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Abstract: This study investigates the potential of direct prediction of daily extremes of temperature
at 2 m from a vertical profile measurement using neural networks (NNs). The analysis is based on
3800 daily profiles measured in the period 2004–2019. Various setups of dense sequential NNs are
trained to predict the daily extremes at different lead times ranging from 0 to 500 days into the future.
The short- to medium-range forecasts rely mainly on the profile data from the lowest layer—mostly
on the temperature in the lowest 1 km. For the long-range forecasts (e.g., 100 days), the NN relies on
the data from the whole troposphere. The error increases with forecast lead time, but at the same time,
it exhibits periodic behavior for long lead times. The NN forecast beats the persistence forecast but
becomes worse than the climatological forecast on day two or three. The forecast slightly improves
when the previous-day measurements of temperature extremes are added as a predictor. The best
forecast is obtained when the climatological value is added as well, with the biggest improvement in
the long-term range where the error is constrained to the climatological forecast error.

Keywords: machine learning; neural network; prediction; maximum temperature; minimum
temperature; radiosonde measurements; climatology; explainable AI

1. Introduction

The meteorological community is increasingly using modern machine learning (ML)
techniques to improve specific aspects of weather prediction. It is conceivable that someday
the data-driven approach will beat the numerical weather prediction (NWP) using the
laws of physics, although several fundamental breakthroughs are needed before this goal
comes into reach [1–3]. So far, the ML was mostly used to improve or substitute specific
parts of the NWP workflow. For example, neural networks (NNs) were applied to describe
physical processes instead of individual parametrizations [4–6], and to replace parts of
the data assimilation algorithms [7]. NNs were also used to downscale the low-resolution
NWP outputs [8], or to postprocess ensemble temperature forecasts to surface stations [9],
whereas Grönquist et al. [10] used them to improve quantification of forecast uncertainty
and bias. In several studies, ML methods were utilized for the data analysis, e.g., detection
of weather systems [11,12] and extreme weather [13]. ML methods were also applied to
emulate the NWP simulations using NNs trained on reanalyses [14–17] or simulations with
simplified general circulation models [18]. Thus far, not many attempts were made at con-
structing end-to-end workflows, i.e., taking the observations as an input and generating an
end-user forecast [3]. Some examples of such approaches are Jiang et al. [19], which tried to
predict wind speed and power, and Grover et al. [20], which attempted to predict multiple
weather variables from the data of the US weather balloon network. The NNs were shown
to be particularly successful in precipitation nowcasting. For example, Ravuri et al. [21]
used radar data to perform short-range probabilistic predictions of precipitation, while
Sønderby et al. [22] combined radar data with the satellite data.

Here we attempt to develop a model based on the NN that takes a single vertical
profile measurement from the weather balloon as an input and tries to forecast the daily
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maximum (Tmax) and minimum (Tmin) temperatures at 2 m at the adjacent location for
the following days. The aim of this work is not to develop an approach that would be
better than the current state-of-the-art NWP models. Since only a single vertical profile
measurement is used, it could hardly be expected that the NN model could perform better
than an operational NWP model (which uses a fully fledged data assimilation system
incorporating measurements of the global observation network). Our goal is rather to
explore the capability of neural networks for these kinds of forecasts. More specifically, our
aim was to understand how the NN-based models utilize different types of input data and
how the network design influences their behavior. The data utilization and behavior of the
network will be different whether the NNs are used for short- or long-term forecasts—this
is why the analysis was performed for a wide range of forecast lead times going from 0
to 500 days into the future. By studying these networks, we hoped to gain some valuable
insights that might help others develop more complex setups and neural-network-based
data assimilation schemes.

Section 2 presents the data and the methodology. Section 3 presents an analysis
based on very simple NNs, consisting of only a few neurons, while Section 4 describes the
analysis based on more complex NNs used for short- and long-term forecasts. Discussion
and conclusions are given in Section 5.

2. Data and Methods
2.1. Data

Vertical profiles from radiosonde measurements and measurements of maximum and
minimum daily temperatures were used in the analysis. Each dataset is described in more
detail below.

2.1.1. Radiosonde Measurements

The vertical profile data were obtained from the radiosonde measurements. A ra-
diosonde is an expendable meteorological instrument package, often borne aloft by a
free-flight balloon, that measures, from the surface to the stratosphere, the vertical profiles
of atmospheric variables and transmits the data via radio to a ground receiving system [23].
The radiosondes are operated by the Slovenian Environment Agency (SEA). They are
launched once per day from the Ljubljana-Bežigrad station that is part of the SEA obser-
vation network (altitude 299 m, longitude 14.5124°, latitude 46.0655°). The set of data
contains 4420 vertical profiles from October 2004 to May 2019. Each vertical profile consist
of measurements of seven variables: altitude (z), temperature (T), dew-point temperature
(Td), relative humidity (RH), pressure (p), wind speed (|v|) and wind direction (θ).

