
applied  
sciences

Article

Hierarchical Concept Learning by Fuzzy Semantic Cells

Linna Zhu 1,2,*, Wei Li 1 and Yongchuan Tang 1

����������
�������

Citation: Zhu, L.; Li, W.; Tang, Y.

Hierarchical Concept Learning by

Fuzzy Semantic Cells. Appl. Sci. 2021,

11, 10723. https://doi.org/10.3390/

app112210723

Academic Editors: Kristina

Yordanova, Emma Tonkin and Rafael

Valencia-Garcia

Received: 07 September 2021

Accepted: 10 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computer Science, Zhejiang University, Hangzhou 310007, China; liwei_2014@zju.edu.cn (W.L.);
yctang@zju.edu.cn (Y.T.)

2 College of Industrial Design, Hubei University of Technology, Wuhan 430068, China
* Correspondence: linna@hbut.edu.cn

Abstract: Concept modeling and learning have been important research topics in artificial intelligence
and knowledge discovery. This paper studies a hierarchical concept learning method that requires a
small amount of data to achieve competitive performances. The method starts from a set of fuzzy
prototypes called Fuzzy Semantic Cells (FSCs). As a result of FSC parameter optimization, it creates
a hierarchical structure of data–prototype–concept. Experiments are conducted to demonstrate the
effectiveness of our approach in a classification problem. In particular, when faced with limited
training data, our proposed method is comparable with traditional techniques in terms of robustness
and generalization ability.

Keywords: concept modeling; fuzzy semantic cells; prototypes; prototype theory

1. Introduction

This work is mainly concerned with concept learning. Concept learning categorizes
the process to partition samples into classes for the purpose of generalization, discrim-
ination, and inference [1]. Concepts are the basis of most cognitive processes such as
inference, learning, and reasoning [2–4]. Concept modeling is fundamental in the fields of
cognitive science and artificial intelligence. The learning and modeling of fuzzy concepts,
in particular, has been a hot topic in these two fields. One prominent work on the cognitive
representations of concepts in natural language is the prototype theory [5,6]. Many classic
machine learning algorithms are related to the prototype theory, such as K-means algorithm,
KNN algorithm and so on. The modeling of concept vagueness in artificial intelligence
has been dominated by ideas from fuzzy set theory as originally proposed by Zadeh [7,8].
Then Goodman and Nguyen provided a solid framework foundation for fuzzy conceptual
representations [9]. Lawry and Tang introduced an approach to uncertainty modeling
for vague concepts by combining the prototype theory and the random set theory [10,11].
In the following in-depth studies, they developed a semantic representation of modeling
uncertain concepts called Information Cell [12–14]. Tang and Xiao [15] also adopt Fuzzy
Semantic Cell (FSC) to name this model. Based on FSC, Tang and Xiao provided an efficient
way for unsupervised concept learning [15].

Our motivation is to model concepts underlying data and to represent concepts as
partitions of samples for further classification. Our work builds on the model given in [15]
and is inspired by the set partition method based on conditional entropy described in [16].
The model called fuzzy semantic cell (FSC) comprises a prototype P, a distance function
d, and a probability density function δ of granularity. This structure is considered as
the smallest unit of vague concepts and the building brick of concept representation. In
Tang and Xiao’s study, they proposed three principles for developing reasonable FSC:
Maximum coverage, maximum specificity, and maximum fuzzy entropy. In this paper,
we focus on solving supervised concept learning problems, particularly those with sparse
data. We learn from Śmieja and Geiger [16] that the consistency of set segmentation
can be measured using conditional entropy. This viewpoint has greatly impacted our
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understanding of fuzzy semantic cell optimization. We combine the above two approaches
from a supervisory point of view to obtain a simplified way to build the FSC by replacing
three principles with the conditional entropy minimization principle with the help of the
Adam algorithm [17]. The Adam algorithm is an efficient method for solving unconstrained
nonlinear optimization problems, and it has been widely used in the optimization of neural
networks in recent years. Moreover, we also propose a hierarchical concept learning
structure for modeling and learning abstract concepts to which the sample pertains. Our
method’s direct applicability is to solve the classification task in the case of a few training
samples (only 10% samples as the training set). In our experiments, our method is not
only competitive on the classification accuracy but also has robustness and generalization
capabilities. As for conventional methods, we choose the NaiveBayes algorithm [18], k-
nearest neighbor (KNN) [19], Decision Tree (DT) [20], Support Vector Machine (SVM) [21],
AdaBoost [22] and neural network algorithm to apply control experiments.

