
applied
sciences

Article

Semantic Description of Explainable Machine Learning
Workflows for Improving Trust

Patricia Inoue Nakagawa * , Luís Ferreira Pires , João Luiz Rebelo Moreira ,
Luiz Olavo Bonino da Silva Santos and Faiza Bukhsh

����������
�������

Citation: Nakagawa, P.I.; Pires, L.F.;

Moreira, J.L.R.;

Bonino da Silva Santos, L.O.;

Bukhsh, F. Semantic Description of

Explainable Machine Learning

Workflows for Improving Trust. Appl.

Sci. 2021, 11, 10804. https://doi.org/

10.3390/app112210804

Academic Editor: Tobias Meisen

Received: 30 September 2021

Accepted: 11 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente,
7522 NB Enschede, The Netherlands; l.ferreirapires@utwente.nl (L.F.P.); j.luizrebelomoreira@utwente.nl (J.L.R.M.);
l.o.boninodasilvasantos@utwente.nl (L.O.B.d.S.S.); f.a.bukhsh@utwente.nl (F.B.)
* Correspondence: patyinoue@gmail.com

Abstract: Explainable Machine Learning comprises methods and techniques that enable users to
better understand the machine learning functioning and results. This work proposes an ontology
that represents explainable machine learning experiments, allowing data scientists and developers to
have a holistic view, a better understanding of the explainable machine learning process, and to build
trust. We developed the ontology by reusing an existing domain-specific ontology (ML-SCHEMA)
and grounding it in the Unified Foundational Ontology (UFO), aiming at achieving interoperability.
The proposed ontology is structured in three modules: (1) the general module, (2) the specific module,
and (3) the explanation module. The ontology was evaluated using a case study in the scenario of the
COVID-19 pandemic using healthcare data from patients, which are sensitive data. In the case study,
we trained a Support Vector Machine to predict mortality of patients infected with COVID-19 and
applied existing explanation methods to generate explanations from the trained model. Based on the
case study, we populated the ontology and queried it to ensure that it fulfills its intended purpose
and to demonstrate its suitability.

Keywords: XAI; machine learning; semantic web technologies; ontology

1. Introduction

Artificial Intelligence (AI) and particularly Machine Learning (ML) have been ex-
tensively explored due to their ability to learn and perform autonomous tasks, and the
potential to achieve better results than humans [1,2]. Among ML models, there are in-
herently intelligible algorithms, as opposed to inscrutable ones. Models are inherently
intelligible to the degree that a human can predict how a change to a feature in the input can
affect the output [2]. Inscrutable models are more complex and harder to explain, therefore
it is more challenging to understand the reason for their results. Examples are complex
neural networks or deep learning. For this reason, these models are often considered
black-boxes [3].

To cope with this, Explainable Artificial Intelligence (XAI) considers methods and
techniques to make the results of AI systems explainable, intelligible, transparent, inter-
pretable, or comprehensible to humans [1]. ML explainability is relevant because it allows
the identification of the changes and optimization of the ML model necessary to generate
the results, since being able to understand the model allows us to identify problems and
improve the model. This ensures that the system acts adequately, improving trust and
avoiding unethical issues [3].

Semantic Web Technologies (SWT) were initially introduced to make the internet
data machine-readable by encoding semantics with the data. In the scope of XAI, these
techniques can potentially be applied to ML models and are expected to enable the devel-
opment of truly explainable AI-systems because they provide semantically interpretable
tools and allow reasoning on knowledge resources that can help explain ML systems [4–6].

Appl. Sci. 2021, 11, 10804. https://doi.org/10.3390/app112210804 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5089-4255
https://orcid.org/0000-0001-7432-7653
https://orcid.org/0000-0002-4547-7000
https://orcid.org/0000-0002-1164-1351
https://doi.org/10.3390/app112210804
https://doi.org/10.3390/app112210804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210804
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210804?type=check_update&version=1

Appl. Sci. 2021, 11, 10804 2 of 18

They usually are adopted as complementary sources of information that enrich the datasets
with semantic knowledge, enabling the exploitation of the relationships between concepts
and inferences of new knowledge [1]. There are two main categories of exploration ap-
proaches regarding how explanations are generated by considering the part of the machine
learning process that is using the semantic resource, namely (1) ante-hoc and (2) post-hoc,
as schematically depicted in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 19

techniques can potentially be applied to ML models and are expected to enable the devel-
opment of truly explainable AI-systems because they provide semantically interpretable
tools and allow reasoning on knowledge resources that can help explain ML systems [4–
6]. They usually are adopted as complementary sources of information that enrich the
datasets with semantic knowledge, enabling the exploitation of the relationships between
concepts and inferences of new knowledge [1]. There are two main categories of explora-
tion approaches regarding how explanations are generated by considering the part of the
machine learning process that is using the semantic resource, namely (1) ante-hoc and (2)
post-hoc, as schematically depicted in Figure 1.

Figure 1. ML explanation approaches.

Ante-hoc explainability builds an intrinsic explainable model, using semantic re-
sources during the ML training process to build explainable learning models that generate
predictions together with explanations of its reasoning. In this case, the semantic source
is integrated intrinsically to the ML algorithm to obtain explanations considering the in-
ternal functioning of the model by mirroring the structure of knowledge graphs, using
knowledge resources as embeddings, or exploring the ontology taxonomy, among others.
The transparency of the ante-hoc model facilitates understanding and enables adequate
changes in the ML when necessary [1]. However, changes are necessary to incorporate the
background knowledge to the algorithms, forcing design choices and creating a bias to-
wards explainability, which can affect the performance of existing models regarding ac-
curacy and efficiency. Consequently, the solutions are often model-specific and domain-
specific, resulting in less generalizable and versatile outcomes [7].

Post-hoc explainability consists of wrapping fully black-box trained models and add-
ing an explainability layer [8]. The biggest advantage in post-hoc solutions is that they are
model-agnostic, that is, the explanations are separated from the ML model, thus no change
is needed to the ML model so that the solutions can be used across different models. Post-
hoc solutions explain the logic of the output by trying to justify the reason why the ML
model generates the results. The use of SWT empowers the explainable ML tools by ex-
panding their knowledge without requiring prior experience, creating explanations for
patterns or questions that go beyond the data analyzed [1]. Nonetheless, they might not
be truthful to the underlying ML algorithm because the explanations result from artifacts
that mimic the behavior of the black-box, based on hypotheses that do not take into ac-
count the internal functioning of the ML model (e.g., node activations), nor the actual
knowledge that the ML model gets from the data, raising concerns related to trust, relia-
bility, and fidelity. Furthermore, most post-hoc solutions focus on local explanations, that
is, generating explanations for a single output. Few solutions focus on global explanations,
which would clarify the whole performance of the model [7].

Besides considering how to obtain the explanation, in order to evaluate the ML model
and verify if it is suitable for its task, we should not only understand its logic but also have
an overview of the whole ML process, since it consists of many components that influence
the behavior and results of ML models. For example, the data used to train ML algorithms
together with the preprocessing steps adopted to enhance the quality of the data have a
significant impact on the model’s performance, since ML algorithms rely on identifying

Figure 1. ML explanation approaches.

Ante-hoc explainability builds an intrinsic explainable model, using semantic re-
sources during the ML training process to build explainable learning models that generate
predictions together with explanations of its reasoning. In this case, the semantic source is
integrated intrinsically to the ML algorithm to obtain explanations considering the internal
functioning of the model by mirroring the structure of knowledge graphs, using knowledge
resources as embeddings, or exploring the ontology taxonomy, among others. The trans-
parency of the ante-hoc model facilitates understanding and enables adequate changes
in the ML when necessary [1]. However, changes are necessary to incorporate the back-
ground knowledge to the algorithms, forcing design choices and creating a bias towards
explainability, which can affect the performance of existing models regarding accuracy
and efficiency. Consequently, the solutions are often model-specific and domain-specific,
resulting in less generalizable and versatile outcomes [7].

Post-hoc explainability consists of wrapping fully black-box trained models and
adding an explainability layer [8]. The biggest advantage in post-hoc solutions is that they
are model-agnostic, that is, the explanations are separated from the ML model, thus no
change is needed to the ML model so that the solutions can be used across different models.
Post-hoc solutions explain the logic of the output by trying to justify the reason why the
ML model generates the results. The use of SWT empowers the explainable ML tools by
expanding their knowledge without requiring prior experience, creating explanations for
patterns or questions that go beyond the data analyzed [1]. Nonetheless, they might not be
truthful to the underlying ML algorithm because the explanations result from artifacts that
mimic the behavior of the black-box, based on hypotheses that do not take into account the
internal functioning of the ML model (e.g., node activations), nor the actual knowledge that
the ML model gets from the data, raising concerns related to trust, reliability, and fidelity.
Furthermore, most post-hoc solutions focus on local explanations, that is, generating
explanations for a single output. Few solutions focus on global explanations, which would
clarify the whole performance of the model [7].

