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Abstract: A novel constraints model of credibility-fuzzy for the reliability redundancy allocation
problem (RRAP) is studied in this work. The RRAP that must simultaneously decide reliability and
redundancy of components is an effective approach in improving the system reliability. In practice
various systems, the uncertainty condition of components used in the systems, which few studies
have noticed this state over the years, is a concrete fact due to several reasons such as production
conditions, different batches of raw materials, time reasons, and climatic factors. Therefore, this study
adopts the fuzzy theory and credibility theory to solve the components uncertainty in the constraints
of RRAP including cost, weight, and volume. Moreover, the simplified swarm optimization (SSO)
algorithm has been adopted to solve the fuzzy constraints of RRAP. The effectiveness and performance
of SSO algorithm have been experimented by four famous benchmarks of RRAP.

Keywords: reliability redundancy allocation problem (RRAP); credibility-fuzzy theory; simplified
swarm optimization (SSO) algorithm

1. Introduction

The reliability enhancement has increasingly become important in most systems
because the system reliability is an important measure of system performance in many
practical systems. For example, medical systems [1], video systems [2], traffic systems [3],
industrial intelligence systems [4], network systems [5–9], wireless sensor networks [10,11],
power transmission networks [12], social networks [13], and Internet of Things [14,15]. The
evaluation and enhancement of system reliability must be optimized in the early design
stage because the enhancement of reliability is the most efficient at this stage [16,17].

With the objective of optimizing system reliability in various systems, the redundancy
allocation problems (RAP), which has to only decide the redundancy of components, and
the reliability redundancy allocation problems (RRAP), which has to simultaneously decide
reliability and redundancy of components, are two well-known methods to improve the
system reliability. RRAP that has been studied in this work is more complicated and
difficult than RAP because it must determine the reliability and redundancy of components
in the systems at the same time [18–20].

The researches of RRAP over the years have mainly used four network systems as
benchmarks including series system, the network with series and parallel elements, a
complex (bridge) system, and the overspeed protection of a gas turbine system, which are
thus adopted in this study, as shown in following Figures 1–4. Yeh et al. researched the bi-
objective RRAP including optimizing the system reliability and cost [18]. The cold-standby
strategy in RRAP was adopted by several researchers such Yeh, Ardakan and Hamadani,
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and Mellal and Zio [19,21,22]. Dobani et al. considered the heterogeneous components
in RRAP [23]. The heterogeneous components and mixed strategy including active and
cold-standby strategy are studied by Ouyang et al. [24]. Huang shown the hybrid swarm
algorithms in RRAP [25]. And Garg presented a penalty guide in RRAP [26].
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In fact, the status of components in the actual systems is uncertain due to many
reasons in the practical environment including production conditions, different batches
of raw materials, time reasons, and climatic factors. However, over the years, the RRAP
studies such as the above researches have not considered the uncertainty conditions of
components [18–26]. Though Muhuri et al. considered interval type-2 fuzzy numbers
to solve the uncertainty terms of components including reliability, cost, and weight in
RRAP [27]. However, Muhuri et al.’s research does not study the typical four benchmarks
of RRAP and the components uncertainty of volume is not considered. Therefore, this work
comprehensively studies the uncertainties of systems components in the constraints of
RRAP including cost, weight, and volume applied to the famous four benchmarks shown
in Figures 1–4.



Appl. Sci. 2021, 11, 10765 3 of 14

The fuzzy number that was originally invented by Zadeh in 1965 [28] has been shown
to be effective for solving the uncertainty condition, thus, this work adopts the fuzzy
number for the uncertainties of systems components in the constraints of RRAP including
cost, weight, and volume. However, the fuzzy numbers that applied to the constraints
of RRAP including cost, weight, and volume finally must be transferred to a crisp value.
Liu and Iwamura in 1998 first extended the chance-constrained programming, which let
the constraints meet a certain probability value of confidence level such as p and was first
developed by Charnes & Cooper in 1959 [29], to the fuzzy environment called the fuzzy
chance-constrained programming [30]. After that, Liu in 2004 developed the credibility
theory [31] based on the fuzzy chance-constrained programming that has been successfully
approved its effectiveness for transferring the fuzzy constraints to crisp constraints at
a confidence level in several fields such as budget planning [32], and RAP [33]. So far,
there are no scholars apply the fuzzy number and credibility theory to the comprehensive
consideration of uncertainty in the constraints of RRAP. Therefore, this study adopts the
fuzzy theory and credibility theory to solve the components uncertainty in the constraints
of RRAP including cost, weight, and volume.