The remainder of this paper is organized as follows. In Section 2, we revisit the ideas
of [15], which presents a cognitive structure of vague concepts named Fuzzy Semantic
Cell (FSC). In Section 3, we present a detailed introduction to our proposed supervised
hierarchical concept learning method based on FSC. Section 4 reports and analyzes various
experimental results to demonstrate the effectiveness of our proposed method. Conclusions
are presented in Section 5. Our source code in PyTorch [23] is publicly available on
github.com/Ming0405/HCL_.

2. Fuzzy Semantic Cell

Tang and Lawry [10,11] introduced a novel cognitive structure L = 〈P, d, δ〉 to model
the vague concept having the form “about P”, “similar to P” or “close to P”. In this paper,
we continue the definition in Tang and Xiao’s work [15] named Fuzzy Semantic Cell.

Definition 1. A fuzzy semantic cell for a vague concept Li on the domain Ω is a triple represen-
tation Li = 〈Pi, d, δi〉 where Pi is the prototype of Li, d is the distance metric which measures the
neighborhood size of Li, and δi is the probability density function of the neighborhood size of the
vague concept Li.

In other words, a fuzzy semantic cell for a vague concept Li is made up of a semantic
cell nucleus represented by the prototype Pi and a semantic cell membrane represented by
an uncertain boundary of Li using d and δi. Hence, the fuzzy semantic cell Li = 〈Pi, d, δi〉
is assumed to be the smallest semantic unit of vague concepts. Figure 1a shows a fuzzy
semantic cell Li = 〈Pi, d, δi〉 in two-dimensional space as an illustrative example.

Definition 2. On the domain Ω, for any fuzzy semantic cell Li = 〈Pi, d, δi〉, and neighborhood
size ε ≥ 0, the ε-neighborhood N ε

Li
of Li is defined as follows:

N ε
Li
= {x ∈ Ω : d(x, Pi) ≤ ε}. (1)

According to Definition 2, the ε-neighborhood N ε
Li

includes all the elements x ∈ Ω
whose distance to the prototype Pi is less than the given neighborhood size ε of Li, as
shown in Figure 1a. Since ε is a random variable with the probability density function δi,
N ε

Li
can be considered as a random set neighborhood of Li. Therefore, for any x ∈ Ω, the

degree of x belonging to the fuzzy semantic cell Li should be equal to the probability that
the ε-neighborhood N ε

Li
of Li is a set containing x, denoted by Prob(ε : x ∈ N ε

Li
). Then, the

neighborhood function of Li can be defined as follows.

Definition 3. On the domain Ω, for any fuzzy semantic cell Li = 〈Pi, d, δi〉, and x ∈ Ω, the
neighborhood function µLi (x) of Li is defined as follows:

µLi (x) = Prob(ε : x ∈ N ε
Li
) = Prob(ε : ε ≥ d(x, Pi)) =

∫ +∞

d(x,Pi)
δi(ε)dε. (2)

github.com/Ming0405/HCL_
github.com/Ming0405/HCL_
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Figure 1. The illustration of a fuzzy semantic cell Li = 〈Pi, d, δi〉 in two-dimensional space Ω. (a) The
fuzzy semantic cell Li = 〈Pi, d, δi〉 with the prototype Pi and the uncertain neighborhood size ε.
(b) The corresponding neighborhood function µLi (x) of Li.