Besides considering how to obtain the explanation, in order to evaluate the ML model
and verify if it is suitable for its task, we should not only understand its logic but also have
an overview of the whole ML process, since it consists of many components that influence
the behavior and results of ML models. For example, the data used to train ML algorithms
together with the preprocessing steps adopted to enhance the quality of the data have a
significant impact on the model’s performance, since ML algorithms rely on identifying
data patterns or regularities, which may lead these algorithms to follow some possible bias
present in the data [9].

Learning is always based on available data, and there may be differences between
training data and real data [2]. Small changes in the input can make big differences in

Appl. Sci. 2021, 11, 10804 3 of 18

the output, which can lead to serious errors when the system is used in the real world.
In addition, the input datasets are often noisy, biased, and sometimes contain incorrectly
labeled samples. Without knowing the data quality, training the model is a tricky and
challenging task [10]. Therefore, explainability needs to be addressed from the input data
step [11].

Furthermore, the evaluation of the ML implementation needs to use adequate measure-
ments according to the task and the application so the user can comprehend the evaluation
method to correctly select the most suitable model. For example, in our COVID-19 case
study, diagnosis detection models should have high sensitivity, identifying most patients
that truly have a condition, and high specificity, avoiding the identification of a condition
in patients that do not have it. Hence, an overview of the entire ML process, from the data
input to the evaluation, would allow the user to verify if the ML model is adequate by
having a better and more complete understanding of the decision process and the reason
why the ML model arrived at specific decisions, and identify where to make corrections
and adjustments.

The goal of this research is to leverage ML post-hoc explainability by proposing
an ontology that represents and provides a holistic overview of the entire ML and post-
hoc explanation processes. This enables the user to have a better and more complete
understanding of those processes and complements post-hoc explanations that justify the
reason why the ML model arrived at specific decisions, enhancing trust.

This paper is structured as follows: Section two provides the ontology concepts,
describing all the steps necessary to specify and develop the ontology. Section three presents
the case study and the experiments performed to populate the ontology. Section four
describes the results obtained, such as the conceptual model and the ontology evaluation.
Finally, Section five discusses the results, the contributions, and future work.

2. Ontology Concepts

An ontology consists of a collection of related concepts that describe a particular do-
main, with definitions for objects and types of objects that provide a semantic vocabulary to
define the meaning of things. An ontology is made machine-interpretable with knowledge
representation techniques so that it can be used by applications to reason about the domain
of knowledge [12].

2.1. Ontology Specification

The first phase to build an ontology consists of the ontology specification, when the
methodology to be adopted as a guideline is chosen, as well as the goal, scope, and require-
ments to the ontology. This is a preparation stage before ontology development. During
the specification phase, knowledge acquisition is also performed to find knowledge sources
such as other ontologies, aiming at the reuse of already established conceptualizations and
achieving interoperability.

The ontology development of this project follows the guidelines of SABiO (Systematic
Approach for Building Ontologies) [13], which proposes a process for the development of
domain ontologies based on foundational ontologies. It consists of five main steps and
supporting processes that are performed in parallel to the main development process. The
five main steps are (1) purpose identification and requirements elicitation; (2) ontology
capture and formalization; (3) design; (4) implementation; and (5) test. SABiO also distin-
guishes reference ontologies from operational ontologies, where reference ontologies are
developed in the first two steps and the operational ontologies should follow the design
and implementation steps of the process.

2.1.1. Ontology Purpose and Requirements

The purpose of developing our domain-specific ontology is to represent the entire ML
process and post-hoc explanation process, enabling data scientists to have a holistic view
and a better understanding of those processes, aiming to complement and leverage the

Appl. Sci. 2021, 11, 10804 4 of 18

post-hoc explanations. The ontology captures the concepts of the domain and makes them
machine-interpretable, making it possible to keep track of the steps from the processes and
retrieve information from them.

The ontology must comply with functional and non-functional requirements. The
functional requirements are related to the knowledge or content of the ontology; therefore,
they can be stated as competency questions (CQs) that the ontology should be able to
answer. The CQs we defined for our ontology are related to the ML and explanation
process components:

• CQ1. Which data were used to train the model?
• CQ2. How privacy-sensitive was the dataset?
• CQ3. How balanced are the data?
• CQ4. How were the data preprocessed?
• CQ5. What are the correlations of the input datasets?
• CQ6. What are the characteristics of the ML algorithm?
• CQ7. What is the logic behind the ML model?
• CQ8. Why did the model generate this output?
• CQ9. How was the ML model evaluated? What is the meaning of those metrics?
• CQ10. How were the explanations generated? How are the explanations presented to

the user? How faithful are the explanations?
• CQ11. How general are the explanations? Do they apply to all instances?

The non-functional requirements are related to characteristics, qualities, and general
aspects not related to the content [13]. We define the non-functional requirements of our
ontology as follows:

• REQ1. Guarantee usability to data scientists and developers who want to understand
the adequacy of the ML model and improve product efficiency, research, and new
functionalities, helping understand the whole ML process and explanation process,
possibly identifying where to make adaptations in the process;

• REQ2. Guarantee extensibility by defining a generic ML ontology that represents
ML processes that tackle different problems besides classification and can be further
adapted or specialized;

• REQ3. The ontology should be implemented using standard languages and tools;
• REQ4. Guarantee interoperability with already existing ontologies by grounding them

into a foundational ontology.

In order to comply with REQ2 and considering the complexity of the ontology, we
decided to structure the ontology into three modules: (1) a general module that represents
general ML processes independently of the task or the learning type performed; (2) a
specific module for supervised classification; and (3) an explanation module, which repre-
sents the post-hoc explanation process. Splitting the ontology into smaller parts allows the
modeling problems to be tackled one at a time [13].

2.1.2. Knowledge Acquisition and Reuse

Knowledge Acquisition and Reuse are auxiliary processes defined in SABiO that assist
ontology development [13]. Usually, Knowledge Acquisition occurs in the initial stages of
ontology development to gather knowledge from different sources, while Reuse can be
adopted in many opportunities to reuse already established conceptualizations.

This paper applies Reuse in the Knowledge Acquisition process by selecting an already
existing domain ontology and a foundational ontology. First, the ML process and the post-
hoc explanation process are defined with their components and what should be described,
as represented in Figure 2.

Appl. Sci. 2021, 11, 10804 5 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19

the post-hoc explanation process are defined with their components and what should be
described, as represented in Figure 2.

Figure 2. ML process with a training sub-process (black arrows), a testing sub-process (orange ar-
rows), and a post-hoc explanation sub-process (blue arrows).

The Machine Learning Process: This process consists of preprocessing data, training,
and testing the ML model. The preprocessed data determine the preprocessing steps, such
as the cleaning process, feature extraction or dimensionality reduction methods applied
with respective parameters, and the criteria to split training and testing data. Given the
different nature and particularities of the available datasets, which may require diverse
preprocessing steps to make it adequate for the ML, we assume that the data have already
been preprocessed so that only the preprocessing steps taken are modeled in the ontology,
without more details.

Training the ML model involves the training data, the ML implementation, the ML
model, and the output. The training data represent the input data used to train the ML
model. The ML implementation indicates the type and characteristics of the implemented
algorithm, for example, Support Vector Machine (SVM) with the parameters used to train
the model. The ML model (learned model) can be explained through the logic of the rea-
soning behind the decision-making process in general [7], which enables the user to un-
derstand the logic of the ML algorithm and the patterns observed by the ML model in the
data. The description of the outputs obtained from the ML model is related to the expla-
nation of a decision which refers to reasons that justify why a particular outcome was
generated by the ML model.

Testing the ML model comprises the descriptions of the testing data and the ML
model evaluation. The description of the evaluation is relevant because many metrics can
be used to evaluate the ML models. Choosing the best metrics depends on the task that
the ML model is expected to perform and its application. Evaluation descriptions provide
information about the metrics and how the ML model performs with respect to these met-
rics.