The radiosondes can ascend to an altitude exceeding 25 km; however, oftentimes,
the maximal altitude reached by radiosonde is significantly lower. To homogenize the
data and not exclude too many measurements, we decided only to use data below 12 km
for the analysis (this at least guarantees that the whole troposphere is included in the
measurements). Quality control was performed to remove the profiles that contained
non-realistic values or missing data. We excluded all profiles that met any of the following
criteria: (i) the altitude of the lowest measurements is larger than 299 m (the altitude of
the Ljubljana-Bežigrad station), (ii) the altitude of the highest measurement is smaller than
12 km, (iii) there exists a vertical gap without measurements that is larger than 100 m, (iv)
the relative humidity of the lowest measurement is smaller than 10%, (v) the temperature
of the lowest measurement is smaller than−35 ◦C and (vi) there is at least one non-numeric
value present (e.g., infinite, not a number) in the measurements. Thus the final set that
was used for the analysis contained only 3800 profiles. The majority of days without
measurements are before 2011, as shown in Figure 1. The measurements were performed
in the early morning hours: 46.8% of measurements were performed at 03 UTC, 41.7% at
04 UTC, 10.3% at 02 UTC, and the remaining at other times.
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Figure 1. The number of radiosonde measurements in each month that passed the quality control
and were used for neural network training, validation and testing; shown with blue bars. Grey bars
indicate number of days in each month.

During the ascent, the radiosonde performs measurements every second, and the
typical vertical resolution of the profile measurement is about 5 m. The vertical speed of
the radiosonde depends on various meteorological parameters as well as the amount of
helium in the balloon. Thus, the rate of ascent can be slightly different each day, and the
altitudes at which the radiosonde records a measurement are also different. Further, the
values of the measured meteorological parameters typically do not change much in 5 m, so
it makes sense to use a coarser vertical resolution; therefore, we decided to interpolate the
vertical measurements to 118 predefined altitude levels at every 100 m, with the lowest
level being at 300 m and the highest one at 12 km (linear interpolation was used).

2.1.2. Daily Maximum and Minimum Temperature

The daily maximum and minimum temperatures at 2 m (Tmax and Tmin) were mea-
sured at the same station from which the radiosonde is launched (i.e., Ljubljana-Bežigrad
station). The data were available for the same period as the radiosonde data and were
without any missing data. The daily minimum typically occurs early in the morning,
sometime after sunrise, while the daily maximum temperature is generally observed in
mid-afternoon; however, the minimums and maximums can occasionally also occur at
other times, e.g., if the frontal system passes the station during the day.

We also calculated the daily climatological values for the Tmax and Tmin. The cli-
matological values were computed as average values in a 7-day window centered on a
specific day in the period 2000–2020. For example, the value corresponding to June 5th
is the average value of Tmax or Tmin in days between June 2nd and June 8th in the period
2000–2020.

Figure 2 shows the correlations of the vertical profiles of temperature, dew-point
temperature and relative humidity with measurements of daily maximum and minimum
temperature performed on the same day. As could be expected, the correlations are high for
radiosonde temperatures near the ground, with correlations starting to noticeably decrease
above the altitude of 1.2 km, although they are larger than 0.6 in most of the troposphere,
while they rapidly decrease in the stratosphere. The correlations near the ground are also
large for dew-point temperature but start to decrease much more rapidly with altitude. For
relative humidity, the correlations are generally low. For Tmax, the correlations with RH are
weakly negative in most of the troposphere, which could be linked to the possible existence
of clouds that weaken downward shortwave radiation near the ground during the day,
which reduces the temperature. For Tmin the correlations with RH are weakly positive,
which could be linked to clouds and high humidity causing an increase of downward
longwave radiation near the ground during the night, which decreases the night-time
radiation cooling and thus causes an increase in temperature.
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Figure 2. Correlations of temperature T, dew-point temperature Td and relative humidity RH profiles with (a) Tmax

and (b) Tmin measured on the same day. The correlations with measurements from the previous-day (Tmax(t− 1) and
Tmin(t− 1)) and climatological values (Tclim) are also shown by short vertical lines in the lower part of the graphs.

Note that T, Td and RH are related via the following equation (derived from Clausius–
Clapeyron relation):

log RH =
L

Rv

(
1
T
− 1

Td

)
(1)

and thus they are not independent (uncorrelated) variables. In Equation (1), L =
2.5 MJ kg−1 denotes latent heat of condensation, while Rv = 461.5 J kg−1 K−1 is the specific
gas constant for water vapor.

Previous-day temperature extremes, Tmax(t − 1) and Tmin(t − 1), show very high
correlation (correlation coefficient 0.95) with present-day extremes, Tmax(t) and Tmin(t),
while the correlation with the same-day climatological extremes is approximately 0.9.

2.2. Methods
2.2.1. Neural Network Setup

All the setups consisted of a dense sequential network, where the nearby layers are
fully interconnected (each neuron in a specific layer is connected to every neuron in the next
layer). We used Keras and Tensorflow libraries [24] in Python to set up and train the NNs.
While the NN design and the number of input variables were different for every setup
(these are described in detail in the following sections), the output was always the same—a
single forecasted value of either Tmax or Tmin. The training was performed separately
for each forecast lead time (the lead time was not used as a predictor). For example, the
network for the 10-day forecast was trained independently of the network for the 100-day
forecast. Thus each NN could focus on improving the performance at only one lead time,
without heaving to worry about other lead times.

