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Abstract: Diazinon exposures have been linked to the onset of toxic pathways and adverse outcomes
in aquatic species, but the ecological implications on model species are not widely emphasized.
The objective of this study was to determine how the organophosphate pesticide diazinon affected
hematological (hemoglobin, total red blood count, total white blood count, and mean corpuscular
hemoglobin), growth (condition factor, hepatosomatic index, specific growth rate), biochemical
(total serum glucose, total serum protein), and endocrine (growth hormone, tri-iodothyronine, and
thyroxine) parameters in Clarias batrachus after chronic exposure. Diazinon was administered at
predefined exposure doses (0.64 and 1.28 mg/L) and monitored at 15, 30, and 45 days into the
investigation. Observation for most biomarkers revealed patterns of decreasing values with increas-
ing toxicant concentration and exposure duration. Correlation analysis highlighted a significant
inverse relationship between variables (mean corpuscular hemoglobin, condition factor, specific
growth rate, tri-iodothyronine, thyroxine, and total serum protein) and elevated chronic diazinon
exposure concentrations. The integrated indices (IBR and BRI) indexes were used to provide visual
and understandable depictions of toxicity effects and emphasized the relativity of biomarkers in
terms of sensitivity and magnitude or severity of responses under graded toxicant exposures. The
significant damage reflected by evaluated parameters in diazinon exposure groups compared to
control portends risks to the health of local fish populations, including Clarias batrachus in aquatic
systems adjacent to agrarian landscapes.

Keywords: diazinon; Clarias batrachus; pesticide; chronic toxicity; hematological parameters; growth
parameters; biochemical parameters; endocrine parameters

1. Introduction

Pesticides, otherwise referred to as plant protection products (PPPs), by deliberate use
and applications in pest control and crop protection have recorded elevated occurrences
in the environment [1–3]. The rapid expansion of various types of integrated farming
systems for better income and livelihood of farmers is also gaining importance across
several developing climes [4]. Though integrated systems require fewer pesticides than the
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conventional ones, they are used lavishly in co-culture farming techniques [5], the eventual
contamination of aquatic ecosystems with PPPs either due to spray-drift, leaching, runoff,
and/or accidental spills and from aquacultural applications [6–8] could culminate into
risks of debilitating effects and mass mortalities of non-target species [9–15]. In addition,
risks of sustained toxicity to local biota due to their persistence and high retention within
environmental matrices is also a concern [3,16–19].

Diazinon (dimpylate) is an organo-thiophosphate derivative used widely as an agricul-
tural and household insecticide. Although it is inactivated by photochemical oxidation and
expected not to be persistent, it has an estimated moderate to high toxicity to freshwater
fish, estuarine, and marine fish and potential high toxicity to birds [20]. Its documented
high toxicity to bees and other beneficial insects [20] portends risks of ecological effects,
including invertebrate taxa loss and trophic cascades [21], which could also impact the
survival of local fish populations. Significant risks of cancer, lung lesions, and cytoge-
netic effects in humans under chronic or prolonged exposures to diazinon have also been
demonstrated [22,23]. Model refinement and validation for diazinon PBPK/PD (physi-
ologically based pharmacokinetic/pharmacodynamic) models using a series of in vivo
pharmacokinetic and pharmacodynamic studies in the rat showed fairly rapid oral ab-
sorption followed by metabolism and distribution of the active oxon metabolites [24]. The
toxic potential of this pesticide has been demonstrated using a number of biomarkers,
including hematological changes (blood glucose, lipid, and serum enzyme profiles) and
cross taxa histopathology [17,25–30]. In vitro studies on cell lines suggest that it causes
oxidative stress through free-radical generation and promotes DNA fragmentation [31,32].
Thyroid disruption has been implicated in organophosphate exposures [33], while growth
inhibition due to diazinon exposures has been reported [34].