The Post-hoc Explanation Process: This process comprises the explanation method,
the explanation generated by the method, and the explainability evaluation. The method
usually receives the output data from the ML model, and some of the methods also use
the input training data to generate the explanation. The description of the post-hoc
method indicates the method adopted and its characteristics; for instance, the scope of the
method (local or global explanations), the format of the explanation it generates (tree,
rules, decision table, images, text highlight, natural language, etc.), and whether the ex-
planation is iterative or static. The explanation gives the logical reasoning behind the de-
cision-making process, the patterns observed in the data, or provides means to justify the
ML output. The evaluation contains information about the assessment of the explanations
which can be evaluated in terms of effectiveness and user experience, such as the number

Figure 2. ML process with a training sub-process (black arrows), a testing sub-process (orange
arrows), and a post-hoc explanation sub-process (blue arrows).

The Machine Learning Process: This process consists of preprocessing data, training,
and testing the ML model. The preprocessed data determine the preprocessing steps, such
as the cleaning process, feature extraction or dimensionality reduction methods applied
with respective parameters, and the criteria to split training and testing data. Given the
different nature and particularities of the available datasets, which may require diverse
preprocessing steps to make it adequate for the ML, we assume that the data have already
been preprocessed so that only the preprocessing steps taken are modeled in the ontology,
without more details.

Training the ML model involves the training data, the ML implementation, the ML
model, and the output. The training data represent the input data used to train the ML
model. The ML implementation indicates the type and characteristics of the implemented
algorithm, for example, Support Vector Machine (SVM) with the parameters used to train
the model. The ML model (learned model) can be explained through the logic of the
reasoning behind the decision-making process in general [7], which enables the user to
understand the logic of the ML algorithm and the patterns observed by the ML model
in the data. The description of the outputs obtained from the ML model is related to the
explanation of a decision which refers to reasons that justify why a particular outcome was
generated by the ML model.

Testing the ML model comprises the descriptions of the testing data and the ML
model evaluation. The description of the evaluation is relevant because many metrics
can be used to evaluate the ML models. Choosing the best metrics depends on the task
that the ML model is expected to perform and its application. Evaluation descriptions
provide information about the metrics and how the ML model performs with respect to
these metrics.

The Post-hoc Explanation Process: This process comprises the explanation method,
the explanation generated by the method, and the explainability evaluation. The method
usually receives the output data from the ML model, and some of the methods also
use the input training data to generate the explanation. The description of the post-hoc
method indicates the method adopted and its characteristics; for instance, the scope of the
method (local or global explanations), the format of the explanation it generates (tree, rules,
decision table, images, text highlight, natural language, etc.), and whether the explanation
is iterative or static. The explanation gives the logical reasoning behind the decision-making
process, the patterns observed in the data, or provides means to justify the ML output. The
evaluation contains information about the assessment of the explanations which can be
evaluated in terms of effectiveness and user experience, such as the number of instances
that the rules cover, and how faithful the explanations to the underlying black-box are.

Appl. Sci. 2021, 11, 10804 6 of 18

2.1.3. Domain-Specific Ontology

An existing ontology was selected (ML-Schema [14]) as a starting point to develop our
ontology to help the knowledge acquisition process, speed up the ontology development,
and guarantee interoperability to existing applications that use the ontology [15].

ML-Schema (MLS) was chosen as the main reference to be reused and extended
because it is already based on other well-known ontologies and contains many of the
concepts necessary to represent the ML process. It is a well-known ontology for the ML
domain which aims to stimulate the development of standards, achieve interoperability
and reproducible research, cope and align with already existing ontologies, and support the
needs of the ML area. MLS preserves the provenance of data and model, that is, metadata
about their origin, derivation, or history. In ML workflows, it is useful to represent which
data were used to train the ML model, where the data came from, and how they were
preprocessed [14]. Therefore, MLS allows us to track the creation, editing, publication, and
future reuse of data.

2.1.4. Foundational Ontology

Foundational ontologies define the basic concepts upon which any domain-specific
ontology is built. By explicitly modeling the ‘upper-level ontology’, the top-level domain-
independent ontological categories can be reused in domain-specific ontologies, guarantee-
ing semantic interoperability between them [16].

In this paper, we chose to adopt the Unified Foundational Ontology (UFO) [16] as
suggested in SABiO [13]. UFO is based on two foundational ontologies, the GFO/GOL and
OntoClean/DOLCE, offering a general foundational ontology to applications in conceptual
modeling. UFO is divided into three sets: UFO-A, which is the UFO core, defines the
things, sets, entities, individuals, and types; UFO-B defines the terms related to perdurants,
such as events and states; and UFO-C defines terms related to beliefs, desires, intentions,
social roles, and linguistic things, extending UFO-B with concepts such as action, activity,
and communication [16,17]. UFO also defines two taxonomies, one with classes whose
instances are individuals and another with classes whose instances are types, providing
additional information about classes [18].

OntoUML is a language for ontology-driven conceptual modeling based on UFO [19].
It is built as an extension of UML (Unified Modeling Language), enabling conceptual
models to be defined as fragments of UML class diagrams that are well-founded in UFO.
This also facilitates the process of obtaining a well-founded operational ontology from the
conceptual model by performing transformations. The resulting operational ontology is
well-founded in gUFO, which is a lightweight UFO implementation that supports a subset
of UFO-A and a minimal subset of UFO-B [18].

2.2. Ontology Development

Ontology development consists of capturing and formalizing the ontology with its
modules and metadata. For this, the existing domain-specific ontology (MLS) has been
first grounded in the foundational ontology (UFO), and the conceptual models of the
three modules of the ontology were defined, namely the generic ML module, the specific
ML module, and the explanation module. The design and implementation of the ontol-
ogy have been carried out by a transformation from the final conceptual model to the
operational ontology.

2.2.1. Grounding the MLS in UFO

In order to ground the MLS to UFO, first, a conceptual model of MLS using On-
toUML [19] was developed. Using Visual Paradigm 16.3 and OntoUML plugin [20], we
created a class diagram and assigned OntoUML class and relationship stereotypes to it,
to perform a model transformation of the conceptual model into the operational version
implemented in OWL (Ontology Web Language), which is a language to define ontologies,
supported by gUFO.

Appl. Sci. 2021, 11, 10804 7 of 18

However, grounding a domain ontology into a foundational ontology requires them
to be aligned, which leads to concerns such as how to overcome differences in expres-
siveness that can exist between the ontologies and how to accommodate for the different
philosophies behind them [21]. Therefore, to identify the best stereotypes to assign to the
components of the diagrams, first the OntoUML stereotypes were studied and analyzed
together with their matching in the gUFO structure to define a mapping between them. The
MLS qualities, processes, and information entities have been grounded by creating classes
in the class diagram and assigning the OntoUML class stereotypes to them according to
the chosen components of the gUFO taxonomy of types.

The MLS relations have been analyzed and considering the types they connect, ade-
quate relationships in OntoUML have been selected, which were then transformed into
adequate object properties in gUFO, as shown in Table 1. For example, the process Run of
MLS is defined as an Event in OntoUML and gUFO taxonomies of types and individuals
because it consists of a process that happens in time. An Experiment is a collection of runs
with no change in membership since specific runs are part of an experiment, therefore, an
Experiment is grounded also as an Event. Similarly, a Study is a collection of Experiments,
defined also as an Event.

Table 1. Examples of the correspondences of ML-SCHEMA components to OntoUML and gUFO
taxonomy of individuals and taxonomy of types.

ML-SCHEMA Element OntoUML Stereotype gUFO Individual gUFO Type

Processes
(Examples: Study, Experiment,
Run)Study

Event Class Event Event Type

Qualities
(Examples: DataCharacteristic
ImplementationCharacteristic,
ModelCharacteristic)

Quality Class Quality Kind

MLS qualities such as DataCharacteristic, ImplementationCharacteristic, and Mod-
elCharacteristic are intrinsic aspects that are measurable or may be used to compare
individuals, for example, the number of features a dataset has, or a characteristic of an
implementation that differentiates it from the others, being defined as Quality in OntoUML
and in gUFO’s taxonomy of individuals, which corresponds to Kind in gUFO’s taxonomy
of types.

2.2.2. General Machine Learning Module

The general ML module of our ontology has been developed by aligning the MLS
concepts grounded in gUFO with the ML process. MLS focuses on the data generated
in ML workflows, reflecting the OpenML structure, but does not represent the nature
of ML processes, resulting in semantic gaps. For example, we missed some concepts to
organize the Runs into Experiments, arranging these Runs in a sequence to be executed.
Thus, the event Workflow Execution (WFExecution) has been introduced, which represents
processes that belong to an Experiment, and is composed of a series of Operations and
executes Workflows, which organize sequentially the implementations that are executed
by these operations.