We note that µLi (x) ∈ [0, 1] and µLi (x) is a decreasing function of the distance d(x, Pi).
In particular, when d(x, Pi) = 0, µLi (x) = 1; when d(x, Pi)→ +∞, µLi (x) = 0. Thus µLi (x)
can be the belief of a sample x being a neighbor of the the fuzzy semantic cell Li. Figure 1b
shows an example of the neighborhood function µLi (x) of Li. Since µLi (x) is a decreasing
function of the distance d(x, Pi), an exponential form of µLi (x) is defined in [24] as follows:

µLi (x) =
∫ +∞

d(x,Pi)
δi(ε | σi)dε = exp

(
−d(x, Pi)

2σ2
i

)
(3)

where σi is the parameter of the probability density function δi, and it is related to the
extent of the distribution. According to (2), the probability density function δi(ε | σi) can
be readily derived as follows:

δi(ε | σi) =
1

2σ2
i

exp

(
− ε

2σ2
i

)
Moreover, we use the following semimetric for d in this paper: d(x, Pi) = ‖x − Pi‖2

2. A
semimetric on Ω is a function d : Ω×Ω 7→ R+ that satisfies d(x, y) = 0 iff. x = y and
d(x, y) = d(y, x) for x, y ∈ Ω.

3. Method

This section suggests a method for obtaining a hierarchical structure from data con-
cerning the concept using the appropriate fuzzy semantic cells. First, a theoretical analysis
of the proposed method is provided to demonstrate the rationality of this hierarchical
structure. Then we explain The classification decision method based on the hierarchical
structure. Finally, we present the principles of learning fuzzy semantic cell of a hierarchical
structure, followed by the developed algorithm.

3.1. Hierarchical Structure of Concept Leaning

When people describe an abstract concept corresponding to a specific object, they may
use one or more familiar prototypes in the explanation. These prototypes are highly rele-
vant, and the boundaries between them are somewhat vague. Within a certain range, each
prototype can explain the meaning of the object. Then, starting with these prototypes, we
can achieve a higher level of abstraction to determine the concept’s meaning. We may only
need one prototype for relatively clear and simple data; however, some more ambiguous
and broad concepts may necessitate multiple prototypes to cover all interpretable ranges
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adequately. Considering account the ambiguous nature of abstract concepts, we develop a
hierarchical concept learning model based on the fuzzy semantic cell. As shown in Figure 2,
the hierarchical structure is composed of three layers. The bottom is the data layer, and the
middle is the fuzzy semantic cell layer, the top is the conceptual layer. The membership
degrees µ characterize the relationship between the samples in the data layer and the fuzzy
semantic cells in the middle layer. In particular, µLi (x) indicates how well the semantic
cell Li can interpret the sample x. Conversely, each fuzzy semantic cell can explain a range
of different radii, covering a different number of samples in the data layer. Each concept
is partitioned at the concept level by one or more FSCs. Because of the uncertainty and
overlap of the boundaries between FSCs, this partition is ambiguous.
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Figure 2. The hierarchical structure diagram of concept learning model.

Formally, suppose we have a dataset DB ⊂ Ω with category information. This
category information is a series of the abstract concepts. The DB can be partitioned into K
subsets by category information:

DB = {x ∈ Dj | j = 1, . . . , K}

where K is the number of categories, and we mark this partition way as S. In other words,
Dj is a subset of DB, and all of the elements x in Dj belong to the same category.

At the same time, assume that Ω can also be partitioned into LA = {L1, . . . , LM},
where Li = (Pi, d, δi) is a fuzzy semantic cell with a prototype Pi ∈ Ω, a density function
δi defined on [0,+∞), and a distance metric d on Ω. Then, we will obtain the appropriate
fuzzy semantic cell partition using the method described in Section 3.3.

3.2. Decision Rule of Classification

Based on the above discussion, we have got the hierarchical structure from known
data to the concept. For a new sample x, the method to identify the abstract concept it
belongs to is as follows:

• for new data x ∈ Ω, compute µLi (x) for all fuzzy semantic cells
• take the corresponding Li of maximum µLi (x)
• choose the concept that the Li belongs to as the abstract concept of x

The classification decision rule outlined above is based on a hierarchical concept
learning structure [24,25]. To obtain the corresponding category information, we compute
the membership degree of x to M fuzzy semantic cells, and then take the largest one.