Following reports of pesticides impacting and shaping the occurrence of global fresh-
water biodiversity, various criteria based on ecologically relevant risk estimates have been
explored to protect aquatic life from pesticide stress [9,14,29,35–40]. Furthermore, the use
of integrated biomarker endpoints in evaluating and visualizing chemical exposure effects
on aquatic organisms is still not widely applied [41]. The present study sought to assess
the chronic toxic impact of diazinon on hematological indices (hemoglobin, whole erythro-
cyte count, whole leucocyte count, mean corpuscular hemoglobin), morphometric indices
(condition index, liver-body index, specific growth rate), endocrine indices (somatotrophic
hormone, liothyronine, thyroxine) and biochemical indices (whole serum protein, whole
serum glucose) of air-breathing catfish, Clarias batrachus. In addition, the gross effect of
diazinon on fish using IBR (integrated biomarker response) as a summarizing index was
also evaluated.

2. Materials and Methods
2.1. Experimental Organism

Fingerlings of the freshwater, air-breathing catfish Clarias batrachus were collected
from a local fish farm in Basirhat, District North 24 Parganas, West Bengal, and transported
to the Aquatic Toxicology laboratory, Barasat Government College, West Bengal (weight
7.9 ± 0.9 g (mean ± SD); length 7.5 ± 1.2 cm (mean ± SD)). Fish were conditioned to
laboratory settings for three weeks in flow-through outdoor tanks (4000 L capacity) with
dechlorinated water (pH 7.6–7.9) and ambient temperature under a natural photoperiod
(12:12 h light-dark). Air pumps ensured that the tanks had a steady supply of oxygen
(Despacito CT-202 Air Pump, Kolkata, India). The fish was served dry organic micro
sinking pellets ad libitum (Growfin fish feed, manufactured by Growel feeds Pvt. Ltd.,
Andhra Pradesh, India). The fingerlings (n = 60) were kept for acclimation in an aquarium
of 4000 L. Every two days, the water quality was maintained by a partial replenishment
(30–35%) of the water [42].
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2.2. Test Chemical

Technical grade (95% TC) diazinon (CAS no. 333-41-5; O, O-diethyl-O-[2-isopropyl-6-
methyl-4-pyrimidinyl] phosphorothioate; manufactured by King Quenson Group, Shen-
zhen, China) belonging to the organophosphate class of insecticide (molecular weight
304.34 g mol−1) was used for the preparation of test solution.

2.3. Experimental Water

The bioassays and chemical analysis of the water were carried out following the
American Public Health Association’s guidelines [42]. Deep tube well water stored in an
overhead tank was used as a diluent medium. Table 1 summarizes the physicochemical
properties of water used for the control and test mediums throughout the experiment.

Table 1. Physico-chemical parameters of the control and test medium (0.64, 1.28 mg diazinon/L) used during the chronic
toxicity study.

Parameters
15 Days 30 Days 45 Days

Dose (mg/L)
0.00 0.64 1.28 0.00 0.64 1.28 0.00 0.64 1.28

Temperature (◦C) 28.2 ± 0.12 28.2 ± 0.15 28.1 ± 0.19 28.1 ± 0.21 28.3 ± 0.14 28.3 ± 0.21 28.3 ± 0.22 28.2 ± 0.28 28.7 ± 0.27
pH 7.5 ± 0.16 8.1 ± 0.14 8.3 ± 0.21 7.5 ± 0.19 8.4 ± 0.18 8.4 ± 0.18 7.7 ± 0.21 8.4 ± 0.16 8.4 ± 0.12

Dissolved Oxygen
(mg/L) 5.5 ± 0.18 5.9 ± 0.22 6.1 ± 0.41 5.9 ± 0.36 5.9 ± 0.24 5.8 ± 0.22 5.9 ± 0.23 5.9 ± 0.43 5.9 ± 0.52

Nitrate (mg/L) 2.4 ± 0.12 2.5 ± 0.15 2.4 ± 0.10 2.4 ± 0.10 2.3 ± 0.06 2.5 ± 0.09 2.6 ± 0.10 2.6 ± 0.12 2.7 ± 0.13
Alkalinity (mg/L) 146 ± 2.20 208 ± 3.71 206 ± 0.43 145 ± 2.76 207 ± 3.43 207 ± 4.21 148 ± 2.89 207 ± 3.54 206 ± 3.24
Free CO2 (mg/L) 13.2 ± 0.21 0.4 ± 0.12 0.9 ± 0.19 13.5 ± 0.32 0.4 ± 0.12 0.8 ± 0.19 13.9 ± 0.21 0.4 ± 0.23 0.7 ± 0.19
Hardness (mg/L) 114 ± 1.23 134 ± 1.76 140 ± 0.32 115 ± 2.37 135 ± 2.23 140 ± 1.75 115 ± 1.24 135 ± 1.65 138 ± 2.43
Ammonia (mg/L) 0.25 ± 0.02 0.29 ± 0.03 0.24 ± 0.04 0.29 ± 0.02 0.31 ± 0.04 0.33 ± 0.03 0.31 ± 0.02 0.32 ± 0.03 0.33 ± 0.01