To thoroughly analyze the behavior of each NN setup, we performed 50 realizations of
the network training for every setup and thereby obtained an ensemble of NN models for
each lead time. Due to random initialization of weights, each training produces a somewhat
different NN, even though the network setup is the same and the NN is trained on the
same data. Out of all available cases (3800 days), we used 90% for training and validation
(of these 70% were used for training and 30% for validation), and the remaining 10% for
testing. The 380 days in the testing set were selected randomly. The same set of testing
cases was used to evaluate the performance of all setups and every training realization.
Since the same test cases were used the comparison of performance of different setups and
training realizations is more meaningful (as opposed to each setup using a different test
set). Before the training, all the input data were scaled using the MinMaxScaler function
from the Scikit-learn library [25], which normalized the input variables to the range from 0
to 1 (the normalization was performed separately for each input variable). For the training,
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we used Adam optimizer along with the mean absolute error metric (MAE, [26]) for the
loss function. We experimented with the values for various hyperparameters such as batch
size, number of epochs, activation functions and learning rate reduction (described in the
following sections). Figure 3 shows an example of NN training.

Figure 3. An example of training of NN in Setup X (the setup is described in Table 3) for the same-day forecasts of Tmax;
(a) shows the reduction of the loss function during training while (b) shows the comparison of observed and forecast values
of Tmax in the test set. Red line indicates, where the observed and predicted Tmax would be equal.

2.2.2. Forecast Performance Evaluation

The performance of the NN forecasts was evaluated on the test set using the MAE
metric. Since we had an ensemble of NN models, we obtained a distribution of MAE values
for every setup. We could calculate various statistical parameters from these distributions,
such as the average value and the 10th and 90th percentile of MAE.

The performance of the NN forecasts was also compared to the persistence and
climatological forecasts. The persistence forecast assumes that the value of Tmax or Tmin for
the next day (or any other day in the future) will be the same as the previous day’s value.
The climatological forecast assumes the value for the next day (or any other day in the
future) will be identical to the climatological value for that day in the year (the calculation
of climatological values is described is Section 2.1.2).

2.2.3. Neural Network Interpretation

We also used two simple but effective explainable artificial intelligence (XAI) meth-
ods [27], which can be used to interpret or explain some aspects of NN model behavior.

The first was the input gradient method [28], which calculates the partial derivatives
of the NN model with respect to the input variables. If the absolute value of derivative for
a particular variable is large (compared to the derivatives of other variables), then the input
variable has a large influence on the output value; however, since the partial derivative is
calculated for a particular combination of values of the input variables, the results cannot
be generalized for other combinations of input values. For example, if the NN model
behaves very nonlinearly with respect to a particular input variable, the derivative might
change significantly depending on the value of the variable.

This is why we also used a second method, which calculates the span of possible
output values. The span represents the difference between the maximal and minimal
output value as the value of a particular (normalized) input variable gradually increases
from 0 to 1 (we used a step of 0.05), while the values of other variables are held constant.
Thus the method always yields positive values. If the span is small (compared to the
spans linked to other variables) then the influence of this particular variable is small. Since
the whole range of possible input values between 0 and 1 is analyzed, the results are
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somewhat more general compared to the input gradient method (although the values of
other variables are still held constant).

The problem for both methods is that the results are only valid for specific combina-
tions of input values. This issue can be partially mitigated if the methods are applied to a
large set of input cases with different combinations of input values. Here we calculated the
results for all the cases in the test set and averaged the results. We also averaged the results
over all 50 realizations of training for a specific NN setup—thus the results represent a
more general behavior of the setup and are not limited to a particular realization.

3. Simplistic Sequential Networks

This section presents an analysis based on very simple NNs, consisting of only a few
neurons. The goal was to illustrate how the nonlinear behavior of the NN increases with
network complexity. We also wanted to determine how different training realizations of
the same network can result in different behaviors of the NN.

The NN is basically a function that takes a certain number of input parameters and
produces a predefined number of output values. In our case the NN is a scalar function
since it always outputs a single value (i.e., either Tmax or Tmin). Since we wanted to illustrate
the NN behavior we limited the number of input parameters to two—this enabled us to
visually show the behavior of the NN as 2D contour graph. We aimed to try out various
setups of simplistic NNs, with different degrees of complexity and see how it affects the
resulting behavior.