The RRAP has been shown to be a NP-hard problem [18], thus, numerous meta-
heuristic algorithms are adopted to solve various RRAP researches such as genetic algo-
rithm (GA) [21,23,27], particle swarm optimization (PSO) [22,24], stochastic fractal search
(SFS) [21], cuckoo search (CS) [25,26], artificial bee colony algorithm (ABC) [34], and simpli-
fied swarm optimization (SSO) [18–20,24]. In various kinds of metaheuristic algorithms, the
SSO, which was originally developed by Yeh in 2009 [35], is a famous artificial intelligence
and swarm algorithm and has been proved its superior performance in many areas such
as RRAP [18–20,24], RAP [16,33], Wireless Sensor Networks [9], Internet of Things [15],
and disassembly sequencing problem [36]. Therefore, in this study, the SSO algorithm has
been adopted to solve and optimize the system reliaiblity for RRAP with considering the
components uncertainty in the constraints of RRAP including cost, weight, and volume.

To summarize the above description, a flowchart as shown in Figure 5 is included to
explain the processing of developing the results and how the system is working.
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The other chapters of this study are allocated as described. The RRAP models for
the four benchmarks are introduced in Section 2. Section 3 has represented the proposed
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fuzzy constraints models of RRAP. Section 4 has shown the adopted SSO algorithm. The
numerical experiments are displayed in Section 5. Finally, the conclusion is represented in
Section 6.

2. The RRAP Models

The RRAP models, while aim to maximize the system reliability under the non-
linear constraints of cost, weight, and volume, for the four benchmarks including series
system, the network with series and parallel elements, a complex (bridge) system, and
the overspeed protection of a gas turbine system as shown in Figures 1–4 are discussed in
this section.

The RRAP aims to maximize the system reliability, which has to simultaneously decide
reliability and redundancy of components under the non-linear constraints of cost, weight,
and volume, is modelled as following Equations (1) and (2).

Maximize Rs(R, N) (1)

Subject to Cstj(R, N) ≤ Uj (2)

Based on the RRAP formulations in Equations (1) and (2), model the four benchmarks
of RRAP including series system, the network with series and parallel elements, a com-
plex (bridge) system, and the overspeed protection of a gas turbine system as following
Equations (3)–(18).
Benchmark 1. Series system in Figure 1 [24,34,37].

Maximize Rs(R, N) =
Nv

∏
i=1

Ri (3)

Subject to Cst1(R, N) =
Nv

∑
i=1

αi(−1000/ ln ri)
βi (ni + exp(ni/4)) ≤ Uc (4)

Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (5)

Cst3(R, N) =
Nv

∑
i=1

wiv2
i
n2

i ≤ Uv (6)

0 ≤ ri ≤ 1

The objective function to maximize the system reliability for the series system in
Figure 1 is shown in above Equation (3). The constraints of cost, weight and volume are
shown in above Equations (4)–(6), respectively.
Benchmark 2. Network with series and parallel elements in Figure 2 [24,34,37].

Maximize Rs(R, N) = 1− (1− R1R2){1− [1− (1− R3)(1− R4)]R5} (7)

Subject to Cst1(R, N) =
Nv

∑
i=1

αi(−1000/ ln ri)
βi (ni + exp(ni/4)) ≤ Uc (8)

Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (9)

Cst3(R, N) =
Nv

∑
i=1

wiv2
i
n2

i ≤ Uv (10)

0 ≤ ri ≤ 1
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The objective function to maximize the system reliability for the network with series
and parallel elements in Figure 2 is shown in above Equation (7). The constraints of cost,
weight and volume are shown in above Equations (8)–(10), respectively.
Benchmark 3. Complex (bridge) system in Figure 3 [24,34,37].