In addition, the lack of cardinality in MLS can generate misconceptions, for instance,
indicating that a Run generates both an evaluation and a model. However, a dedicated
Run usually outputs an ML model, and another Run dedicated to evaluating the model
outputs the evaluation of the ML model in terms of the metrics. Other types of Runs
generate other outcomes, such as preprocessed data or predictions. Hence, we included
the Output concept to generalize the output generated by the operations, which can then
be specialized into ML model, evaluation, etc.

Appl. Sci. 2021, 11, 10804 8 of 18

After properly aligning MLS with the ML process and defining the concepts and
relations of the generic ML module, the axioms and constraints necessary for this ontology
module have been defined, and after that, the conceptual model was developed. We
defined restrictions concerning the cardinality of the properties between the concepts,
disjoint classes, and the sequence that each operation needs to be executed, formalizing
them in OWL2, which is the most recent OWL version.

2.2.3. Specific Machine Learning Module

The general ML module can be further specialized by considering the different opera-
tions that are performed in the ML classification process, taking into account their different
participants. The tasks involved in the classification process usually consist of preprocess-
ing the data, training, testing, and evaluating the ML model. Each task is represented as a
subclass of the operation class in the specific ML module, with the participants and the
artifacts that are involved in the operation.

2.2.4. Explanation Module

The ontology containing the generic and specific modules have been extended by
adding the explanation module, which represents the post-hoc explanation process by
adding the Explain and Evaluate Explanation operations to their corresponding participants.

2.2.5. Metadata

The ontology has been complemented with semantic information that comprises
qualities, reified quality values, and annotations in the ontology. In gUFO, qualities are
intrinsic aspects that are measurable by receiving a literal value, while reified quality values
are abstract individuals that can use pre-defined data to provide the value of the quality,
instead of literals. The reified quality values have been instantiated in the gUFO taxonomy
of types as abstract individual types and the qualities as kinds and subkinds.

2.2.6. Ontology Design and Implementation

The ontology design and implementation steps aim at generating an operational
version of the ontology. In the design step, the technical aspects of the ontology and the
implementation environment were defined. Since the OntoUML plugin is based on UFO
and it already supports the transformation of the conceptual model to the implementation
language, the gap between the conceptual models and the operational is shortened, so that
this step could be automated.

The implementation step consists of implementing the ontology in the operational
language. This was performed by executing a transformation of the OntoUML conceptual
model and exporting it to OWL in Turtle (Terse RDF Triple Language) format, which
represents the ontology in the RDF data model. We then opened the exported file using
Protégé and made further manual adjustments.

3. Case Study

The COVID-19 scenario was adopted as a case study to illustrate and validate our on-
tology. Supervised learning algorithms that perform classification operations were used to
predict mortality among infected patients and existing explanation methods were applied
to generate explanations that intend to make the steps and the logic of the algorithm clear
to data scientists to improve the model. Based on the results, instances have been created
to populate the ontology, validating it and refining it if necessary. The ML algorithms and
supporting procedures were implemented in Python scripts.

3.1. Data Description

We used an epidemiology dataset of people tested for COVID-19 in Mexico [22].
Health care data are sensitive by definition because they contain personally identifiable
information, increasing the need of a trustworthy machine learning model. The dataset has

Appl. Sci. 2021, 11, 10804 9 of 18

566.602 instances with 23 features, containing demographic data such as age and gender of
the patient, pre-existing conditions, for instance, diabetes, chronic obstructive pulmonary
disease (COPD), asthma, immunosuppression, hypertension, obesity, pregnancy, chronic
renal failure, other prior diseases, and whether the patient used tobacco. It indicates if the
patient was hospitalized, had pneumonia, needed a ventilator, was treated in an intensive
care unit (ICU), but also the result of the Reverse Transcription Polymerase Chain Reaction
(RT-PCR) test, and the date when the patient deceased, if applicable.

3.2. Experiments

Two ML experiments were defined based on the available data. The goal of the first
experiment was to classify the mortality of the confirmed cases and to understand the ML
model using the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [23].
According to Martens et al. [24], RIPPER can be used to extract human-comprehensible
descriptions from opaque models, based on decision rules in the format of IF-THEN
statements, which are considered one of the most interpretable statements since this
structure semantically resembles natural language [25]. Therefore, the opaqueness of
inscrutable ML models can be remedied by extracting rules that mimic the black-box as
closely as possible, since some insight is gained into the logical workings of the ML model
by obtaining a set of rules that mimic the model’s predictions [24].

The second experiment was similar to the first, but it used Local Interpretable Model-
agnostic Explanations (LIME) [3] to generate explanations. LIME is one of the most popular
solutions in the academic community to ML explainability [26]. It consists of a post-hoc
model-agnostic tool that identifies an interpretable model that is locally faithful to the
black-box classifier.

Each experiment involved two main workflows: the ML Workflow and the Explana-
tion Workflow. The second experiment reused the ML Workflow of the first one.

In order to describe the experiment using the ontology, we included instances describ-
ing the experiments and their characteristics, the goal of the experiment, the workflows
involved, and metrics to evaluate the ML models. The goal of classifying mortality is
a binary classification, requiring the ML model to be evaluated using metrics such as
accuracy, sensitivity, and specificity. The link to the conceptual models, ontology, and the
code in Python to the experiments is available in Supplementary Materials.

3.3. The Machine Learning Workflow

The ML Workflow consists of the steps of preprocessing the input dataset, training,
and testing the ML model.

3.3.1. Data Preprocessing

The first step of the ML Workflow consists of preprocessing the dataset. From the
dataset available we used a small sample of patients that entered the hospital between the
first two days of June 2020 and that were diagnosed with positive results for COVID-19.
Patients with unknown information were manually removed, keeping only the ones that
indicated the presence or absence of conditions. The date of death was converted to a
binary column indicating one if the patient was deceased and zero if she/he recovered.

After making the dataset fit for processing in the Python environment, we removed
the columns id (patient’s identifier), the date that the patient started feeling symptoms, if
the patient had contact with other COVID-19 cases, the result of the RT-PCR test (since
they were already manually filtered), and pregnancy. The column ‘inmsupr’ was renamed
to ‘immunosuppression’. The final dataset remained with 9.451 cases and was split into
70% for training and 30% for testing. No feature extraction or dimensionality reduction
methods were adopted.

The preprocessing steps performed in Python and the parameters used to the pre-
processing functions are included in the ontology by adding instances to represent the
scripts executed by the preprocessing operation. Manual steps are disregarded. Differences

Appl. Sci. 2021, 11, 10804 10 of 18

between the original dataset and the preprocessed dataset can be identified, such as the dif-
ference between the number of instances of each dataset and, after deleting some columns
from the original data, the presence of some features as components of the input dataset
and their absence in the preprocessed datasets.

3.3.2. Data Analysis

A dataset analysis has been performed to obtain a more detailed description of the
datasets. For this, we chose to adopt the explainability tool EthicalML-XAI [27] that helps
identify imbalances between features across classes and provides functions to identify cor-
relations between features in the dataset. This tool enables correlations between variables
to be detected and unexpected correlations to be identified (for example, intubation should
be related to ICU), allowing the user to identify possible problems in the dataset.

The imbalances and correlations are included in the ontology as characteristics of
features that belong to the training dataset.

3.3.3. Machine Learning Model Training

The preprocessed training data were used to train a black-box model to classify the
mortality of confirmed COVID-19 cases. We used SVM as the black-box algorithm, given
its popularity in making classifications due to its ability to capture non-linearity [24], and
its common application in COVID-19 detection in the literature, as found in [28–32].

The ML training operation is described in the ontology as the operation that receives
the training dataset as input and generates the SVM model as output. It executed the SVM
implementation of the SVM algorithm provided by the scikit-learn library in Python [33],
using a linear kernel type as a parameter. The ML algorithm is described in terms of the
author of the algorithm; the algorithm transparency, defined by Molnar [25] as the descrip-
tion of how the algorithm usually works; the type of data adequate for this algorithm; the
involved ML technique, in this case, classification; and the learning type, which in this
example is supervised learning.

3.3.4. Machine Learning Model Evaluation

After the ML model was trained, a step was performed to evaluate it according to the
metrics established by the goal. For this, the test set was classified using the Test (Predict)
operation that executes the Predict Implementation. This implementation called the SVM
model function to generate the predictions. These predictions together with the original
labels of the test set were then used as input for the Evaluate Model operation.