We focused on the same-day forecast (forecast for the same day as the radiosonde
measurement was made). We wanted to use two profile-based input parameters that
would produce a reasonably good forecast of either Tmax or Tmin. We experimented with
various parameters derived from the vertical profiles. In the end, we chose the average
temperature in the lowest layer between the ground and 1 km and the 90th percentile of
RH in the layer between the ground and 12 km (both parameters were calculated from
the data of the original profiles, without interpolation to standard altitudes). The first
parameter reflects the general temperature conditions in the boundary layer, which will
depend on the season and also the general weather situation (the strong link between Tmax
and the temperature in the boundary layer is also clearly visible in Figure 2). The second
parameter can be associated with the existence of cloudiness. As already mentioned, the
clouds will weaken downward shortwave radiation near the ground during the day, which
reduces the temperature near the surface. The radiosonde does not directly measure the
existence of clouds. Still, it can be approximately inferred from the RH measurements (an
RH value larger than 90% indicates a high likelihood of clouds at that altitude). Besides the
possibility of either having none or at least some clouds, the cloud thickness also influences
the downward shortwave radiation. If there are no clouds, the 90th percentile of RH will
have a relatively low value (i.e., significantly smaller than 100%), whereas if a sufficiently
thick cloud layer is present, the 90th percentile of RH will be close to 100%.

The analyzed NN setups are described in Table 1. We started with the most simple
NN with only a single neuron (Setup A). We first tried using the rectified linear activation
function (ReLU), which did not work well. The reason was that during training, the two
weights and the bias were oftentimes set to negative values, after which the training could
not proceed anymore (this problem is referred to as the “dying ReLU” in the literature). The
same problem also happened for other setups shown in Table 1, although not as frequently.
The dying ReLU problem can be avoided using a slightly modified version of ReLU called
the Leaky ReLU, which has a small slope for negative values that enables the training to
proceed even if the weight and bias have negative values.
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Table 1. Description of the simplistic neural networks consisting of only a few neurons. All setups
used the same two input parameters, the average temperature in the lowest layer between the
ground and 1 km and the 90th percentile of RH in the layer between the ground and 12 km. The
second column denotes the number of neurons in consecutive layers: input layer always contains
2 neurons for 2 input parameters and is not included in the table, whereas the output layer always
includes a single neuron. Leaky ReLU was used as activation function for all layers in all setups. The
shown MAE values represent the error of the same-day forecast of Tmax for the testing set. Since
50 realizations of NN training were performed for each setup, the average value, the 10th percentile
and the 90th percentile of MAE values are shown.

Name Neurons in Layers MAE avg. [10th perc., 90th perc.]

Setup A 1 2.32 [2.32, 2.33] ◦C
Setup B 1,1 2.32 [2.29, 2.34] ◦C
Setup C 2,1 2.31 [2.26, 2.39] ◦C
Setup D 3,1 2.31 [2.26, 2.38] ◦C
Setup E 5,5,3,1 2.27 [2.22, 2.31] ◦C

One typical example of the behavior of Setup A is shown in Figure 4a. Since the setup
contains only the output layer with a single computational neuron, and since Leaky ReLU
was used as an activation function, the NN is a two-part piecewise linear function. As
can be observed, the function visible in the figure is linear (at least in the shown region of
parameter values—the transition to the other part of the piecewise-linear function happens
outside the displayed region). This property is true for all realizations of Setup A. Table 1
also shows the average values of MAE for all the setups. For Setup A the average value of
MAE was 2.32 ◦C. The average MAE is almost the same as the 10th and the 90th percentile,
which means the spread of MAE values is very small and that the realizations have a
similar error.

The behavior of Setup B is very similar to Setup A (one typical example is shown in
Figure 4b). Although there are two neurons, the function is very similar to the one for Setup
A and is also mostly linear (at least inside the shown phase space of parameter values).
In the majority of realizations, the nonlinear behavior is not evident. The average MAE
value is the same as in Setup A while the spread is a bit larger, indicating somewhat larger
differences between realizations.

Figure 4c–e show three realizations for Setup C which consists of three neurons. Here
the nonlinear behavior is observed in the majority of realizations. Figure 4e also shows
the 3800 sets of input parameters (indicated by gray dots) that were used for the training,
validation, and testing of NNs. As can be observed, most points are on the right side of
the graph at intermediate temperatures between −5 ◦C and 20 ◦C. As a result, the NN
does not need to perform very well in the outlying region as long as it performs well in
the region with the most points. This is probably why the behavior in the region with the
most points is quite similar for all realizations as well as for different setups. In contrast,
the behavior in other regions can be different and can exhibit unusual nonlinearities. The
average MAE value in setup C (2.31 ◦C) is similar to Setups A and B (2.32 ◦C), while the
spread is noticeably larger, indicating more significant differences between realizations.

Figure 4f shows an example of Setup D with four neurons. Due to an additional
neuron, even more nonlinearities can be observed, while the average MAE value and the
spread are very similar to Setup C.

Next, Figure 4g shows an example of the behavior of a somewhat more complex Setup
E with 14 neurons distributed over four layers. Since there are considerably more neurons
compared to other setups, there are more nonlinearities visible. The higher complexity also
results in a somewhat smaller average MAE value (2.27 ◦C) while the spread is slightly
smaller compared to Setups C and D. We also tried more complex networks with even
more neurons but found that the additional complexity does not seem to reduce MAE
values (not shown).
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Finally, Figure 4h shows an example of the behavior of a Setup E that is used to forecast
Tmin instead of Tmax. The main visible difference with the other figures is that the Tmin
value decreases with the value of the 90th percentile of RH recordings in the atmospheric
column (up to 12 km). This is expected behavior since the clouds and high humidity cause
an increase in downward longwave radiation near the ground during the night, which
reduces radiation cooling and causes an increase in temperature. Similarly to NNs for
Tmax, the NNs for Tmin also show mostly linear behavior, although some nonlinearities are
also visible.