Maximize Rs(R, N) =
R1R2 + R3R4 + R1R4R5 + R2R3R5−
R1R2R3R4 − R1R2R3R5 − R1R2R4R5−
R1R3R4R5 − R2R3R4R5 + 2R1R2R3R4R5

(11)

Subject to Cst1(R, N) =
Nv

∑
i=1

αi(−1000/ ln ri)
βi (ni + exp(ni/4)) ≤ Uc (12)

Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (13)

Cst3(R, N) =
Nv

∑
i=1

wiv2
i
n2

i ≤ Uv (14)

0 ≤ ri ≤ 1

The objective function to maximize the system reliability for the complex (bridge)
system in Figure 3 is shown in above Equation (11). The constraints of cost, weight and
volume are shown in above Equations (12)–(14), respectively.
Benchmark 4. The overspeed protection of a gas turbine system in Figure 4 [24,34,37].

Maximize Rs(R, N) =
Nv

∏
i=1

[1 − (1 − ri)
ni
]

(15)

Subject toCst1(R, N) =
Nv

∑
i=1

αi(−1000/ ln ri)
βi (ni + exp(ni/4)) ≤ Uc (16)

Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (17)

Cst3(R, N) =
Nv

∑
i=1

vin2
i ≤ Uv (18)

0.5 ≤ ri ≤ 1 − 10−6, 1 ≤ ni ≤ 10

The objective function to maximize the system reliability for the overspeed protection
of a gas turbine system in Figure 4 is shown in above Equation (15). The constraints of cost,
weight and volume are shown in above Equations (16)–(18), respectively.

3. Fuzzy Constraints Models of RRAP

This study uses fuzzy theory for modelling the fuzzy constraints of RRAP with
considering uncertainty and adopts the credibility theory to modelling credibility fuzzy
constraints of RRAP.

3.1. Fuzzy Constraints Models of RRAP

Zadeh in 1965 first developed the fuzzy number [28], which has been shown to be
effective for solving the uncertainty condition. The triangular fuzzy number, which has
been defined as the following Definition 1, is one of the famous fuzzy number that has
been adopted in this study.
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Definition 1. The triangular fuzzy number A = (a1, a2, a3), where a1 < a2 < a3 and ai belongs
to the real numbers for i = 1, 2, 3. The relationship of the membership function uA(a) and the
triangular fuzzy number A = (a1, a2, a3) has been shown in Equation (19).

uA(a) =


0, i f a < a1
(a− a1)/(a2 − a1), i f a1 ≤ a < a2
1, i f a = a2
(a3 − a)/(a3 − a2), i f a2 < a < a3
0, i f a3 < a

(19)

Accordingly, this work adopts the triangular fuzzy number for the uncertainties of
systems components in the constraints of RRAP including cost, weight, and volume, which
are defined as following the triangular fuzzy number for the cost, weight, and volume:

1. The triangular fuzzy number for the cost c = (c1, c2, c3), where c1 < c2 < c3 and ci
belongs to the real numbers for i = 1, 2, 3.

2. The triangular fuzzy number for the weight w = (w1, w2, w3), where w1 < w2 < w3 and
wi belongs to the real numbers for i = 1, 2, 3.

3. The triangular fuzzy number for the volume v = (v1, v2, v3), where v1 < v2 < v3 and vi
belongs to the real numbers for i = 1, 2, 3.

Therefore, the constraints of the four benchmarks of RRAP including series system, the
network with series and parallel elements, a complex (bridge) system, and the overspeed
protection of a gas turbine system as shown in Equations (5) and (6), Equations (9) and (10),
Equations (13) and (14), and Equations (17) and (18) are accordingly modelled to the
triangular fuzzy number for the constraints of RRAP as following Equations (20)–(27).
However, the components cost is not used within the cost constraints so that there is no
need to convert Equations (4), (8), (12), and (16) to the fuzzy constraints.
Benchmark 1. Series system in Figure 1.