2.4. QA/QC (Quality Assurance/Quality Control) Procedure

Diazinon was extracted using 1 mL C18 solid-phase extraction (SPE) columns. The
conditioning of columns was performed in the sequence of 5 mL each of acetonitrile,
methanol, and reagent water, maintaining a flow rate of 3 mL/min. A total of 100 mL
of water sample was used for the extraction process. Air suction was applied to the
column for 20 min, and diazinon was eluted with 20 mL methanol [43]. Diazinon was de-
tected using gas chromatography-mass spectrometry (GC-MS) (Agilent Technologies, Santa
Clara, CA, USA; model 19091S-433) with an HP-5MS capillary column (25 m × 0.25 mm
diameter × 0.25 mm thickness). The operating parameters used during the analysis were:
MS detector interface (290 ◦C), injector temperature (260 ◦C), oven program, 80 ◦C (2.0 min),
1.0 µL automatic splitless injection, and ultrahigh-purity helium (grade 5) carrier gas previ-
ously programmed at a flow rate of 1 mL/min. The recovery percentage of diazinon was
then estimated [43]. The nominal concentrations were used throughout the experiment as
the difference between the nominal and measured concentrations was lower than 5%.

2.5. Experimental Design of Chronic Toxicity Study

The chronic toxicity experiments were conducted for 45 days with control and two
treatments (0.64 mg/L and 1.28 mg/L), which corresponded to 1/20th (T1) and 1/10th (T2)
of the 96h LC50 obtained for C. batrachus exposed to diazinon in our earlier work [44]. In
a randomized design, acclimatized fingerling fish (n = 10) in experimental tanks (350 L
capacity) were set up in four replicates [45]. To ensure the water quality and concentration
of the test media, the medium in all the groups was completely replaced every five days
with freshly made diazinon solution. For 45 days, the fish were fed three times a day
until they were visually satisfied. Diazinon was detected using gas chromatography-
mass spectrometry (GC-MS) (Agilent Technologies; model 19091S-433) with an HP-5MS
capillary column of 25 m × 0.25 mm diameter × 0.25 mm thickness following standard
procedures [43]. The recovery percentage of diazinon was then estimated. The nominal
concentrations were used throughout the experiment as the difference between the nominal
and measured concentrations was lower than 15% for the different exposure periods. To
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assay for hematological, biochemical, growth, and endocrine parameters, 3 individuals
were sampled from each exposure concentration at days 15, 30, and 45.

2.6. Hematological Profiles and Indexes

To prevent stress, the fish were anesthetized with clove oil (60 µL/L water). For a
45 days exposure period, blood and serum were taken from both the control and treated
fishes at 15 days intervals. Blood was obtained by puncturing the fish’s caudal vessels with
a 5 mL dispovan syringe that had been previously cleaned with a 4% EDTA solution. To
avoid clotting, the blood was immediately transferred to vacutainer EDTA-coated tubes
(Becton Dickinson, Franklin Lakes, NJ, USA) and mixed by vertexing. In the absence of
EDTA, a portion of the blood was taken and centrifuged for 20 min at 3000 rpm in a cooling
centrifuge. The serum was taken with a micropipette, transferred to microtubes, and stored
at −20 ◦C for further assessment of total serum protein (TSP), total serum glucose (TSG),
growth hormone (GH), tri-iodothyronine (T3), and thyroxine (T4).