3.3. Optimization of Fuzzy Semantic Cells

In this section, we will introduce the principles of learning FSCs. The proper partition
LA means this partition makes the concepts of elements belonging to each Li are as
consistent as possible. That is to say, the concept purity of elements covered by every Li is
as high as possible.
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To this end, for each concept (category), we compute the sum of the membership of
all the elements under that concept to every fuzzy semantic cell Li marked rij. In fact, rij
approximates the average number of samples covered by Li in Dj. :

rij = |Li ∩ Dj| = ∑
x∈Dj

µLi (x)

Then we normalize all rij’s for every Li to estimate the probability that samples covered
by Li in Dj:

pij =
rij

∑K
j=1 rij

As a result, the relative entropy of every Li is defined as:

H̄(S | Li ∩ DB) = −
K

∑
j=1

pij ln pij

We minimize H̄(S | Li ∩DB) to get the prior distribution for every fuzzy semantic cell.
As mentioned above, our goal is to get the Li which maximizes the concept purity. In

other words, we need to find a partition of fuzzy semantic cells that is highly consistent
with the concept partition. Our solution is inspired by the work [16]. In [16], the authors
give the following definition of consistency of dataset segmentation:

Definition 4. Let X be a finite dataset and let Xl ⊂ X be the set of labeled data points that is
partitioned into Z = {Z1, . . . , Zm}. A partition Y = {Y1, . . . , Yk} of X is consistent with Z, if for
every Yi there exists at most one Zj such that Zj ∩Yi 6= ∅.

Based on this, they proved that conditional entropy H(Z | Y, Xl) can be used to
measure the consistency of dataset segmentation:

H(Z | Y, Xl) =
k

∑
i=1

|Yi ∩ Xl |
|Xl |

H(Z | Yi ∩ Xl)

=
k

∑
i=1

|Yi ∩ Xl |
|Xl |

m

∑
j=1

|Yi ∩ Zj|
|Yi ∩ Xl |

(− log
|Yi ∩ Zj|
|Yi ∩ Xl |

)

The smaller the conditional entropy is, the higher the consistency is. Inspired by this
idea, we give the following definition of partition consistency of LA and S:

Definition 5. Let DB ⊂ Ω be a finite dataset and DB is partitioned into S = {D1, . . . , DK}. A
partition LA = {L1, . . . , LM} of Ω is consistent with S, if for every Li there exists at most one Dj
such that Dj ∩ Li > 0.

Then we introduce the conditional entropy to our objective function to ensure LA is
consistent with S. The conditional entropy in our scenario is defined as:

H̄(S | LA, DB) =
M

∑
i=1

|Li ∩ DB|
∑M

k=1 |Lk ∩ DB|
H̄(S | Li ∩ DB)

= −
M

∑
i=1

K

∑
j=1

∑
x∈Dj

µLi (x)

M
∑

k=1
∑

x∈DB
µLk (x)

ln

∑
x∈Dj

µLi (x)

∑
x∈DB

µLi (x)

(4)

By minimizing the conditional entropy, we update the fuzzy semantic cells. The
updating rule allows having the highest possible purity. At the same time, the parameter
M controls the fine degree of FSCs. A proper number of M ensures that the fuzzy semantic
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cells are neither too rough nor too fine. LA is too fine means M� K. In this case, too many
FSCs correspond to the same category, although each Li has high internal purity, and each
fuzzy semantic cell covers a very small radius. This will cause great redundancy. Especially
in extreme circumstances, the partition will be perfect when LA is separated into a small
portion which only contains one element, that is to say, M is equal to the number of items x.
Because there are too many fuzzy semantic cells at this time, the computational complexity
is high. Therefore, according to the premise of high purity, the FSCs in the same category,
the better. As a result, we should include the constraint that M be as small as possible
while Li be as pure as possible.

Finally, the learning problem of the hierarchical structure becomes an optimization
problem of the objective function. Due to the difficulty in calculating the closed-form
solution of this optimization problem, we use the iterative method instead. To obtain
the optimal fuzzy semantic cell, we apply to Adam method [17], which is an efficient
method to solve the unconstrained nonlinear optimization problems to minimize the
objective function Equation (4). Existing works also use gradient descent [24], evolutionary
optimization [26] or particle swarm optimization [27] to optimize the models. We believe
numerical methods are more stable in optimization and Adam can avoid saddle points
compared with gradient descent. The procedure of the hierarchical concept learning with
fuzzy semantic cells is summarized in Algorithm 1.