Subject to Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (20)

Cst3(R, N) =
Nv

∑
i=1

wiv
2
i
n2

i ≤ Uv (21)

The triangular model of RRAP fuzzy weight and volume constraints for the series
system in Figure 1 are shown in above Equations (20) and (21), where w = (w1, w2, w3) and
v = (v1, v2, v3) are the triangular fuzzy number for weight and volume, respectively.
Benchmark 2. Network with series and parallel elements in Figure 2.

Subject to Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (22)

Cst3(R, N) =
Nv

∑
i=1

wiv
2
i
n2

i ≤ Uv (23)

The triangular model of RRAP fuzzy weight and volume constraints for the network
with series and parallel elements in Figure 2 are shown in above Equations (22) and (23),
where w = (w1, w2, w3) and v = (v1, v2, v3) are the triangular fuzzy number for weight and
volume, respectively.
Benchmark 3. Complex (bridge) system in Figure 3.

Subject to Cst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (24)



Appl. Sci. 2021, 11, 10765 7 of 14

Cst3(R, N) =
Nv

∑
i=1

wiv
2
i
n2

i ≤ Uv (25)

The triangular model of RRAP fuzzy weight and volume constraints for the com-
plex (bridge) system in Figure 3 are shown in above Equations (24) and (25), where
w = (w1, w2, w3) and v = (v1, v2, v3) are the triangular fuzzy number for weight and vol-
ume, respectively.
Benchmark 4. The overspeed protection of a gas turbine system in Figure 4.

Subject toCst2(R, N) =
Nv

∑
i=1

wini exp(ni/4) ≤ Uw (26)

Cst3(R, N) =
Nv

∑
i=1

vin
2
i ≤ Uv (27)

The triangular model of RRAP fuzzy weight and volume constraints for the overspeed
protection of a gas turbine system in Figure 4 are shown in above Equations (26) and (27),
where w = (w1, w2, w3) and v = (v1, v2, v3) are the triangular fuzzy number for weight and
volume, respectively.

3.2. Credibility Fuzzy Constraints Models of RRAP

The credibility theory first developed by Liu in 2004 [31], which was extended from
the fuzzy chance-constrained programming originally developed by Liu and Iwamura
in 1998 [30] and has been successfully approved its effectiveness for transferring the
fuzzy constraints to crisp constraints at a confidence level, is defined as the following
Equation (28):

Subject to Cr{A | Cst(n, A) ≤ U} ≥ p (28)

where Cr{•} means the credibility of the event {•} and p means the confidence level.
By the credibility theory, the Equation (28) is transferred to Equation (29) called the

credibility constraints.

(2p− 1)
Nv

∑
i=1

ai,3ni + 2(1− p)
Nv

∑
i=1

ai,2ni ≤ U (29)

Finally, the crisp value is obtained by the credibility constraints in Equation (29), which
is transferred from the fuzzy constraints from Equation (28).

According to the credibility constraints in Equation (29), the triangular fuzzy number
for the constraints of RRAP as shown in Equations (20)–(27) can be modelled as the
following Equations (30)–(37), where the ε and γ are the predefined confidence level.
Benchmark 1. Series system in Figure 1.

Subject to (2ε− 1)
Nv

∑
i=1

wi,3ni exp(ni/4) + 2(1− ε)
Nv

∑
i=1

wi,2ni exp(ni/4) ≤ Uw (30)

(2λ− 1)
Nv

∑
i=1

wi,3v2
i,3

n2
i + 2(1− λ)

Nv

∑
i=1

wi,2v2
i,2

n2
i ≤ Uv (31)

Benchmark 2. Network with series and parallel elements in Figure 2.