The hemoglobin level in blood was measured by Sahli’s method using 0.1 N HCl. The
total red blood count (TRBC, 106/mm3) and total white blood count (TWBC, 103/mm3)
were measured following standard protocols [46,47]. The TRBC (106/mm3), TWBC
(103/mm3), and mean corpuscular hemoglobin (MCH, pg) were estimated using the formula:

TRBC (106/mm3) = [Total number of cells counted in Neubauer
Haemocytometer × dilution factor (200)]/[1/5 × volume factor (0.1)]

TWBC (103/mm3) = [Total number of cells counted in Neubauer
Haemocytometer × dilution factor (50)]/[4 × volume factor (0.1)]

MCH (pg) = [Hemoglobin (g/dL) × 10]/TEC (106/mm3)

2.7. Growth Endpoints

This test was performed on a different group of fish that included both male and
female fish. For the whole 45-day exposure period, the condition factor (K), hepatosomatic
index (HSI), and specific growth rate (SGR) were assessed at 15-day intervals. The length
and weight of each fish from the tank were measured using a meter scale and portable
weighing scale at the termination time of every 15 days for K, HSI, and SGR. Liver weights
were recorded to the nearest tenth of a milligram. The following are the different equations
used to calculate the aforementioned parameters [48,49]:

Condition Factor (K, g/cm3) = (W/L3) × 100 [W = Body weight of fish (g),
L = Body length of fish (cm)]

Hepatosomatic Index (HSI) = [Liver weight of fish
(g)/Body weight of fish (g)] × 100

Specific Growth Rate (SGR, %/day) = [(Natural logarithm of initial body
weight of fish—Natural logarithm of final body weight of fish)/Time

interval] × 100

2.8. Endocrine (GH, T3, and T4) Endpoints

Growth hormone (GH) test analysis was carried out using heterologous competitive
ELISA, as described by Lal and Singh [50]. ELISA kits provided by Creative Diagnostics
Co. (New York, NY, USA) were used to measure plasma T3 and T4 levels.

2.9. Biochemical Total Serum Protein (TSP), Total Serum Glucose (TSG)

The total serum protein (TSP) was calculated using the technique by Lowry et al. [51].
Total serum glucose (TSG) was tested using a one-touch Easy Glucometer (Johnson and
Johnson®, New Brunswick, NJ, USA).
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2.10. Integrated Biomarker Response (IBR)

Integrated biomarker response (IBR) was calculated as specified by Beliaeff and
Burgeot [52] and a modified equation formulated by Samanta et al. [53]. Data were first
standardized, and the score value (S) was calculated using the equation. The score (S) value
was calculated as S = Y + |min|, where S ≥ 0 and |min| is the absolute minimum value
of Y of each biomarker. This was followed by computation of standardized Z value either
as (Z = y or Z = −y) signifying response of the toxicant as activation or inhibition.

S = Z + |Min|

where S > 0 and |Min| indicate the minimum absolute value.
Finally, the IBR value was computed using the following equation:

IBR =
n

∑
i
(

Si × Si+1

2
)

where Si and Si+1 indicate the score values of two consecutive star plot points and ‘n’
indicates the corresponding radii number.

2.11. Biomarker Response Index (BRI)

The biomarker response index (BRI) for determining and considering the health
status of the test model was performed, taking into consideration of a standard protocol
with slight moderations [54]. Documented interpretations for BRI indicate that a score
of 4 = healthy organism, 3–4 = minor detrimental effect, 2.75–3 = moderate unfavorable
impact, 2.5–2.75 = sizable adverse effect, while <2.5 = seriously negative impact [55].

3. Results and Discussion
3.1. Hematological Profiles

Compared to the control fish, the exposed fish showed a significant reduction in Hb,
TRBC, TWBC, and MCH values in groups with higher exposure concentrations (Figure 1).
The decrease in Hb and TRBC levels observed in diazinon exposure groups could be
related to the disrupted function of the hemopoietic system, erythrocyte destruction, or
reduced synthesis in bone marrow [56,57]. The decrease in total leucocyte count observed
in diazinon-exposed fish could also be attributed to hematopoietic system dysfunction [58].
Long-term exposure to organophosphate pesticides has been implicated in the hemato-
toxicity effects and increased incidence of aplastic anemia in exposed animals through
the defective maturational and functional status of different marrow cell lineages [59].
Depression of growth factor production by cells of the hematopoietic microenvironment
and various cellular disturbances throughout the hematopoietic system could be attributed
to pesticide-induced toxicity [59]. Haemato-toxic effects similar to this study have also
been documented for other benthopelagic fish species [26,60,61].

