost of false
negatives, as stated in the paper. The result of this classification was the unweighted mean
of the four probabilities calculated by the models.

3.4.2. Ensemble of BOWs

The second representation uses the same operations defined in Section 2.1.2 to extract
three weighted BOWS. For the first BOW, we used the raw term frequency and information
gain as local and global weights, respectively. For the second BOW, we used augmented
term frequency and inverse document frequency. For the third BOW, we used logarithmic
term frequency and relevance frequency [22]. Each BOW was fed to a different logistic
regression classifier with class weight as non_depressed = 1

3 and depressed = 2
3 for the

three classifiers. The result was the unweighted mean of the three probabilities calculated
by the models.

3.4.3. Parser Tree

The third representation [36] consists of the following features:

• First person pronoun ratio: the number of first pronouns (I, me, my, mine, or myself)
per number of words in the post.
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• LabMT: whether or not there is a match with the words in the Language Assess-
ment by Mechanical Turk, a database of words with happiness and internet usage
scores [54].

• Height of dependency parse tree: a measure of readability, with the height being
proportional to the readability of the text.

• Maximum length of verb phrase: the length of the longest verb phrase in the post.
• Number of pronouns: including personal (I, me, he, him, etc.), possessive (mine,

yours, etc.), reflexive (myself, themselves, etc.), demonstrative (this, that, etc.), inter-
rogative (what, who, which, etc.), and relative (whom, that, which, etc.).

• Number of sentences.
• Number of definite articles: the definite article “the”.

We extracted the features of dependency parse tree, number of pronouns, sentences
and definite articles with the help of the Stanford CoreNLP Natural Language Processing
Toolkit [55]. For this representation, we used a Random Forest classifier with no weighting
or any extra configuration since it was not specified in the original paper [36].

3.4.4. VAD and Topics

The fourth representation [37] includes the following features:

• VAD features: valence, arousal, and dominance features using the Affective Norms
for English Words database [56].

• Topic-level distribution: 25 features extracted with a unsupervised latent Dirichlet
allocation model.

• Antidepressants: average number of antidepressants names mentioned according to
a lexicon extracted from the Wikipedia page of antidepressants (https://en.wikipedia
.org/wiki/List_of_antidepressants accessed on 2 December 2020).

• Depression symptoms: appearance of keywords of the nine groups of symptoms of
depression described in the Diagnostic and Statistical Manual of Mental Disorders [5].
The lexicon we used for the extraction of these features is described in [57].

For this representation, we used a Naive Bayes model. We did not add any extra
configuration to the model because it was not specified by the original paper [37].

3.4.5. BOW

The fifth and last representation is described in [58]; it consists of a classic tf-idf BOW,
that is, a BOW that uses raw term frequency as the local weight and inverse document
frequency as the global weight. For this representation, we used Ada boost since it was the
one that performed the best in [58]. We did not give the model extra configuration since it
was not specified in the original paper.

3.5. Data Partitioning

For every representation discussed above, we performed a distribution optimally
balanced stratified cross validation (DOB-SCV) partitioning [59], using the tool KEEL.
KEEL is an open-source tool for developing experiments. It contains a specific module
for imbalanced databases. This module is important in these problems since most of the
databases found are imbalanced, due to the relative prevalence of depression and lack of
diagnosis of this disease.

4. Results and Evaluation
4.1. Metrics

The metrics we used to assess the results are F1 score and AUC. There are multiple
reasons for choosing these metrics for our model evaluation. The F1 score is the harmonic
mean of precision and recall, which means that it assesses both measures [60], given the
following formulas:

https://en.wikipedia.org/wiki/List_of_antidepressants
https://en.wikipedia.org/wiki/List_of_antidepressants
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precision =
TP

TP + FP

recall =
TP

TP + FN
where TP is the true positives, FP is the false positives, and FN is the false negatives. We
have that F1 is calculated by the following:

F1 = 2 · precision · recall
precision + recall

By doing so, the F1 score is an indicator of both quality and robustness.
On the other hand, “the AUC of a classifier is equivalent to the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative instance” [61]. This can be calculated using the following formula:

AUC =
TN

TN + FN
+

TP
TP + FP

where TN is the true negatives, FN is the false negatives, TP is the true positives, and FP
is the false positives. This is important in this specific problem because of the importance
of classifying correctly positive instances of depression.