The Evaluate Model operation executed implementation of the classification report
provided by the scikit-learn library in Python [33], which already contains usual metrics
for classification including accuracy, specificity, and sensitivity. SVM achieved an accuracy
of 0.91 in the test set, specificity of 0.92, and sensitivity of 0.64. The metric values and the
description of each metric are included in the ontology.

3.4. The Explanation Workflow

The explanation workflow represents the explanation process, which consists of two
main steps, namely the generation of explanations and the evaluation of these explanations.
The objective of the first step is to generate explanations from the black-box model using
post-hoc methods that identify the behavior of the ML model or try to explain results. The
second step is to evaluate the generated explanations, which is necessary since post-hoc
solutions generate hypotheses to explain the black-box model.

In our case study, the explanation workflow uses the method RIPPER [23] in the first
experiment and LIME in the second experiment to generate explanations.

3.4.1. Rule Extraction with RIPPER

The opaqueness of SVM models can be remedied by extracting rules that mimic the
black-box as closely as possible since some insight is gained into the logical workings of

Appl. Sci. 2021, 11, 10804 11 of 18

the SVM by obtaining a set of rules that mimic the model’s predictions [24]. Therefore,
rule extraction can be performed to understand the classifications of the SVM, opening up
the black-box.

In order to extract rules from the SVM, RIPPER [23] was applied to the dataset with
labels predicted by the SVM. This algorithm extracts a rule set for the classification of the
COVID-19 mortality class, as depicted in Figure 3. The rule set is composed of disjunctive
rules that lead to the classification of the positive class, in this case, mortality. Each line is a
rule consisting of a conjunction of clauses. We interpreted the rule set as follows: if the first
rule applies to the instance, for example, the patient has an age between 66 and 99 years
(age = 66–99), has pneumonia (pneumonia = 1), has hypertension (hypertension = 1), is
hospitalized (hospitalized = 2), and is a man (sex = 2), then he will be classified with a high
chance of mortality. If the patient did not fit in this first rule, we tried the second, and so
on, until the last rule. If none of the rules applied to the patient, he/she has been classified
with the negative class, that is, recovery.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19

3.4. The Explanation Workflow
The explanation workflow represents the explanation process, which consists of two

main steps, namely the generation of explanations and the evaluation of these explana-
tions. The objective of the first step is to generate explanations from the black-box model
using post-hoc methods that identify the behavior of the ML model or try to explain re-
sults. The second step is to evaluate the generated explanations, which is necessary since
post-hoc solutions generate hypotheses to explain the black-box model.

In our case study, the explanation workflow uses the method RIPPER [23] in the first
experiment and LIME in the second experiment to generate explanations.

3.4.1. Rule Extraction with RIPPER
The opaqueness of SVM models can be remedied by extracting rules that mimic the

black-box as closely as possible since some insight is gained into the logical workings of
the SVM by obtaining a set of rules that mimic the model’s predictions [24]. Therefore,
rule extraction can be performed to understand the classifications of the SVM, opening up
the black-box.

In order to extract rules from the SVM, RIPPER [23] was applied to the dataset with
labels predicted by the SVM. This algorithm extracts a rule set for the classification of the
COVID-19 mortality class, as depicted in Figure 3. The rule set is composed of disjunctive
rules that lead to the classification of the positive class, in this case, mortality. Each line is
a rule consisting of a conjunction of clauses. We interpreted the rule set as follows: if the
first rule applies to the instance, for example, the patient has an age between 66 and 99
years (age = 66–99), has pneumonia (pneumonia = 1), has hypertension (hypertension = 1),
is hospitalized (hospitalized = 2), and is a man (sex = 2), then he will be classified with a
high chance of mortality. If the patient did not fit in this first rule, we tried the second,
and so on, until the last rule. If none of the rules applied to the patient, he/she has been
classified with the negative class, that is, recovery.

Figure 3. Rule set extracted using RIPPER to classify mortality in COVID-19 cases.

In the ontology, RIPPER is described in terms of its author, the source reference pa-
per, and further information to indicate that it consists of a global model-agnostic method
that explains the ML model and is unfaithful to the underlying model because it extracts
rules from the training examples, not directly from the ML model. The explanations gen-
erated by the algorithm are also described in terms of its format, i.e., the method generates
static explanations in the format of rules, and the explanation explains the logic behind
the whole ML model instead of explaining only one instance. Its implementation in Py-
thon was provided by the Wittgenstein library [34].

3.4.2. LIME Explanations
The post-hoc model-agnostic tool LIME [3] was also applied to identify the impact of

each input variable on the classification. First, the Submodular Pick Module (SP-LIME)

Figure 3. Rule set extracted using RIPPER to classify mortality in COVID-19 cases.

In the ontology, RIPPER is described in terms of its author, the source reference paper,
and further information to indicate that it consists of a global model-agnostic method that
explains the ML model and is unfaithful to the underlying model because it extracts rules
from the training examples, not directly from the ML model. The explanations generated
by the algorithm are also described in terms of its format, i.e., the method generates static
explanations in the format of rules, and the explanation explains the logic behind the whole
ML model instead of explaining only one instance. Its implementation in Python was
provided by the Wittgenstein library [34].

3.4.2. LIME Explanations

The post-hoc model-agnostic tool LIME [3] was also applied to identify the impact
of each input variable on the classification. First, the Submodular Pick Module (SP-LIME)
was used to generate explanations that show the positive and negative impact of the
input variables for each class. SP-LIME selects a set of representative instances, that is,
non-redundant and globally representative, and their explanations, enabling us to verify if
the model behaves adequately as expected.

The same explainer used in SP-LIME was applied to generate explanations of specific
instances. Figure 4 depicts an explanation obtained with LIME for a single patient, showing
the high probability of recovery predicted by the trained SVM and the impact of each
variable on each class, with intubation having the highest impact on the classification.

In the ontology, LIME is described in terms of its authors, the source reference paper,
and further information to indicate that it is a local model-agnostic method that explains
the ML model and the outputs, and that it is locally faithful to the underlying model. The
explanations generated by the algorithm are also described regarding its format, i.e., the
method generates static explanations in the format of the weight impact of the variables.
Its implementation in Python is provided by the LIME library [3].

Appl. Sci. 2021, 11, 10804 12 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19

was used to generate explanations that show the positive and negative impact of the input
variables for each class. SP-LIME selects a set of representative instances, that is, non-re-
dundant and globally representative, and their explanations, enabling us to verify if the
model behaves adequately as expected.

The same explainer used in SP-LIME was applied to generate explanations of specific
instances. Figure 4 depicts an explanation obtained with LIME for a single patient, show-
ing the high probability of recovery predicted by the trained SVM and the impact of each
variable on each class, with intubation having the highest impact on the classification.

Figure 4. Explanation generated by LIME for one instance, indicating a higher probability of recov-
ery and the weights of the most impacting features for each class.

In the ontology, LIME is described in terms of its authors, the source reference paper,
and further information to indicate that it is a local model-agnostic method that explains
the ML model and the outputs, and that it is locally faithful to the underlying model. The
explanations generated by the algorithm are also described regarding its format, i.e., the
method generates static explanations in the format of the weight impact of the variables.
Its implementation in Python is provided by the LIME library [3].

3.4.3. Explanation Evaluation
The generated explanations were evaluated in the Evaluate Explanation operation.

The RIPPER rules can be evaluated considering their coverage and the accuracy achieved
by applying the rule set to predict the classes of a data set. Using the test set, an accuracy
of 0.9 was achieved, meaning that 90% of the test examples had their classes correctly
predicted using the rules obtained by the RIPPER method.

The SP-LIME explanations can also be evaluated considering the coverage of the ex-
planations. Using the training set, we obtained the number of instances covered by the
explanation. These characteristics are included in the ontology to describe the components
of the explanation evaluation.

3.5. Ontology Evaluation
The last step of ontology development is ontology evaluation. The SABiO evaluation

process prescribes ontology verification, which aims to ensure that the ontology complies
with the specifications previously defined, such as the ontology requirements, and ontol-
ogy validation, which aims to ensure that the ontology fulfills its intended purpose [13].

To verify the ontology, we first analyzed if the ontology met its requirements. Ontol-
ogy validation was conducted by creating instances of the ontology and querying the im-
plementation environment according to the CQs, checking if the obtained results were the
expected outputs [13].

4. Results
The conceptual model of the ontology was developed in an OntoUML diagram that

expresses typed relations between components, cardinality constraints for the relations,
and constraints related to which element can be connected to others, formalizing specifi-
cations and axioms. The diagram is shown in Appendix A and contains three modules,
namely (1) the General ML Module, represented within the grey UML package; (2) the

Figure 4. Explanation generated by LIME for one instance, indicating a higher probability of recovery
and the weights of the most impacting features for each class.