Subject to (2ε− 1)
Nv

∑
i=1

wi,3ni exp(ni/4) + 2(1− ε)
Nv

∑
i=1

wi,2ni exp(ni/4) ≤ Uw (32)

(2λ− 1)
Nv

∑
i=1

wi,3v2
i,3

n2
i + 2(1− λ)

Nv

∑
i=1

wi,2v2
i,2

n2
i ≤ Uv (33)
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Benchmark 3. Complex (bridge) system in Figure 3.

Subject to (2ε− 1)
Nv

∑
i=1

wi,3ni exp(ni/4) + 2(1− ε)
Nv

∑
i=1

wi,2ni exp(ni/4) ≤ Uw (34)

(2λ− 1)
Nv

∑
i=1

wi,3v2
i,3

n2
i + 2(1− λ)

Nv

∑
i=1

wi,2v2
i,2

n2
i ≤ Uv (35)

Benchmark 4. The overspeed protection of a gas turbine system in Figure 4.

Subject to (2ε− 1)
Nv

∑
i=1

wi,3ni exp(ni/4) + 2(1− ε)
Nv

∑
i=1

wi,2ni exp(ni/4) ≤ Uw (36)

(2λ− 1)
Nv

∑
i=1

vi,3n2
i + 2(1− λ)

Nv

∑
i=1

vi,2n2
i ≤ Uv (37)

The above constraints in Equations (30)–(37) all are the crisp value that has been suc-
cessfully transferred from the triangular fuzzy constraints models of RRAP. Therefore, this
study applies the fuzzy number and credibility theory to the comprehensive consideration
of uncertainty in the constraints of RRAP including cost, weight, and volume.

4. The SSO

The SSO algorithm, which was originally developed by Yeh in 2009 [35] and is a
famous artificial intelligence, swarm algorithm and evolutionary algorithm, has been
adopted to solve and optimize the proposed fuzzy constraints model of RRAP while aims
to optimize the system reliability that the importance of enhancing system reliability as
well as artificial intelligence, swarm algorithm and evolutionary algorithm can be proved
by the related research by numerous literatures [38–44].

The update mechanism (UM) of SSO is shown in following Equation (38), in which Cg,
Cp, and Cw are the predefined parameters. When randomly generate a random number ρ

that belongs to uniform distribution [0, 1], the solution of the new generation (xg+1
i,j , where

g, i, and j are the gth generation, the ith solution, and the jth variable, respectively) may be
equal to one of the following four solutions according to the UM in Equation (38):

1. xg+1
i,j equals to the global best (Gj) if ρ falls to [0, Cg];

2. xg+1
i,j equals to the local best (Pi,j) if ρ falls to [Cg, Cp];

3. xg+1
i,j equals to the solution of last generation (xg

i,j) if ρ falls to [Cp, Cw];

4. xg+1
i,j equals to a new solution x that is randomly selected from [lj, uj], where lj and uj

are the lower bound and upper bound of the jth variable, respectively.

xg+1
i,j =


Gj i f ρ ∈ [0, Cg]
Pi,j i f ρ ∈ [Cg, Cp]

xg
i,j i f ρ ∈ [Cp, Cw]

x i f ρ ∈ [Cw, 1]

(38)

Conclude the UM of SSO above, the pseudo code is shown as following steps:

Step 1.
The solution Xi is randomly generated for i = 1, 2, . . . , Nsol, the fitness function
F(Xi) is found, let Xi = Pi, and find the global best G.

Step 2. Let i = 1.
Step 3. Xi is updated according to Equation (38) and the fitness function F(Xi) is found.
Step 4. Pi = Xi if Xi is better than Pi. Otherwise, go to Step 6.
Step 5. G = Pi if Pi is better than G.
Step 6. i = i + 1 if i < Nsol and go to Step 3.
Step 7. g = g + 1 if g < Ngen for g = 1, 2, . . . , Ngen and go to Step 2. Otherwise, halt.
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5. Numerical Experiments

Modelling the fuzzy constraints including cost, weight and volume under consid-
eration of uncertainty for the four benchmarks of RRAP aiming to maximize the system
reliability, the experimental results are solved by the adopted SSO algorithm. The similar
literature does not exist resulting our work cannot be compared to the other in literature.
However, the performance is compared with the state-of-the-art algorithms including PSO,
hybrid of PSO and SSO (named PSSO), and GA. Thus, the parameters of these algorithms
are defined as following:

SSO: Cg = 0.4, Cp = 0.7, Cw = 0.9
PSO: C1 = C2 = 2, W = 0.9
GA: Cr = 0.8 (crossover rate), Cm = 0.2, elite selection

For fairness, the following conditions and data settings of the four algorithms includ-
ing the adopted SSO, PSO, PSSO, and GA are consistent. While performing the experiments,
the algorithms are coded using DEV C++ with 64-bit Windows 10, implemented on an
Intel Core i7-6650U CPU @ 2.20 GHz 2.21-GHz notebook with 64 GB of memory. Total
1000 generations are ran and 50 solutions are obtained for each algorithm. The confidence
level for the credibility constraints of weight and volume in Equations (30)–(37) has been
defined as ε = 0.95, and also λ = 0.95.

The data, which the weight and volume of components have been converted to the
triangular fuzzy number, used in the four benchmarks of RRAP is shown in following
Tables 1–3.

Table 1. Data for benchmark 1 and benchmark 3 [24,34,37].

Subsystem i 105αi βi wiv2
i wi V C W

1 2.330 1.5 (0.8, 1, 1.2) (6.5, 7, 7.5)

110 175 200
2 1.450 1.5 (1.8, 2, 2.2) (7.5, 8, 8.5)
3 0.541 1.5 (2.8, 3, 3.2) (7.5, 8, 8.5)
4 8.050 1.5 (3.8, 4, 4.2) (5.5, 6, 6.5)
5 1.950 1.5 (1.8, 2, 2.2) (8.5, 9, 9.5)

Table 2. Data for benchmark 2 [24,34,37].

Subsystem i 105αi βi wiv2
i wi V C W

1 2.500 1.5 (1.8, 2, 2.2) (3, 3.5, 4)

180 175 100
2 1.450 1.5 (3.8, 4, 4.2) (3.5, 4.0, 4.5)
3 0.541 1.5 (4.8, 5, 5.2) (3.5, 4.0, 4.5)
4 0.541 1.5 (7.8, 8, 8.2) (3, 3.5, 4)
5 2.100 1.5 (3.8, 4, 4.2) (4, 4.5, 5)

Table 3. Data for benchmark 4 [24,34,37].

Subsystem i 105αi βi vi wi V C W

1 1 1.5 (0.8, 1, 1.2) (5.5, 6, 6.5)

250.0 400.0 500.0
2 2.3 1.5 (1.8, 2, 2.2) (5.5, 6, 6.5)
3 0.3 1.5 (2.8, 3, 3.2) (7.5, 8, 8.5)
4 2.3 1.5 (1.8, 2, 2.2) (6.5, 7, 7.5)

The system reliability and running time are obtained to compare the performance of
the adopted SSO algorithm with PSO, PSSO and GA for the four benchmarks of RRAP. The
statistics of experimental results including minimum (Min), maximum (Max), average, and
standard deviation (STD) of the system reliability and running time and also the convergent
generation number for the best solution (denoted as Genconvergent) of the system reliability
and running time are analyzed and shown in following Tables 4–11.
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Table 4. The statistics of system reliability for benchmark 1.

Statistics SSO PSO PSSO GA

Max (Best) 0.931235373 0.862435401 0.892945886 0.747861922
Genconvergent 498 659 190 999
Min (Worse) 0.867673755 0.661536336 0.663374484 0.036621228

Average 0.920391358 0.759988588 0.769599348 0.246966909
STD 0.011218917 0.047793320 0.049490632 0.162324076

The best solution marked in bold.

Table 5. The statistics of running time (units used: seconds) for benchmark 1.

Statistics SSO PSO PSSO GA

Min (Best) 0.17100 0.18700 0.17200 0.29600
Genconvergent 797 649 23 999
Max (Worse) 0.26200 0.28400 0.26500 0.47200

Average 0.19778 0.21274 0.20944 0.33396
STD 0.02417 0.02284 0.02151 0.03690

The best solution marked in bold.