4.2. Proposed Representations

The first comparison we performed was between the three different representations
proposed in this paper. As seen in Figures 2 and 3, the worst performing representation
is Meaningcloud in both metrics. This representation allows obtaining an average F1
score of 0.5076, having the best performance with the database of Kaggle with an average
performance of 0.8459. The worst performance of this metric was with the LOSADA2018
database with an average performance of 0.1390. For the AUC, the worst performance is
given by the Meaningcloud representation, having its best average performance of 0.8562
with Kaggle and its worst average performance of 0.5 with LOSADA2018; the predictions
were not better than random predictions.

On the other hand, the best F1 performance was achieved by the combined representa-
tion with an average performance of 0.6457 taking into consideration all the databases. The
best performance is with the database Kaggle with an average performance of 0.9586. The
representation that gives the best AUC performance is again the combined representation,
with its best average performance of 0.9621 with Kaggle and its worst average performance
of 0.7170 with LOSADA2018.

It is important to denote that the difference between the results of the combined and
Paralleldots representations has no significant difference in the F1 score, according to a
Wilcoxon signed-ranks test [62], which gives a p-value of 0.1416. Nevertheless, it does
present a significant difference in the AUC metric with a p-value of 0.02444.

We chose combined as the best representation, given the results, and used it as the
point of comparison with other representations and classifiers.

After determining the best representation using PBC4cip, we used that representation
to compare it with the results of other proposals. Since we only have results for three of the
five databases using the LOSADA2016 and LOSADA2018 representation and classification
technique, the results are divided into two sets. Figures 4 and 5 present the comparison
between our representation and the representations of LOSADA2016 and LOSADA2018 for
the available databases, which are CSSRS, DDVHSM, and Kaggle. Figures 6 and 7 present
the comparison between our representation and the representations of Parser tree, VAD,
and BOW tf-idf for all databases.
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4.3. LOSADA Representations

Figure 4 presents the available results of LOSADA2016 and LOSADA2018 representa-
tions. The three representation–classifier pairs perform better on the datasets DDVHSM
and Kaggle and have a lower performance on CSSRS. The combined representation with
PBC4cip performs better on DDVHSM and Kaggle with a mean performance of 0.9457 and
0.9586, respectively. On the other hand, the Ensemble of BOWs and Handcrafted features
with logistic regression performs better on CSSRS with a mean performance of 0.6335.

As seen in Figure 5, the same pattern is repeated when using AUC as the metric
for performance. Nevertheless, using AUC, the Ensemble of BOWs and Handcrafted
features with logistic regression performs better on both CSSRS and DDVHSM with a mean
performance of 0.7357 and 0.9470, respectively. This contrasts with PBC4cip, which has a
mean performance of 0.72191061 and 0.9375.
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4.4. Other Models

As seen in Figure 6, for both LOSADA2016 and LOSADA2018 databases, the VAD
representation with Naive Bayes classification presents the worst performance in F1 score.
On the other hand, for the DDVHSM database, it presents the best performance. For the
CSSRS and Kaggle database, the tf-idf BOW using Ada Boost classification presents the
worst performance but has a better performance in the LOSADA2016 and LOSADA2018
databases. For all databases except DDVHS, the best performance is given by the sentiment-
based representation with PBC4cip.