3.4.3. Explanation Evaluation

The generated explanations were evaluated in the Evaluate Explanation operation.
The RIPPER rules can be evaluated considering their coverage and the accuracy achieved
by applying the rule set to predict the classes of a data set. Using the test set, an accuracy
of 0.9 was achieved, meaning that 90% of the test examples had their classes correctly
predicted using the rules obtained by the RIPPER method.

The SP-LIME explanations can also be evaluated considering the coverage of the
explanations. Using the training set, we obtained the number of instances covered by the
explanation. These characteristics are included in the ontology to describe the components
of the explanation evaluation.

3.5. Ontology Evaluation

The last step of ontology development is ontology evaluation. The SABiO evaluation
process prescribes ontology verification, which aims to ensure that the ontology complies
with the specifications previously defined, such as the ontology requirements, and ontology
validation, which aims to ensure that the ontology fulfills its intended purpose [13].

To verify the ontology, we first analyzed if the ontology met its requirements. On-
tology validation was conducted by creating instances of the ontology and querying the
implementation environment according to the CQs, checking if the obtained results were
the expected outputs [13].

4. Results

The conceptual model of the ontology was developed in an OntoUML diagram that
expresses typed relations between components, cardinality constraints for the relations, and
constraints related to which element can be connected to others, formalizing specifications
and axioms. The diagram is shown in Appendix A and contains three modules, namely
(1) the General ML Module, represented within the grey UML package; (2) the Specific
ML Module, in the yellow UML package; and (3) the Explanation Module, in the green
UML package.

The General ML Module is generic and has been developed to be reused to represent
other ML processes and further adapted or specialized. Study has a purpose and consists
of experiments, which have Workflow Executions. Workflows are composed by operations.
Experiment has a goal, which is addressed by the ML Algorithm, e.g., Support Vector
Machine (SVM) and Artificial Neural Network (NN). The operation is an event that receives
data input, executes an implementation of the algorithm, receives parameter settings, and
creates outputs, which can be an ML Model or a Model Evaluation.

The Specific ML Module considers the different operations that are performed in the
ML classification process, which consists of preprocessing the data, training the ML model,
testing the ML model, and finally evaluating the ML model. Each of them is represented
as a subclass of operation with the participants and the artifacts that are involved in the
operation. First, Preprocess takes place to make the input data suitable to train and test
the ML model, receiving as input InputData, and executing a PreprocessImplementation,
which in turn implements a PreprocessingAlgorithm. The output of this operation is
PreprocessedData, which can be specialized into the subclasses TrainData and TestData.

Appl. Sci. 2021, 11, 10804 13 of 18

TrainData participates in a Train operation that fits the ML model, executing an ML
implementation and generating a fitted MLModel. The Test (Predict) receives TestData and
executes a PredictImplementation, calling a fitted MLModel to predict output results. The
prediction for each instance is represented by ResultInstance. Finally, an EvaluationModel
operation for labeled data receives input results and compares them with TestData. It
executes an EvaluateModelImplementation that implements an EvaluationProcedure, such
as cross-validation or leave-one-out, taking into account EvaluationMeasures that need to
be evaluated. This operation generates a ModelEvaluation that contains the values for the
measurements specified by an EvaluationMeasure.

The Explanation Module represents the post-hoc explanation process by adding the
Explain and EvaluateExplanation operations with their corresponding participants. The
first operation, Explain, aims to generate explanations by using results generated by
a Test (Predict) operation and in some cases also using PreprocessedData. It executes
the implementation of an ExplainableAlgorithm to generate an explanation, which can
be classified as MLExplanation if it aims to explain the ML model, or as ResultExpla-
nation, if it explains only a resulting instance. The relator ExplainsModel, between an
MLModel and an Explanation, allows the logic behind an ML model to be obtained after
the post-hoc method is applied. The operation EvaluateExplanation is related to the assess-
ment of the explanations, executing an EvaluateExplanationImplementation to generate
an ExplanationEvaluation.

The operational ontology was obtained using the OntoUML plugin to transform the
conceptual model to OWL, which can be manipulated in Protégé to populate the ontology
and to make further manual adjustments, such as including named relationships. This is
necessary because the transformation only automatically transforms native relationships
of OntoUML to their correspondents in gUFO.

By evaluating the ontology, we assessed if the ontology meets its requirements. For
the ontology quality attributes, our ontology proposes a more generic module that can
be further adapted and specialized, satisfying REQ2. For the project requirements, our
operational ontology is implemented in Protégé represented in OWL, satisfying REQ3.
Considering the intended user-related requirements, our ontology is grounded in gUFO,
fulfilling REQ4. With the aid of Protégé Reasoner and gUFO Protégé Plugin [35], we also
checked the quality and correctness of the ontology implementation to assess if it meets
the language specifications in terms of not having inconsistencies and satisfying the rules
of a gUFO-based ontology.

REQ1 states that the ontology is adequate for data scientists and developers to un-
derstand the adequacy of the ML model and make adaptations and improvements, and
is related to ontology validation. In order to ensure that the ontology fulfills its intended
purpose, ontology validation has been conducted by creating instances of the ontology and
querying the implementation environment according to the CQs, checking if the obtained
results are the expected outputs [13]. For this, the instances have been created based
on the case study and the CQs were implemented as queries using SPARQL, which is a
query language applicable to RDF data models. RDF is the underlying technique used
in OWL/OWL2.

For example, for CQ1 (“Which data were used to train the model?”), Figure 5 shows
the SPARQL code used to query the ontology to obtain information about the data used
to train the ML model in the first experiment. The same code can be also applied to
query the ontology for the second experiment by substituting the value “Experiment1”
to “Experiment2”.

The queries retrieve information about the data period, the source, when the source
was accessed, the number of instances and features, and a description of the data, as
expected. By performing different queries for each CQ, we demonstrated that the ontology
is able to answer all CQs, which is the first step to validate the ontology.

Appl. Sci. 2021, 11, 10804 14 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19

purpose, ontology validation has been conducted by creating instances of the ontology
and querying the implementation environment according to the CQs, checking if the ob-
tained results are the expected outputs [13]. For this, the instances have been created based
on the case study and the CQs were implemented as queries using SPARQL, which is a
query language applicable to RDF data models. RDF is the underlying technique used in
OWL/OWL2.

For example, for CQ1 (“Which data were used to train the model?”), Figure 5 shows
the SPARQL code used to query the ontology to obtain information about the data used
to train the ML model in the first experiment. The same code can be also applied to query
the ontology for the second experiment by substituting the value “Experiment1” to “Ex-
periment2”.

Figure 5. SPARQL query for CQ1 for the first experiment.

The queries retrieve information about the data period, the source, when the source
was accessed, the number of instances and features, and a description of the data, as ex-
pected. By performing different queries for each CQ, we demonstrated that the ontology
is able to answer all CQs, which is the first step to validate the ontology.

5. Conclusions
In this paper, we propose an ontology to describe the main components of the ML

process and post-hoc explanation process, providing means that enable a user to have a
holistic understanding of why the ML model arrived at these specific results. In the liter-
ature, different ontologies for data mining and ML can be found, but currently, to our best
knowledge, there is no ontology to represent ML and explanation processes that also aim
to achieve explainability by focusing on a complete overview of all components of these
processes. Our ontology was developed following the best practices by adhering to the
SABiO methodology and explores state-of-the-art technologies for ontology engineering,
for instance, the OntoUML plugin and the UFO plugin for Protégé. The ontology is based
on existing ontologies, but it also considers different points of view from domain experts.
We aligned MLS, which is the main domain-specific ontology that inspired the develop-
ment of our ontology, with the ML process and grounded it in a foundational ontology,
making the ontology interoperable with existing ontologies that follow UFO.

The process of grounding the domain ontology presented some challenges because
it required the alignment of ontologies that follow different philosophies and deep
knowledge of their concepts. OntoUML has been fundamental to facilitating the ground-
ing process. However, it required the use of gUFO, lacking the support of UFO-C, which
has elements that could be used in our ontology to represent, for example, actions and
goals. After grounding MLS in gUFO, our ontology was structured using modules, and
descriptors of each element considered necessary to describe the processes were added to
the ontology.

The ontology was then evaluated by using the OntoUML plugin for Visual Paradigm,
which was used to build the conceptual model and also provided verification, showing

Figure 5. SPARQL query for CQ1 for the first experiment.