Figure 4. Analysis of minimalist NNs listed in Table 1. The contours represent the forecasted values of either Tmax (a–g) or
Tmin (h), which depend on two input parameters (the average temperature in the lowest 1 km and the 90th percentile of
RH). (e) Also shows the values of the 3800 sets of input parameters that were used for the training, validation and testing of
NNs (gray points).

Table 2 shows the results of the XAI methods for Setup E. For Tmax the average value
of gradient is positive for the first input variable and negative for the second variable. This
indicates that the forecasted Tmax tends to be larger if the air in the lowest 1 km is warmer
and the 90th percentile of RH is smaller. The ratio of the gradients is about 6:1, indicating
that the T in the lowest 1 km has a much greater influence on the forecasted Tmax than the
variable linked to RH. A similar result can be deduced from the value span, although the
values for these measures are always positive.

A similar result is obtained for the Tmin, but here both gradients are positive (the
forecasted value will increase with the 90th percentile of RH), and the ratio is a bit smaller.
The result of the XAI methods corresponds well with the visual analysis of examples shown
in Figure 4.
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Table 2. The result of the two XAI methods for the same-day forecast of Tmax and Tmin using NN
Setup E. The shown values of gradient and value span were averaged over all the test cases and 50
realizations of the training.

Tmax Tmin

gradient value span gradient value span
avg. T in the lowest 1 km 1.05 1.01 0.97 0.96

90th percentile of RH −0.16 0.16 0.17 0.18

4. Dense Sequential Networks

This section presents an analysis based on more complex dense sequential networks.
Contrary to the simplistic networks in Section 3, which were used only for same-day
prediction and relied on only two predictors, the networks here can contain more neurons,
can use full profile data as input, and are used to perform forecasts for a wide range of
forecast lead times going from 0 to 500 days into the future.

4.1. Network Setup

We tried various NN setups with different designs and input data. After comprehen-
sive experimentation we settled on five setups described in Table 3, which we used to make
short- and long-term forecast of Tmax and Tmin.

Setup X consists of 117 neurons spread over 7 layers (not counting the input layer)
and uses only the profile data as input. We experimented with various combinations of
the profile variables (interpolated to 118 levels as described in Section 2.1.1) and found
that using T,Td and RH profiles works the best (not shown). Other combinations either
produce a larger error or do not improve the error but only increase the network complexity
(e.g., if p or wind profiles are used in addition to T,Td, and RH profiles). Setup Y is the
same as Setup X but with the previous day extreme value (either Tmax or Tmin) used as
input in addition to the profiles. Setup Z is the same as Setup Y but with the addition of
the climatological extreme value as input. Setups Q and R are much simpler (they consist
of 15 neurons spread over 5 layers not counting the input layer) and do not rely on the
profiles. Setup Q only uses the previous day extreme value as input, while Setup R also
uses the climatological extreme value.

Table 3. Description of the NN setups used for the short and long-term forecasts of Tmax. The second
column denotes the number of neurons in consecutive layers with the input layer not shown (the
number of neurons in the input layer is always the same as the number of input variables). The time
index t refers to the day of the radiosonde measurement, with t− 1 referring to the previous day, and
t + i to the i-th day in the future. The setups for the Tmin forecast are identical to the setups for Tmax

forecast with Tmax(t− 1) replaced with Tmin(t− 1). In all setups Leaky ReLU was used as activation
function for all layers, except for the output layer that used a linear activation function.

Name Neurons in Layers Input Variables

Setup X 35,35,35,5,3,3,1 354 variables: T profile(t), Td profile(t), RH profile(t)

Setup Y same as Setup X 355 variables: same as Setup X + Tmax(t− 1)

Setup Z same as Setup X 356 variables: same as Setup X + Tmax(t− 1),
Tclim(t + i)

Setup Q 3,3,5,3,1 1 variable: Tmax(t− 1)

Setup R same as Setup Q 2 variables: Tmax(t− 1), Tclim(t + i)

We also experimented with various NN hyperparameters. Table 4 shows the analysis
of the batch size and the number of epochs, which was performed for setup Y for the
same-day forecasts of Tmax. As can be observed, the batch size does not majorly influence
MAE unless the values are really large (e.g., ≥512) for which the MAE increases. At the
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same time, using a larger batch size offers a very significant reduction in execution time. In
the end, we settled for a compromise value of batch size of 256, with a reasonable MAE
and a relatively short execution time. On the other hand, the number of epochs does have a
significant influence on MAE. However, once the number of epochs is ≥100, the MAE does
not decrease any more. Since the number of epoch also affects the execution time, we chose
100 as a compromise with a reasonable MAE and a relatively short execution time. We also
tried to use learning rate reduction (LRR), which resulted in more consistent training (there
was less spread of MAE values between different realizations). However, the average MAE
values exceeded the MAE values for experiment with LRR switched off. Thus, we did not
use LRR in the final calculations.