Figure 7 shows that for AUC, VAD features using Naive Bayes classification present the
worst performance for LOSADA2016 and LOSADA2018. It also shows that it has a higher
performance in CSSRS, DDVHSM, and Kaggle databases, having the best performance
in DDVHSM. The parser tree representation with Random Forest classification presents a
similar performance in all databases in comparison with its counterparts.
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As we have stated before, for all databases except DDVHSM, the best performance is
given by sentiment-based representation with PBC4cip.
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4.5. Wilcoxon Test

After obtaining and visually comparing the results, we performed a Wilcoxon signed-
ranks test [62] to assess whether there is a significant difference between the results of the
different classifiers or not. We used this test because it is recommended in cases where
the same models or subjects are assessed under more than one different condition. It is
also recommended when what is being assessed is the definite numeric scores instead of
nominal values [63].

The Wilcoxon signed rank test has a null hypothesis H0 : M1 = M2 and an alternative
hypothesis H1 : M1 6= M2, where M1 and M2 are the datasets that are being compared. We
first have to subtract the values of one dataset from the other dataset, that is, D = M1−M2.
After that, we have to rank the absolute values of D in ascending order, that is, the smallest
value of |D| is number 1, and the highest value of |D| is number n, where n is the number
of values in the datasets.

We then add all the positive values of D obtaining T+ and all the negative values of D
obtaining T−. We obtain the Wilcoxon statistic using the following formula:

Wstat = min(T−, T+)

We obtain the Wilcoxon critical value Wcrit using the Wilcoxon signed-ranked test
quantiles table. After that, we compare Wcrit and Wstat. If Wstat < Wcrit, then we reject the
null hypothesis, meaning that there is a statistical difference between the datasets. On
the other hand, if Wstat > Wcrit, we accept the null hypothesis, meaning that there is no
statistical difference between the datasets.

Table 7 shows the mean of the scores obtained by each model per database. The values
used for the Wilcoxon test were the results obtained per partition, for each database.

Table 8 shows the results obtained from the test. When comparing the models, we
could see that the logistic regression classifier together with the Ensemble of BOWs and
Handcrafted features performed better on some databases. Nevertheless, according to
the Wilcoxon test performed, there is no significant difference between the F1 score and
AUC of the sentiment-based representation together with PBC4cip. The results also show
that there are classifiers and representations with which there is a significant difference.
However, the difference proves an advantage of using sentiment-features with PBC4cip
over the other classifiers. Moreover, PBC4cip provided patterns that explain the decisions
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taken by the classifiers. The features that are taken more into consideration by the model
to classify a social media post as depressive or not depressive are as follows:
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• The emotions of sadness, excitement, anger, and boredom in the text.
• The polarity of the text, especially whether the text is neutral or not.
• The subjectivity of the text.

Table 7. Mean F1 and AUC scores for each model tested.

Model Database
Scores

F1 AUC

Logistic Regression (Ensemble BOW and Hand-
crafted)

CSRRS 0.6335 0.7357

DDVHSM 0.9433 0.9470

Kaggle 0.9428 0.9438

Logistic Regression (Ensemble BOW)

CSRRS 0.6469 0.7395

DDVHSM 0.9026 0.9302

Kaggle 0.9236 0.9376

Random Forest (parser-tree)

CSRRS 0.5231 0.6568

DDVHSM 0.7611 0.7115

Kaggle 0.6149 0.6606

LOSADA2016 0.2797 0.6815

LOSADA2018 0.2545 0.6771

Naive-Bayes (VAD and Topics)

CSRRS 0.5740 0.6810

DDVHSM 0.9553 0.9502

Kaggle 0.7853 0.8011

LOSADA2016 0.2392 0.6247

LOSADA2018 0.2097 0.6404
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Table 7. Cont.

Model Database
Scores

F1 AUC

AdaBoost (BOW)

CSRRS 0.3218 0.6848

DDVHSM 0.7893 0.7983

Kaggle 0.5371 0.7392

LOSADA2016 0.3505 0.6793

LOSADA2018 0.2585 0.6523

PBC4-cip (combined)

CSRRS 0.6298 0.7219

DDVHSM 0.9457 0.9375

Kaggle 0.9586 0.9621

LOSADA2016 0.3694 0.7212

LOSADA2018 0.3250 0.7190

Table 8. Wilcoxon signed-ranks test, comparing the classification results of our proposal against the remaining tested
popular state-of-the-art proposals.