3.2. Growth Endpoints

The fish subjected to sub-lethal doses of diazinon showed a concentration-dependent
and time-dependent reduction in physiological state and retarded growth rate as reflected
by the K, HSI, and SGR, respectively (Figure 2a–c). Due to varied underlying physiological
processes and synchrony with environmental changes, growth provides a robust indicator
of ecological risks, particularly for chronic scale exposures [62,63]. Condition factor is
an individual-level biomarker of physiological condition and reflective of the health and
fitness state of the fish as a product of interactions with environmental quality [64,65].
As such, a significantly lower K at elevated diazinon exposures (Figure 2a) is strongly
depictive of physiological stress and loss of fitness for survival [66].
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Figure 1. (a–d) Mean and SD values of hematological profiles and indices of Clarias batrachus exposed
to different concentrations of diazinon (0.64 and 1.28 mg/L) for different exposure times (15, 30, and
45 days). *—denotes significant differences to control within the same exposure time (* p < 0.05,
** p < 0.01, and **** p < 0.0001). (a) Hemoglobin; (b) total white blood cells; (c) total red blood cells;
(d) mean corpuscular hemoglobin.
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Figure 2. (a–c) Mean and SD values of growth endpoints and indices of Clarias batrachus exposed to
different concentrations of diazinon (0.64 and 1.28 mg/L) for different exposure times (15, 30, and
45 days). *—denotes significant differences to control within the same exposure time (* p < 0.05,
** p < 0.01, *** p < 0.001 and **** p < 0.0001). (a) Condition factor (K); (b) hepatosomatic index (HSI);
(c) specific growth rate (SGR).

Fish HSI values across diazinon exposure groups compared to control revealed sig-
nificantly higher HSI values with increasing diazinon exposure concentrations (p < 0.05)
(Figure 2b). Since the liver is the hub of metabolic activities, it is taken as a reliable predictor
of toxic exposures and pathophysiological dysfunction [67,68]. Although several reports
have attributed elevated HSI values to hepatomegaly, i.e., enhancement of the liver size
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due to destructive changes [69,70], the enhancement of HSI may also reflect reduced body
weight due to low food conversion [71].

Fish from other diazinon treatments (0.64 and 1.28 mg/L) displayed significantly
lower SGR than in control groups (p < 0.05) (Figure 2c), indicating greater toxicity with
increasing diazinon concentrations. This is consistent with previous research on various
fish treated with multiple pesticides [72,73]. In this study, the specific growth rate of fish
exposed to diazinon remained lower than control fish throughout the exposure intervals
from 15 to 45 days. This unchanged significant difference between the SGR fish in the
exposure groups and control highlights a possible inability to undertake compensatory
growth response [74]. Although lowered SGR has been attributed to lower food intake and
conversion [75], stress-induced chemical exposures have been implicated in the reduction
in SGR [76], with endocrine disturbance as a possible mechanism [77].

3.3. Endocrine Endpoints (GH, T3, and T4)

The concentration of growth hormones (GH) and thyroid hormones (THs), T3, and
T4 in C. batrachus from the control group were significantly higher compared to fish from
the diazinon exposure group (Figure 3). Since several endocrinological factors regulate
fish growth and development, the relative levels of this relative hormone detected across
control and exposure groups will have implications for growth and development for the
fishes [77–79]. A similar lowered growth hormone (GH) activity in pesticide exposed
fish has been documented [80]. The reduced activity of T3 and T4 in C. batrachus from
exposure groups highlights the disruptive endocrine properties of diazinon with implica-
tions for thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid
(HPT) axis [81]. The HPT axis regulates the thyroid endocrine system by coordinating the
synthesis, secretion, transport, and metabolism of thyroid hormones, and exposures to
environmental chemicals such as pesticides can affect this axis, impairing the expression of
several hormones along the HPT axis, including thyroid hormones [81,82]. Furthermore,
since thyroid hormones (tri-iodothyronine, T3, and thyroxine, T4) are also crucial regulators
in fish growth, metabolism, reproduction, and behavior [83], lowered expression will
negatively impact normal ecological functions and survival of the affected fish population
in the wild.