5. Conclusions

In this paper, we propose an ontology to describe the main components of the ML
process and post-hoc explanation process, providing means that enable a user to have
a holistic understanding of why the ML model arrived at these specific results. In the
literature, different ontologies for data mining and ML can be found, but currently, to our
best knowledge, there is no ontology to represent ML and explanation processes that also
aim to achieve explainability by focusing on a complete overview of all components of these
processes. Our ontology was developed following the best practices by adhering to the
SABiO methodology and explores state-of-the-art technologies for ontology engineering,
for instance, the OntoUML plugin and the UFO plugin for Protégé. The ontology is based
on existing ontologies, but it also considers different points of view from domain experts.
We aligned MLS, which is the main domain-specific ontology that inspired the development
of our ontology, with the ML process and grounded it in a foundational ontology, making
the ontology interoperable with existing ontologies that follow UFO.

The process of grounding the domain ontology presented some challenges because it
required the alignment of ontologies that follow different philosophies and deep knowledge
of their concepts. OntoUML has been fundamental to facilitating the grounding process.
However, it required the use of gUFO, lacking the support of UFO-C, which has elements
that could be used in our ontology to represent, for example, actions and goals. After
grounding MLS in gUFO, our ontology was structured using modules, and descriptors of
each element considered necessary to describe the processes were added to the ontology.

The ontology was then evaluated by using the OntoUML plugin for Visual Paradigm,
which was used to build the conceptual model and also provided verification, showing
that our ontology is sound. After the transformation of the conceptual model to the
gUFO-based operational ontology, we used Protégé to create individuals and validate the
ontology. The reasoner and the UFO plugin available to Protégé also assisted the evaluation
process by verifying consistency and ensuring that the rules of our gUFO-based ontology
were satisfied.

A case study was defined by considering the scenario of the COVID-19 pandemic,
training an SVM model with data of infected patients to predict the mortality, and applying
existing explanation methods to get feature correlations among the training data. We also
applied post-hoc explanation methods to generate explanations concerning the behavior of
the ML model, generating rules with RIPPER and obtaining the impact of each variable
on the result with LIME. With the application of these methods, we obtained different
explanations of the data and the trained ML model, which helped us better understand
the logic behind it. The ontology was then populated with instances that describe the
case study, which helped identify necessary changes. This also enabled the ontology to
be queried, retrieving information for each CQ that ensured that the ontology fulfilled its
intended purpose, leveraging the post-hoc explainability.

Our ontology has been designed to enable the description of different kinds of ML
experiments, with different ML algorithms, and it is modularized to enable the general ML

Appl. Sci. 2021, 11, 10804 15 of 18

module to be extended and used for other purposes. It also aims to enable the description
of different post-hoc explanation methods. The information that describes ML algorithms,
explanation methods, metrics, etc., is expected to be easily reused.

Furthermore, making the logic behind the ML model and the whole ML and explana-
tion process clearer can help to ensure better understandability and trust. This is needed in
many situations, such as the case study explored by this paper, which worked with private
and sensitive patients’ data and used the ML to predict the severity of a disease.

Concerning future work, the process of feeding the ontology with instances can be
automated by adopting technologies that can create individuals in the ontology while
conducting the experiments, which should facilitate and encourage the use of the ontology.
The ontology can be further tested with other ML models, other types of data, and different
post-hoc explanation methods, verifying if they have peculiarities that should be modeled
or extending the vocabulary, and verifying that the ontology, especially the Generic ML
Module, can be reused and extended for other purposes. Moreover, we can involve data
scientists and developers to validate the use of the ontology as a tool that complements the
explanations and helps understand the adequacy of the ML Model.

The ontology can also be extended to represent manual preprocessing steps or prepro-
cessing steps that are machine learning models themselves, for example, when applying
ML to execute dimensionality reduction or feature extraction. Furthermore, the dataset
correlations could be tracked during the whole ML process, and the explanation can be de-
scribed as mappings between the inputs and the output. Aspects related to data sensitivity
and privacy can also be further explored.

Considering the novelty of exploiting the post-hoc explanation methods and repre-
senting them using ontologies, ante-hoc approaches could also be evaluated in terms of
whether they can be generically represented by a single ontology, taking into account the
diverse approaches that require changes in the implementation of ML algorithms. If this
is the case, the ontology presented in this work can be analyzed regarding its reusability
and extendibility to cover also ante-hoc approaches, or if it is necessary to develop a
new ontology.

Finally, we intend to include requirements related to data federation, considering that
an ML model can be trained across multiple decentralized devices without exchanging
data samples, as in federated (collaborative) learning, which may lead to trust issues.

Supplementary Materials: The conceptual models and ontology are available online at https://
github.com/pNakagawa/ExplainableMLOntology, accessed on 30 September 2021.

Author Contributions: Conceptualization, P.I.N., J.L.R.M., L.F.P. and L.O.B.d.S.S.; methodology,
P.I.N., J.L.R.M., L.F.P. and L.O.B.d.S.S.; software, P.I.N.; validation, P.I.N., J.L.R.M., L.F.P. and
L.O.B.d.S.S.; formal analysis, P.I.N., J.L.R.M., L.F.P. and L.O.B.d.S.S.; investigation, P.I.N.; resources,
P.I.N.; data curation, P.I.N.; writing—original draft preparation, P.I.N.; writing—review and editing,
L.F.P., J.L.R.M., and F.B.; supervision, L.F.P., J.L.R.M., L.O.B.d.S.S. and F.B. All authors have read and
agreed to the published version of the manuscript.

Funding: The author (P. I. Nakagawa) was supported by the Orange Tulip Scholarship to fund its
master studies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data obtained from M. R. Franklin, “Kaggle: Mexico COVID-19 clinical
data,” 6 May 2020 (https://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-data/
metadata, accessed on 30 September 2021). This data is processed from Secretaría de Salud, Datos
Abiertos Dirección General de Epidemiología (https://www.gob.mx/salud/documentos/datos-
abiertos-152127, accessed on 30 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/pNakagawa/ExplainableMLOntology
https://github.com/pNakagawa/ExplainableMLOntology
https://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-data/metadata
https://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-data/metadata
https://www.gob.mx/salud/documentos/datos-abiertos-152127
https://www.gob.mx/salud/documentos/datos-abiertos-152127

Appl. Sci. 2021, 11, 10804 16 of 18

Appendix A

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 19

Appendix A

Figure A1. Conceptual model of the ML explanation ontology that is composed of the general ML module (grey region),
the specific classification module (yellow region), and the explanation module that represents the post-hoc explanation
process (green region).

Figure A1. Conceptual model of the ML explanation ontology that is composed of the general ML module (grey region),
the specific classification module (yellow region), and the explanation module that represents the post-hoc explanation
process (green region).

Appl. Sci. 2021, 11, 10804 17 of 18

References
1. Seeliger, A.; Pfaff, M.; Krcmar, H. Semantic Web Technologies for Explainable Machine Learning Models: A Literature Review. In

Proceedings of the Joint Proceedings of the 6th International Workshop on Dataset PROFlLing and Search & the 1st Workshop on
Semantic Explainability co-located with the 18th International Semantic Web Conference (ISWC 2019), Auckland, New Zealand,
27 October 2019.

2. Weld, D.; Bansal, G. The Challenge of Crafting Intelligible Intelligence. Commun. ACM 2019, 62, 70–79. [CrossRef]
3. Ribeiro, M.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the

2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, San Diego,
CA, USA, 12–17 June 2016; Volume 22, pp. 1135–1144.

4. Doran, D.; Schulz, S.; Besold, T. What does explainable AI really mean? A new conceptualization of perspectives. In Proceedings
of the First International Workshop on Comprehensibility and Explanation in AI and ML 2017 Co-Located with 16th International
Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), Bari, Italy, 16–17 November 2017.

5. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain?
arXiv 2017, arXiv:1712.09923.

6. Holzinger, A.; Kieseberg, P.; Weippl, E.; Tjoa, A. (Eds.) Current advances, trends and challenges of machine learning and
knowledge extraction: From machine learning to explainable AI. In Machine Learning and Knowledge Extraction; CD-MAKE2018;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11015.

7. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6,
52138–52160. [CrossRef]

8. Longo, L.; Goebel, R.; Lecue, F.; Kieseberg, P.; Holzinger, A. Explainable Artificial Intelligence: Concepts, Applications, Research
Challenges and Visions. In Machine Learning and Knowledge Extraction; CD-MAKE2020; Lecture Notes in Computer Science;
Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12279.