Model 1 Model 2 Measure Sum. Pos.
Ranks

Sum. Neg.
Ranks Mean Diff. Z-Value p-Value Signif.

PBC4-cip
(combined)

Logistic Regression
(Ensemble BOW
and Handcrafted)

F1 62 58 0.19 −0.1136 0.9124 No

AUC 54 66 0.08 −0.3408 0.7279 No

Logistic Regression
(Ensemble BOW)

F1 94 26 0.19 −1.9311 0.0536 No

AUC 67 53 0.13 −0.3976 0.6892 No

Random Forest
(parser-tree)

F1 305 20 0.08 −3.8342 0.0001 Yes

AUC 296 29 0.13 −3.5921 0.0003 Yes

Naive-Bayes
(VAD and Topics)

F1 301 24 0.11 −3.7266 0.0002 Yes

AUC 261 64 0.16 −2.6503 0.0080 Yes

AdaBoost (BOW)
F1 215 110 0.04 −1.4126 0.1585 No

AUC 127 108 0.1 −1.4664 0.1416 No

5. Interpretation of Patterns

Table 9 shows examples of the contrast patterns obtained by the model, as well as their
support for the depressive and non-depressive class. These patterns can be interpreted in
natural language, this interpretation can be found in Table 10.

Patterns show that depressive tweets tend to have a higher probability of containing
text representing sadness, anger and boredom and a lower probability of containing text
representing excitement, happiness, or a positive polarity. Moreover, depressive posts
can be identified by the lack of excitement and happiness more than by the presence of
sadness or anger. The contrast patterns obtained show that for 40% of depressive posts,
and over 0% of the non-depressive posts, the feelings of excitement and happiness do not
go higher than 0.05. On the other hand, the levels of sadness, anger and boredom can vary
from 0.02 upwards. Polarity is also important, as positive polarity is linked to 65% of the
non-depressive posts and only 20% of the depressive posts. Nevertheless, neutral polarity
is linked to both depressive and non-depressive posts. The patterns also showed that
non-depressive posts contain more sarcasm (a probability higher than 0.52) than depressive
posts. In addition, the posts are objective for 26% of the depressive posts in contrast with
0% of the non-depressive posts.
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Table 9. Example of contrast patterns obtained, showing the support for depressed and not depressed posts.

ID Pattern
Support

Depressive Not
Depressive

P1
Sad > 0.14 & Excited ≤ 0.08 & Angry > 0.02 & Polarity
6= ’P’ & Bored ≤ 0.72 & Happy ≤ 0.05 0.4 0

P2
Abusive > 0.49 & Positive ≤ 0.23 & Excited ≤ 0.16 &
Negative > 0.66 & Happy ≤ 0.05 0.32 0

P3
Happy ≤ 0.09 & Positive ≤ 0.30 & Polarity 6= ’NONE’ &
Sad > 0.03 & Complaint > 0.44 & Hate_Speech ≤ 0.01 0.3 0

P4
Marketing ≤ 0.01 & Polarity 6= ’P’ & Positive ≤ 0.18 &
Abusive > 0.92 & Happy ≤ 0.05 0.29 0

P5
Sad > 0.14 & Complaint > 0.19 & Query ≤ 0.20 & Neu-
tral ≤ 0.33 & Spam ≤ 0.43 & Happy ≤ 0.09 0.29 0

P6 Positive ≤ 0.27 & Neither ≤ 0.54 & Happy ≤ 0.07 0.29 0

P7
Complaint > 0.42 & Happy≤ 0.07 & Polarity 6= ’NONE’
& Hate_Speech ≤ 0.01 0.29 0

P8
Positive ≤ 0.24 & Marketing ≤ 0.01 & Negative > 0.60
& Excited ≤ 0.03

0.28 0

P9
Neutral > 0.46 & Not-Sarcastic≤ 0.73 & Sarcastic > 0.29
& Negative ≤ 0.26 0 0.21

P10
Sad ≤ 0.29 & Polarity 6= ’NEU’ & News ≤ 0.28 & Nega-
tive ≤ 0.22 & Query ≤ 0.17 & Excited ≤ 0.42 0 0.21

Table 10. Explanation in natural language of example patterns in Table 9.