Table 6. The statistics of system reliability for benchmark 2.

Statistics SSO PSO PSSO GA

Max (Best) 0.9999759790 0.9998579620 0.9998130200 0.9956341980
Genconvergent 628 576 468 999
Min (Worse) 0.9998471140 0.9960312840 0.9967661500 0.0915097220

Average 0.9999484850 0.9989969110 0.9990356900 0.4793065570
STD 0.0000255121 0.0007723344 0.0006460497 0.3281670328

The best solution marked in bold.

Table 7. The statistics of running time (units used: seconds) for benchmark 2.

Statistics SSO PSO PSSO GA

Min (Best) 0.169000 0.173000 0.176000 0.290000
Genconvergent 884 545 222 999
Max (Worse) 0.224000 0.263000 0.235000 0.360000

Average 0.193840 0.209380 0.209820 0.327020
STD 0.014315 0.015369 0.013011 0.018947

The best solution marked in bold.

Table 8. The statistics of system reliability for benchmark 3.

Statistics SSO PSO PSSO GA

Max (Best) 0.999886930 0.999567032 0.999680340 0.999073625
Genconvergent 100 376 489 999
Min (Worse) 0.999592066 0.994620740 0.993449271 0.055013273

Average 0.999814268 0.998070072 0.997827517 0.427838158
STD 0.000064727 0.001102467 0.001329463 0.304351767

The best solution marked in bold.

Table 9. The statistics of running time (units used: seconds) for benchmark 3.

Statistics SSO PSO PSSO GA

Min (Best) 0.172000 0.187000 0.182000 0.298000
Genconvergent 954 319 450 999
Max (Worse) 0.219000 0.225000 0.225000 0.345000

Average 0.193260 0.203340 0.202720 0.320140
STD 0.012240 0.010277 0.010500 0.012249

The best solution marked in bold.
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Table 10. The statistics of system reliability for benchmark 4.

Statistics SSO PSO PSSO GA

Max (Best) 0.999953926 0.999802172 0.999891579 0.998805583
Genconvergent 141 821 6 999
Min (Worse) 0.999552667 0.998303175 0.998482347 0.857600927

Average 0.999903330 0.999337146 0.999418706 0.965427958
STD 0.000084258 0.000349942 0.000315562 0.029557328

The best solution marked in bold.

Table 11. The statistics of running time (units used: seconds) for benchmark 4.

Statistics SSO PSO PSSO GA

Min (Best) 0.13900 0.14900 0.15600 0.25800
Genconvergent 629 768 644 999
Max (Worse) 0.17400 0.20400 0.20000 0.33200

Average 0.15506 0.17540 0.17604 0.27862
STD 0.00809 0.01009 0.00999 0.01268

The best solution marked in bold.

For the benchmark 1, the experimental results are analyzed as below and shown in
Tables 4 and 5.

1. The adopted SSO has the best performance including Max, Min, Average, and STD of
system reliability, i.e., 0.931235373, 0.867673755, 0.920391358, and 0.011218917.

2. The adopted SSO has the best performance including Min, Max, and Average of
running time, i.e., 0.17100, 0.26200, and 0.19778.

3. The PSSO has the best performance in STD of running time, i.e., 0.02151.
4. The PSSO has the best convergent generation number of both system reliability and

running time, i.e., 190, and 23.

For the benchmark 2, the experimental results are analyzed as below and shown in
Tables 6 and 7.

1. The adopted SSO has the best performance including Max, Min, Average, and STD of
system reliability, i.e., 0.9999759790, 0.9998471140, 0.9999484850, and 0.0000255121.

2. The adopted SSO has the best performance including Min, Max, and Average of
running time, i.e., 0.169000, 0.224000, and 0.193840.

3. The PSSO has the best performance in STD of running time, i.e., 0.013011.
4. The PSSO has the best convergent generation number of both system reliability and

running time, i.e., 468, and 222.