Table 4. Influence of batch size and number of epochs on the performance of the NN in setup Y. The MAE values are
expressed in ◦C. The execution time represents the time it took to train a single NN on a computer using a Nvidia GeForce
RTX 3090 GPU.

Batch Size (Number of Epochs = 100)

1 2 4 8 16 32 64 128 256 512 1024 2048

MAE avg. 2.03 2.08 2.06 2.05 2.01 1.99 2.02 2.01 2.03 2.06 2.15 2.21
MAE 10th perc. 1.89 1.91 1.90 1.89 1.89 1.88 1.89 1.89 1.93 1.98 2.05 2.09
MAE 90th perc. 2.31 2.42 2.28 2.33 2.11 2.13 2.22 2.14 2.22 2.15 2.31 2.35
execution time 916 s 504 s 260 s 131 s 67 s 35 s 19 s 11 s 7.3 s 5 s 3.6 s 2.6 s

Number of Epochs (Batch Size = 256)

1 2 5 10 15 20 50 100 150 200 500 1000

MAE avg. 8.84 7.82 5.54 3.31 2.53 2.34 2.11 2.01 1.99 1.98 1.97 1.99
MAE 10th perc. 7.30 6.59 3.25 2.36 2.16 2.10 1.99 1.91 1.90 1.87 1.88 1.90
MAE 90th perc. 10.00 8.91 7.36 6.05 2.91 2.65 2.28 2.22 2.14 2.17 2.11 2.07
execution time 0.4 s 0.5 s 0.7 s 1.0 s 1.4 s 1.7 s 3.8 s 7.3 s 11 s 14 s 35 s 70 s

4.2. Forecast Performance

Figure 5 shows the performance of the forecasts at different lead times. The NN
forecast of Tmax based solely on profiles (Setup X, orange line in Figure 5a) barely beats
persistence and becomes worse than the climatological forecast already on day two. This is
expected, as the radiosonde observation is local and the info it provides is quickly advected
downstream throughout the atmosphere. The forecast is slightly improved when the
previous-day Tmax(t− 1) is added as an input parameter (Setup Y, green line); however,
the best forecast is obtained, when the climatological maximum Tclim at the forecast valid
time is added as an input variable alongside profiles and previous-day maximum (Setup
Z, violet line). The MAE for the present-day forecast is 1.8 ◦C, thus reduced by 0.5 ◦C
compared to the persistence forecast.

Figure 5c,d show the performance of forecasts of Tmin. For all lead times, the pre-
dictions of Tmin have a noticeably smaller error compared to predictions of Tmax. This
indicates that the prediction of the minimum temperatures is easier than the prediction
of maximum temperatures (e.g., the MAE of climatological forecasts for Tmin is about
0.8 ◦C smaller than for Tmax). For the same-day forecasts, the prediction is also made easier
by the shorter time gap between the early-morning radiosonde observation and time of
Tmin, which typically occurs in the morning. MAE for the present-day forecast of Tmin
is 1 ◦C for any setup involving measurements of vertical profiles (Setup X, Y, Z). This is
approximately 1 ◦C smaller than the error for Tmax prediction. The profile-based forecasts
beat the persistence forecast at all lead times and become comparable to or worse than the
climatological forecast on day three.
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Figure 5. The evolution of the test set mean absolute error (MAE) for forecast using various NN setups. The setups are
described in Table 3. The time index t refers to the day of the radiosonde measurement, with t− 1 referring to the previous
day, and t + i to the i-th day in the future. The legend is the same for all subfigures as long as Tmax in (a,b) is replaced with
Tmin in (c,d). For the forecasts made by various NN setups, the lines represent the average MAE values in the ensemble
while the color shaded regions indicate the interval between the 10th and 90th percentile.

Another interesting and unintuitive feature of Figure 5 is that the error is smaller if
the extremes are predicted by NN that uses only previous-day extremes (Setup Q, red
line) compared to the persistence forecast (black line). This feature is even more evident
in the graphs showing the MAE evolution for the long-range prediction of temperature
extremes (Figure 5b,d). While such long-range predictions do not have any practical value,
they reveal the underlying features of the NN training. For example, the MAE of forecasts
using Setups X, Y and Q appears as a sine wave with twice lesser period than the period of
persistence MAE. The shape of the latter is obvious, as the MAE is largest at approximately
180 days (forecast issue time and forecast valid time are in exactly opposing seasons) and
smallest at roughly 1 year (same seasons). The MAE of forecasts performed with Setups X,
Y and Q is largest at 90 days and roughly 270 days, whereas the MAE of persistence forecast
is largest at approximately 180 days (half a year). This behavior can be explained by the fact
that the NN in Setup X, Y or Q does not know about the current season (or about the season
at forecast valid time) and can only indirectly infer this information from available input
data (e.g., the temperature profile). The 180-day forecast is thus rather straightforward:
if the input temperatures are high (likely summer), then the output temperatures after
180 days will likely be low (winter). Similarly, if the input temperatures are moderate
(likely spring or autumn), the output temperatures will remain moderate (likely autumn or
spring). However, for the 90-day forecast, the moderate input temperatures (likely spring
or autumn) can lead to either high temperatures (likely summer) or low temperatures
(likely winter) after 90 days, which results in a larger forecast error.
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Taking longer time series of past data as a predictor and using recurrent NNs would
likely improve the forecasts, as such NNs are able to grasp the temporal trends. Even
a simple predictor such as the day of the year can improve prediction for the long-term
forecasts (not shown). The prediction skill could also be enhanced by taking the time of the
radiosonde measurement as the predictor. In particular, the minimum temperature predic-
tion is likely sensitive to the time difference between the observation and the occurrence
of the daily minimum (typically in the early morning). Another solution is to include the
climatological extremes Tclim at the forecast valid time t + i as predictors (Setups Z and R).
Using such setups, the NN can constrain the long-range forecast MAE to the climatological
forecast error (Figure 5). Experimenting with additional options is beyond the scope of
this study.