ID Interpretation in Natural Language of Extracted Patterns

P1
Depressive posts have at least a minimum amount of sadness and anger, almost no excitement or happiness,
a polarity that is either negative or neutral, and up to a medium high level of boredom.

P2
Depressive posts have at least a medium high level of negativity and a medium low level of abusive content,
at most a low level of positivity, and almost no excitement or happiness.

P3
Depressive posts have almost no happiness or hate speech, at most a low level of positivity, a polarity that
is either positive or negative, at least a minimum amount of sadness and at least a medium-low level of
complaints.

P4
Depressive posts have almost no intent of marketing, positivity, or happiness, a polarity that is either negative
or neutral and at least a high level of abusive content.

P5
Depressive posts have at least a minimum amount of sadness and complaints, at most a medium low level of
intent of spam and neutrality, at most a medium low level of query intent, and almost no happiness.

P6
Depressive posts have at most a low level of positivity and a medium level of not-abusive and not-hate-speech
content, and almost no happiness.

P7
Depressive posts have at least a medium-low level of complaints, a polarity that is either positive or negative,
and almost no happiness or hate-speech content.

P8
Depressive posts have at most a low level of positivity, almost no intent of marketing or excitement, and at
least a medium-high level of negativity.

P9
Not depressive posts have at least a medium low level of neutrality and a low level of sarcasm, and at most a
medium-high level of not-sarcastic content and a low level of negativity.

P10
Not depressive posts have at most a low level of sadness, negativity, and intent of news or query, a polarity
either positive or negative, and at most a medium-low level of excitement.
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6. Conclusions and Future Work

Depression detection has become an essential task, as it has multiple risks to individu-
als, society, and economics. Due to the lack of specialists per patients, this task has become
difficult and has escalated, becoming a global problem. Since there is a link between
language and signs of depression, social media is used to detect depression, using users’
posts. The literature shows that most of these solutions provide a representation of text
using objective features, such as the number of pronouns, the count of a certain word, or
the use of certain phrases inside the text.

However, as far as we know, state-of-the-art proposals do not provide their result in
a language close to the human expert, which is essential for helping decision makers in
the application area. Hence, in this paper, we proposed a new representation of the text
based on sentiment analysis and emotions to provide an understandable representation,
allowing to discriminate depressive and non-depressive posts in a language close to that
of human experts. The aim was to provide experts the information of social media to aid
in the diagnosis of users, who may not know they have depression. We also proposed
an understandable model based on our representation and pattern-based classification,
obtaining both an understandable and accurate model for human experts.

Our proposed model outperforms most of the other five state-of-the-art models for
depression detection. Additionally, it provides insights on the sentiment-features that
define a depressive or a non-depressive post, providing more information to an expert
or even the posts’ author. Moreover, based on the statistical tests and F1 and AUC met-
rics, our model statistically outperforms the Random Forest, Naive Bayes, and AdaBoost
models using the parser-tree, VAD and Topics, and BOW representations. However, it
obtains similar statistical results to the logistic regression models, using the ensemble of
BOWs and handcrafted features representations. Consequently, we can conclude that our
proposed model, as well as the representation based on sentiments and emotions, allows
for providing the best classification results for predicting depressive posts.

In future work, we plan on exploring new representations, including features directly
related to the medical symptoms of depression and fuzzy pattern classification. The
assessment of psychology experts on the patterns and the subsequent interpretation is also
part of our future work on this topic.
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