9. Dignum, V. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way; Springer: New York, NY, USA, 2019.
10. Mikolajczyk, A.; Grochowski, M.; Kwasigroch, A. Towards explainable classifiers using the counterfactual approach—Global

explanations for discovering bias in data. arXiv 2020, arXiv:2005.02269. [CrossRef]
11. Chander, A.; Srinivasan, R. Creation of User Friendly Datasets: Insights from a Case Study concerning Explanations of Loan

Denials. arXiv 2019, arXiv:1906.04643.
12. Domingue, J.; Fensel, D.; Hendler, J. Handbook of Semantic Web Technology; Springer: New York, NY, USA, 2011.
13. Falbo, R.A. SABiO: Systematic approach for building ontologies. In Proceedings of the 1st Joint Workshop ONTO.COM/ODISE

on Ontologies in Conceptual Modeling and Information Systems Engineering, Rio de Janeiro, Brazil, 21 September 2014.
14. Esteves, D.; Ławrynowicz, A.; Panov, P.; Soldatova, L.; Soru, T.; Vanschoren, J. ML Schema Core Specification, 17 October 2016.

Available online: http://ml-schema.github.io/documentation/ML%20Schema.html (accessed on 1 February 2021).
15. Fernández, M.; Gómez-Pérez, A.; Juristo, N. Methontology: From ontological art towards ontological engineering. AAAI

Technical Report. 1997. Available online: https://www.researchgate.net/publication/50236211_METHONTOLOGY_from_
ontological_art_towards_ontological_engineering (accessed on 30 September 2021).

16. Guizzardi, G.; Wagner, G. A Unified Foundational Ontology and some Applications of it in Business Modeling. In Proceedings of
the CAiSE’04 Workshops in Connection with the 16th Conference on Advanced Information Systems Engineering, Knowledge
and Model Driven Information Systems Engineering for Networked Organisations, Riga, Latvia, 7–11 June 2004.

17. Guizzardi, G.; Wagner, G.; Falbo, R.; Guizzardi, R.; Almeida, J. Towards Ontological Foundations for the Conceptual Modeling of
Events. In Conceptual Modeling; Springer: New York, NY, USA, 2013.

18. Almeida, J.P.A.; Falbo, R.; Guizzardi, G.; Sales, T.P. gUFO: A Lightweight Implementation of the Unified Foundational Ontology
(UFO). Available online: http://purl.org/nemo/doc/gufo (accessed on 10 April 2021).

19. OntoUML Community. OntoUML Specification. Available online: https://ontouml.readthedocs.io/en/latest/intro/ontouml.
html (accessed on 10 April 2021).

20. Fonseca, C.M.; Sales, T.P.; Bassetti, L.; Viola, V. OntoUML Plugin for Visual Paradigm, May 2021. Available online: https:
//github.com/OntoUML/ontouml-vp-plugin (accessed on 12 May 2021).

21. Keet, C.M.; Ławrynowicz, A.; d’Amato, C.; Kalousis, A.; Nguyen, P.; Palma, R.; Stevens, R.; Hilario, M. The Data Mining
OPtimization Ontology. J. Web Semant. 2015, 32, 43–53. [CrossRef]

22. Franklin, M.R. Kaggle: Mexico COVID-19 Clinical Data, 6 May 2020. Available online: https://www.kaggle.com/
marianarfranklin/mexico-COVID19-clinical-data/metadata (accessed on 9 March 2021).

23. Cohen, W.W. Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe
City, CA, USA, 9–12 July 1995.

24. Martens, D.; Huysmans, J.; Setiono, R.; Vanthienen, J. Rule Extraction from Support Vector Machines: An Overview of Issues and
Application in Credit Scoring. In Studies in Computational Intelligence; Springer: New York, NY, USA, 2008; Volume 80.

25. Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019. Available online:
https://christophm.github.io/interpretable-ml-book (accessed on 9 November 2020).

26. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy 2021, 23, 18. [CrossRef] [PubMed]

http://doi.org/10.1145/3282486
http://doi.org/10.1109/ACCESS.2018.2870052
http://doi.org/10.2478/jaiscr-2021-0004
http://ml-schema.github.io/documentation/ML%20Schema.html
https://www.researchgate.net/publication/50236211_METHONTOLOGY_from_ontological_art_towards_ontological_engineering
https://www.researchgate.net/publication/50236211_METHONTOLOGY_from_ontological_art_towards_ontological_engineering
http://purl.org/nemo/doc/gufo
https://ontouml.readthedocs.io/en/latest/intro/ontouml.html
https://ontouml.readthedocs.io/en/latest/intro/ontouml.html
https://github.com/OntoUML/ontouml-vp-plugin
https://github.com/OntoUML/ontouml-vp-plugin
http://doi.org/10.1016/j.websem.2015.01.001
https://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-data/metadata
https://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-data/metadata
https://christophm.github.io/interpretable-ml-book
http://doi.org/10.3390/e23010018
http://www.ncbi.nlm.nih.gov/pubmed/33375658

Appl. Sci. 2021, 11, 10804 18 of 18

27. Ethical Institute, XAI—An Explainability Toolbox for Machine Learning. Available online: https://github.com/EthicalML/xai
(accessed on 10 March 2021).

28. Khanday, A.; Rabani, S.; Khan, Q.R.; Rouf, N.; Din, M.M.U. Machine learning based approaches for detecting COVID-19 using
clinical text data. Int. J. Inf. Technol. 2020, 12, 731–739. [CrossRef] [PubMed]

29. An, C.; Lim, H.; Kim, D.; Chang, J.H.; Choi, Y.J.; Kim, S.W. Machine learning prediction for mortality of patients diagnosed with
COVID 19: A nationwide Korean cohort study. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

30. Lu, J.; Jin, R.; Song, E.; Alrasho, M.; Al-Mutib, K.N.; Al-Rakhami, M.S. An Explainable System for Diagnosis and Prognosis of
COVID-19. IEEE Internet Things J. 2020, 8, 15839–15846. [CrossRef]

31. Brinati, D.; Campagner, A.; Ferrari, D.; Locatelli, M.; Banfi, G.; Cabitza, F. Detection of COVID-19 Infection from Routine Blood
Exams with Machine Learning: A Feasibility Study. J. Med. Syst. 2020, 44, 1–12. [CrossRef] [PubMed]

32. Ahamad, M.M.; Aktar, S.; Rashed-Al-Mahfuz, M.; Uddin, S.; Liò, P.; Xu, H.; Summers, M.A.; Quinn, J.M.W.; Moni, M.A. A
machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Syst. Appl. 2020, 160, 113661.
[CrossRef] [PubMed]

33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

34. Moscovitz, I. Wittgenstein, 19 May 2020. Available online: https://github.com/imoscovitz/wittgenstein (accessed on 5
February 2021).

35. Barcellos, L.C.; Batista, J.O.; Almeida, J.P.A. UFO Validation for Protégé, 23 November 2020. Available online: https://github.
com/nemo-ufes/ufo-protege-plugin (accessed on 16 April 2021).

https://github.com/EthicalML/xai
http://doi.org/10.1007/s41870-020-00495-9
http://www.ncbi.nlm.nih.gov/pubmed/32838125
http://doi.org/10.1038/s41598-020-75767-2
http://www.ncbi.nlm.nih.gov/pubmed/33127965
http://doi.org/10.1109/JIOT.2020.3037915
http://doi.org/10.1007/s10916-020-01597-4
http://www.ncbi.nlm.nih.gov/pubmed/32607737
http://doi.org/10.1016/j.eswa.2020.113661
http://www.ncbi.nlm.nih.gov/pubmed/32834556
https://github.com/imoscovitz/wittgenstein
https://github.com/nemo-ufes/ufo-protege-plugin
https://github.com/nemo-ufes/ufo-protege-plugin

	Introduction
	Ontology Concepts
	Ontology Specification
	Ontology Purpose and Requirements
	Knowledge Acquisition and Reuse
	Domain-Specific Ontology
	Foundational Ontology

	Ontology Development
	Grounding the MLS in UFO
	General Machine Learning Module
	Specific Machine Learning Module
	Explanation Module
	Metadata
	Ontology Design and Implementation

	Case Study
	Data Description
	Experiments
	The Machine Learning Workflow
	Data Preprocessing
	Data Analysis
	Machine Learning Model Training
	Machine Learning Model Evaluation

	The Explanation Workflow
	Rule Extraction with RIPPER
	LIME Explanations
	Explanation Evaluation

	Ontology Evaluation

	Results
	Conclusions
	
	References