4.3. Network Interpretation

Finally, we explored the impact of our predictors on the forecast. Figures 6 and 7
show results of the XAI analysis for forecasts of Tmax using Setups X and Z (the results for
other setups, some additional forecast lead times and forecasts of Tmin are shown in the
Supplementary Materials in Figures S1–S6). For Setup X, both the average input gradient
and the output value span suggest that the medium-range prediction (up to 10 days,
Figure 6a–c) is governed mostly by the lowest 1 km of the temperature profile, and the
lowest 200 m of the dew-point temperature profile. Low relative humidity in the bottom
1 km is associated with higher temperature extremes. In the first 10 days, the mid- and
upper-tropospheric levels barely affect the temperature prediction, as the values of gradient
and span are rather small and noisy.

However, the 100-day Tmax prediction (Figure 6d) is strongly affected by the entire
vertical temperature profile, meaning that the network grasps the (seasonal) info on Tmax
from the changing atmospheric profile. First, the larger part of the temperature profile
(below 1.5 km and above 5 km altitude) shows a negative impact on Tmax. If the measured
temperatures are low (likely winter), then the forecasted Tmax will be higher after 100 days
(likely spring), and vice versa: high temperatures (likely summer) will lead to lower
temperatures after 100 days (likely autumn). Apart from the mean vertical "signal", the
neural network also learns the vertical profile of the measured temperatures, which define
the Tmax in 100 days. In the majority of the lower half of the troposphere, the Tmax exhibits
positive sensitivity to measured temperatures, and the opposite in the upper troposphere.
This can be explained by the seasonal differences in the average vertical temperature
gradient at the location. The average temperature gradient is largest in the summer and
smallest in the winter (see Figure S9 in the Supplementary Materials). The larger the
vertical temperature gradient (likely summer), the colder the Tmax in 100 days and vice
versa.

It is also worth noting that the spread of the gradient metric is much larger compared
to the spread of the value span metric. For example, the typical standard deviation of the
gradient values for the setups shown in Figure 6 is about 0.2 for all input variables at all
altitudes (see Figure S7 in the Supplementary Materials). This is significantly larger than
the average gradient values (which are limited to the range [−0.1, 0.1]). Thus, even though
the average gradient value might be zero (indicating a rather small overall influence on the
forecasted value), the gradient value for a specific day in the test set might be quite large
by size and be either positive or negative. In contrast, the standard deviation of the value
span metric is much smaller—typically about 0.02 for the setups shown in Figure 6 (see
Figure S8 in the Supplementary Materials). Thus it gives a more dependable measure of
the influence of a particular predictor on the forecasted value.
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Figure 6. The results of the XAI analysis for forecasts of Tmax by NN Setup X. The subfigures show the analysis for different
forecast lead times: (a) 0 day; (b) 1 day; (c) 10 day; (d) 100 day. The average input gradient is shown by solid lines and the
average output value span by dotted lines.

Figure 7 show the results of the XAI analysis for forecasts of Tmax using Setup Z. The
two additional predictors (Tmax(t− 1) and Tclim) have a large influence on the forecasted
value. For the same-day forecasts (Figure 7a), both predictors have a comparable influence
on the forecasted value, with the importance of the profiles being smaller; however, with
longer forecast times the importance of Tclim increases, while the importance of Tmax and
the profiles decreases. For the 100-day forecast (Figure 7d) the prediction is almost solely
based on Tclim. The difference between Figures 6d and 7d is striking, with the profile-based
information from the whole troposphere being replaced with a single climatological value,
thereby almost halving MAE from 7.1 ◦C to 3.8 ◦C. This highlights the adaptability of
the NN, which can successfully identify and use the most useful parameters, while the
unessential ones are sidelined.
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Figure 7. Same as Figure 6 but for forecasts of Setup Z instead of Setup X. The values for input parameters Tmax(t− 1) and
Tclim(t + i) are indicated by short vertical lines in the lower part of the graphs.