For the benchmark 3, the experimental results are analyzed as below and shown in
Tables 8 and 9.

1. The adopted SSO has the best performance including Max, Min, Average, and STD of
system reliability, i.e., 0.999886930, 0.999592066, 0.999814268, and 0.000064727.

2. The adopted SSO has the best performance including Min, Max, and Average of
running time, i.e., 0.172000, 0.219000, and 0.193260.

3. The PSO has the best performance in STD of running time, i.e., 0.010277.
4. The SSO has the best convergent generation number of system reliability, i.e., 100.
5. The PSO has the best convergent generation number of running time, i.e., 319.

For the benchmark 4, the experimental results are analyzed as below and shown in
Tables 10 and 11.

1. The adopted SSO has the best performance including Max, Min, Average, and STD of
system reliability, i.e., 0.999953926, 0.999552667, 0.999903330, and 0.000084258.

2. The adopted SSO has the best performance including Min, Max, Average, and STD of
running time, i.e., 0.13900, 0.17400, 0.15506, and 0.00809.

3. The PSSO has the best convergent generation number of system reliability, i.e., 6.
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4. The SSO has the best convergent generation number of running time, i.e., 629.

According to the above experimental results and analysis, the adopted SSO has the best
performance including Min, Max, Average, and STD of both system reliability and running
time for all four benchmarks of RRAP under fuzzy constraints. The reason why PSSO fails
to find the good results because it is without selecting better parameters. However, The
SSO, PSO, and PSSO have equal shares on the best convergent generation number of system
reliability and running time for the four benchmarks of RRAP under fuzzy constraints.

6. Conclusions

In general, few of the RRAP have noticed the uncertainty condition of components
used in the systems. However, the uncertainty condition of components does exist in
practice various systems so that the fuzzy theory and credibility theory used to solve the
components uncertainty in the constraints of RRAP including cost, weight, and volume
are investigated in this work. Therefore, this study models the fuzzy constraints of RRAP
while aims to maximize the system reliability.

Moreover, the RRAP has been shown to be a NP-hard problem, thus, this study
adopted SSO algorithm to solve the fuzzy constraints model of RRAP. The four famous
benchmarks of RRAP including series system, the network with series and parallel ele-
ments, a complex (bridge) system, and the overspeed protection of a gas turbine system
are experimented by the proposed fuzzy constraints models and solved by the adopted
SSO algorithm. The experimental results show that:

For the benchmarks 1, 2 and 3, the proposed SSO has the best performance including
Max, Min, Average, and STD of system reliability as well as has the best performance
including Min, Max, and Average of running time.

For the benchmark 4, the proposed SSO has the best performance including Max, Min,
Average, and STD of system reliability as well as has the best performance including Min,
Max, Average, and STD of running time.

Thus, the experimental results show that the adopted SSO algorithm successfully
solves the proposed fuzzy constraints models of RRAP and obtains feasible, effective, and
the best solutions in terms of the system reliability and running time.

The proposed method is planned to implement with real world case study in the
future work.
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Nomenclature

Rs(R, N) The system reliability

R
R = (r1, r2, . . . , rNv) is the solution vector of components reliability for each
subsystem i = 1, 2, . . . , Nv in the system

N
N = (n1, n2, . . . , nNv) is the solution vector of components redundancy level for
each subsystem i = 1, 2, . . . , Nv in the system

ri The components reliability used in the ith subsystem, where i = 1, 2, . . . , Nv
ni The components redundancy level used in the ith subsystem, where i = 1, 2, . . . , Nv
Cstj(R, N) The jth constraint
Uj The upper bound for the jth constraint
Ri The reliability of the ith subsystem, where i = 1, 2, . . . , Nv

ci, wi, vi
The cost, weight, and volume of components used in the ith subsystem, where i = 1,
2, . . . , Nv

Uc, Uw, Uv The upper bound for the constraints of cost, weight, and volume, respectively
αi, βi The parameters of the ith subsystem, where i = 1, 2, . . . , Nv
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