3.4. Total Serum Protein (TSP) and Total SERUM Glucose (TSG)

The changes associated with TSP and TSG levels are summarized in Figure 4. Concentration-
dependent depletion of TSP and elevated levels of TSG were observed in diazinon-exposed
C. batrachus compared to the control group (Figure 4). The significantly lower levels of
complete serum protein in diazinon-exposed fish implicate increased energy demand
typical of chemical-induced stress and toxicity [84,85]. Similar patterns of lowered serum
protein levels have been documented in other fish species exposed to diazinon [86].

Also, in this study, the dramatically higher blood glucose levels in diazinon-exposed
C. batrachus highlight toxicity-related energy demand necessitating increased mobilization
of glycogen into glucose for biotransformation of xenobiotics and sustaining compensatory
responses. Under stress, adrenal tissue secretes more glucocorticoids and catecholamines,
resulting in hyperglycemia [26]. Elsewhere, hyperglycemia following diazinon exposure
has been attributed to limiting glucose metabolism due to a reduction in AChE (acetyl-
cholinesterase) activity [87]. In addition, diazinon-induced oxidative damage in the liver
and pancreas of the treated organism may also disrupt insulin and glucose homeostasis [88].
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Figure 3. (a–c) Mean and SD values of different hormones of Clarias batrachus exposed to different
concentrations of diazinon (0.64 and 1.28 mg/L) for different exposure times (15, 30, and 45 days).
*—denotes significant differences to control within the same exposure time (* p < 0.05, *** p < 0.001
and **** p < 0.0001); GH—G=growth hormone, T3—tri-iodothyronine, T4—tetra-iodothyronine
(thyroxine).
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Figure 4. (a,b) Mean and SD values of different biochemical parameters of Clarias batrachus exposed
to different concentrations of diazinon (0.64 and 1.28 mg/L) for different exposure times (15, 30, and
45 days). *—denotes significant differences to control within the same exposure time (**** p < 0.0001);
TSG—total serum glucose, TSP—total serum protein.

3.5. Correlation Analysis

Correlation analysis between exposure concentrations and hematological, growth,
endocrine, and biochemical indices is given in Figure 5. Exposure concentration showed
the strongest negative correlation with MCH, K, SGR, T3, T4, and TSP, indicating that
the values of these parameters reduced from the control group to the highest exposure
concentration. In addition, exposure concentration showed a strong positive correlation
with HSI and TSG, indicating that the values of these parameters increased from control
to the highest exposure concentration. While toxicology studies have demonstrated the
disruptive effects of pesticides on erythropoietic tissues [89–93], the relatively higher
sensitivity of MCH compared to other hematological parameters in fish at elevated toxicant
exposure concentrations have been reported [94]. The significant reduction in MCH
across exposure groups (p < 0.05) when compared with the control could be attributed to
lowered levels of cellular blood iron or heme-synthesis dysfunction, which stresses the
fish by reducing the oxygen-carrying capacity of its blood [89,95]. The negative correlation
between exposure concentration and the K condition factor also reflects a deteriorating
physiological condition of exposed fishes with chronic higher toxicant concentrations. In
particular, lowered condition factor highlights disrupted food intake of lowered conversion
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of food intake into tissue development [64]. A low body condition may also suggest muscle
wasting (proteolysis), indicating a starvation response [96,97].
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The strong negative correlation between exposure concentration and specific growth
rate (SGR) indicates decreased growth also attributable to impaired fish feeding activ-
ity [98]. The significant inverse correlations between diazinon exposure concentrations
and T3, T4 levels in the fish highlight the endocrine disruptive potential of diazinon under
chronic-exposure regimes. This endocrine disruption will, in turn, impact the growth and
development of exposed fishes. Thyroid hormones are essential for somatic growth and for
early development in fishes, including larval–juvenile transitions and induction of meta-
morphosis [99–101]. The significant inverse relationship between exposure concentration
and total serum protein also reflects its sensitivity to toxicant-related stress after the onset
of physiological effects. Changes in serum TP (total protein) may be due to liver damage,
reduction absorption, and protein loss and thus may be a suitable indicator of the health
status of fish [102]. Retarded growth responses alongside a reduction in serum protein
with elevated diazinon exposures in this study also give credence to the possibility that the
lowered condition factor and specific growth rate is caused by an underlying starvation
response and muscle wasting (proteolysis) [96,97].