5. Discussion and Conclusions

This study aimed to explore the capability of neural networks that rely on data from
radiosonde measurement to predict daily temperature minimums and maximums. More
specifically, the aim was to understand how the NN-based models utilize different types
of input data and how the network design influences its behavior. The data utilization
and behavior of the network depends on whether the NNs are used to do short-term or
long-term forecasts—this is why the analysis was performed for a wide range of forecast
lead times.

The analysis using very simple NNs, consisting of only a few neurons, highlighted
how the nonlinear behavior of the NN increases with the number of neurons. It also showed
how different training realizations of the same network could result in different behaviors
of the NN. The behavior in the part of the predictor phase space with the highest density of
training cases was usually quite similar for all training realizations. In contrast, the behavior
elsewhere was more variable and more frequently exhibited unusual nonlinearities. This
has consequences for how the network behaves in part of the predictor phase space that is
not sufficiently sampled with the training data—for example, in situations that could be
considered outliers (such situations can occur but not very frequently). For such events,
the NN behavior can be quite different for each training realization. The behavior can also
be unusual, indicating that the results for such situations need to be used with caution.

Analysis of selected NN hyperparameters showed that using larger batch sizes re-
duced training time without causing a significant increase in error; however, this was
true only up to a point (in our case up to batch size 256), after which the error did start
to increase. We also tested how the number of epochs influences the forecast error and
training speed, with 100 epochs being a good compromise choice.
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We analyzed various NN setups that were used for the short- and long-term forecasts
of temperature extremes. Some setups were more complex and relied on the profile
measurements on 118 altitude levels or used additional predictors such as the previous-day
measurements and climatological values of extremes. Other setups were much simpler, did
not rely on the profiles, and used only the previous day extreme value or climatological
extreme value as a predictor. The behavior of the setups was also analyzed via two XAI
methods, which help determine which input parameters have a more significant influence
on the forecasted value.

For the setup based solely on the profile measurements, the short- to medium-range
forecast (0–10 days) mainly relies on the profile data from the lowest layer—mainly on
the temperature in the lowest 1 km. For the long-range forecasts (e.g., 100 days), the NN
relies on the data from the whole troposphere. As could be expected, the error increases
with forecast lead time, but at the same time, it exhibits seasonal periodic behavior for long
lead times. The NN forecast beats the persistence forecasts but becomes worse than the
climatological forecast already on day two or three (this depends on whether maximum
or minimum temperatures are forecasted). It is also important to note the spread of error
values of the NN ensemble (which consists of 50 members). The spread of the setups that
use the profile data is significantly larger than the spread of the setups that rely only on
non-profile data. For the former, the maximum error value in the ensemble was typically
about 25% larger than the minimum error value. This again highlights the importance of
performing multiple realizations of NN training.

The forecast slightly improves when the previous-day measurements are added as a
predictor; however, the best forecast is obtained when the climatological value is added as
well. The inclusion of the Tclim can improve the short-term forecast—this is interesting and
somewhat surprising and shows how the NN models are capable of successfully utilizing
the climatological information along the information on the current state atmosphere. Still,
the most significant benefit of climatological information is seen for the long-term forecasts
where the error is constrained to the climatological forecast error. The analysis by the
XAI methods showed that in these cases, the NN prediction is almost solely based on the
climatological value and that other predictors have a very small influence. One interesting
observation is that, while the average error of the 50-member NN ensemble tends to be
larger than the error of the climatological forecast after day three, the ensemble’s minimum
error is often a bit smaller. Although the NN ensemble performs worse on average, at least
one ensemble member can nevertheless perform a bit better than the climatological forecast.
This can happen even for very long-term forecasts (e.g., more than a year into the future).
This again highlights the importance of performing multiple realizations of NN traning.

In the end, it is important to point out that although the NN-based prediction sys-
tems presented in the study are relatively simple, and cannot be expected to outperform
the current state-of-the-art operational NWP models, the analysis nevertheless provides
meaningful results, which might have implications for potential future data-driven predic-
tion of the atmospheric evolution from raw observations. For example, the XAI analysis
(Figure 6a–c) revealed that the NN is able to diagnose the vertical layers of T, Td and RH
that impact the prediction of Tmax the most. This resembles the vertical correlations built
into the background-error covariance model for the assimilation of atmospheric observa-
tions into NWP models [29]. Analogously as in our case, these vertical correlations act
to (objectively) spread the impact of observation across the model domain; however, in
analogy to the NWP data assimilation, some localization of the observation impact would
be beneficial to reduce the complexity of the network, as the mid- and upper-tropospheric
measurements do not contribute anything to the short-range prediction. In the NN context,
this can be achieved by dropping out some neurons so that the network only learns the
most robust features. The findings derived from the long-range prediction experiments are
also relevant for seasonal-to-subseasonal (S2S) climate prediction, where machine learning
models have already demonstrated better prediction than the state-of-the-art operational
prediction systems [30].
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112210852/s1, Figures S1–S6 show results of the XAI analysis for additional setups,
forecast lead times and forecasts of Tmin, Figures S7–S8 show the spread of the results for the XAI
analysis for forecasts of Tmax by Setup X, Figure S9 shows the average seasonal T profiles.
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