The strong positive relationship between diazinon exposure concentrations and TSG
indicates that glucose content was lowest in control and increased in diazinon chronic-
exposure groups. This strongly highlights remnants of ongoing physiological-level com-
pensatory reactions to out-with the effects of the toxicant. Prior elevation of serum glucose
level and eventual decline until the depleted level was attained has been reported for
prolonged exposure to toxicants [103,104]. Thus, the higher levels in diazinon-exposed
groups reflect not-yet depleted energy reserves to cope with diazinon-related exposure
and uptake. The strong positive correlation between exposure concentration and HSI



Appl. Sci. 2021, 11, 10902 12 of 20

also indicates increased values of this parameter from the control group to the diazinon
chronic-exposure groups. The strategic use of HSI as an index of exposure to contaminants
is largely attributed to the underlying role of the liver in the metabolic detoxification and
biotransformation of pollutants in fish [105]. A higher HSI in toxicant-exposed groups has
been linked to histopathological changes in hepatocytes, i.e., cell enlargement (hypertrophy)
and/or increasing the number of hepatocytes (hyperplasia) in exposed fish [106].

3.6. Integrated Biomarkers Response (IBR)

The score values of the various studied parameters in the blood of diazinon-exposed
Clarias batrachus have been represented as star plots in Figure 6a–c, for a period of 15,
30, and 45 days, respectively. The score values for parameters such as Hb, TLC, TEC,
MCH, K+, SGR, GH, T3, T4, and protein decreased with the increasing concentration of
the toxicant. A decreasing trend was observed for all the exposure periods. The score
values for HSI and glucose increased with an increase in dose concentrations. A similar
increasing trend was observed with periods of toxicant exposure. The IBR values for
different dose concentrations and periods were calculated using the score values and
represented graphically in Figure 7. The IBR values for the control and experimental
group for 15 days of exposure was estimated to be 36.93, 32.67 (T1), and 33.26 (T2). IBR
values for 30 days of exposure to diazinon were calculated to be 40.12 (control), 35.75
(T1), and 36.15 (T2). Similarly, IBR values for 45 days were 38.79 (control), 36.19 (T1), and
36.62 (T2), respectively. These marked depictions of relative toxicity using changes of
each endpoint on the star plot reflect a major advantage of IBR as a technique in toxicity
assessments. The visual feature of IBR highlights its strength as a species-specific and
toxicant-specific technique that affords a ready qualitative assessment across parameters
and groups [107]. The overall effects of various xenobiotics in different groups of animals,
including invertebrates, have been demonstrated using this technique [108,109]. Aside from
the simplification of complex biological responses into a single index and predefined quality
class, the IBR chart also simplifies relative toxicity under exposure gradients [54,110].

3.7. Biomarker Response Index (BRI)

Biomarker weights and scores were calculated for the studied parameters of the
exposed fish and integrated to calculate and estimate the BRI. BRI is indicative of the
general health status of the fish [54]. In the present study, the BRI value of diazinon-
exposed fish for 15 days was 3.42 for T1 and 3.25 for T2, which indicates slight alterations in
the treated fishes’ health status compared to the control [54]. The BRI value for 45 days was
three, which reflects moderate alteration compared to the control group. The BRI value of
diazinon was 2.75, which specifies significant modifications of the health status compared
to the control [54]. Overall, BRIs exhibited significantly concentration-effect responses,
showing an apparent decrease with the increasing diazinon exposure levels. In addition,
the BRI appeared to show marked differences compared to the IBR. The advantage of this
integrated index obtaining an accurate toxicity scale has been reported [111].
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4. Conclusions

The observation for most biomarkers revealed patterns of decreasing values with
increasing toxicant concentration and exposure duration. The capacity for diazinon to cause
haematoxicity, endocrine disruption, growth retardation, and biochemical modulations
under chronic exposures has been demonstrated in this study. The integrated indices (IBR
and BRI) indexes were used to provide visual and understandable depictions of toxicity
effects and emphasized the relativity of biomarkers in terms of sensitivity and magnitude or
severity of responses under graded toxicant exposures. The significant damage reflected by
evaluated parameters in diazinon exposure groups compared to control portends risks to
the health of local fish populations, including Clarias batrachus in aquatic systems adjacent
to agrarian landscapes.
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