Algorithm 1 Hierarchical Concept Learning by Fuzzy Semantic Cells

Require: Training set DB = {(x1, y1), . . . , (xn, yn)} of K categories with concept informa-
tion where y ∈ {C1, . . . , CK}

Ensure: Fuzzy semantic cell L = 〈P, d, δ〉
1: function ConceptLearning(DB, M)

DB: The dataset with concept information
M: The numbers of fuzzy semantic cells

2: Begin
3: Partition: Dj = {(x, y) | y = Cj} j = 1, 2, ..., K
4: Initialize: Pi, σi i = 1, 2, ..., M
5: for each data x ∈ DB do
6: Compute: d(x, Pi) = ‖x− Pi‖2

2

7: Compute: µLi (x) = exp(− d(x,pi)

2σ2
i

)

8: end for
9: Compute: minimize the following by Adam:

min O(P,σ) = −
M

∑
i=1

K

∑
j=1

∑
x∈Dj

µLi (x)

M
∑

k=1
∑

x∈DB
µLk (x)

ln

∑
x∈Dj

µLi (x)

∑
x∈DB

µLi (x)

10: return O(P, σ)
11: end function

The main runtime in our training is the computation of Equation (4), namely the
conditional entropy. The computation complexity of Equation (4) is O(nM). This scales
linearly with n, the number of samples. Empirically the computation only takes less than a
second on a CPU of Intel Xeon 4116 in Ubuntu 16.04. Prototypes and σ are the parameters
of our fuzzy semantic cells to optimize, and the only hyper-parameter having an influence
is the number of prototypes. We will discuss it in Section 4.3.

In summary, we describe the learning method to build the hierarchical structure from
the data to the concepts. Based on this structure, given a new sample x, we also introduce
the decision-making approach to infer its abstract concept.
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3.4. Discussion

In this part we discuss the similarity and differences between our proposed method
and related supervised learning methods. The discussion is from four aspects: Prototype
classification, hard/soft margin, limited samples and unsupervised learning.

Prototype classification. Prototype classification has been a thriving area in artificial
intelligence. Mean-of-class prototype classification is a typical method to learn prototypes
based on which classification is done [28]. There are three kinds of mean-of-class proto-
type classification methods. Non-margin classifiers, such as linear discriminant analysis
(LDA) [29,30], form non-overlapping areas to represent concepts. Such methods use a simi-
lar strategy as our method to construct concepts. Other advanced works [31,32] introduce
deep models to extract features for learning prototypes. However, one concept may have
multiple prototypes and a non-margin classifier assumes only one prototype, while our
method assumes multiple prototypes intrinsically.

Hard/soft margin. Hard margin classifiers include Support Vector Machine [21] and
similar methods. They assume a hard hyper-plane or hyper-sphere to separate concepts.
Such assumption does not consider the vagueness and uncertainty among samples, while
our fuzzy semantic cells assume vagueness with an uncertain margin. Soft margin clas-
sifiers obtain prototypes by applying a regularized preprocessing and then classifying
samples using hard margin classifiers [21]. This kind of methods also fail to consider
multiple prototypes. Another typical soft margin classifier is mixture classification mod-
els [33,34]. The main idea is to fit Gaussian mixture models on samples in each class
respectively and then to classify new samples with linear discriminant analysis. The fitting
process is similar to our prototype learning procedure. However, our method further
considers the exclusion among concepts with conditional entropy.

Limited samples. How to learn concepts with limited data is also a fundamental
topic. As the number of samples is limited, prior knowledge [35], strong assumptions [36],
appropriate augmentation [37,38] or transferred knowledge [39] is important. They can
serve as an important inductive bias for out-of-distribution samples or regularize the model
to avoid potential overfitting. The virtue that learning concepts from data can prevent
adversarial attacks is also discussed [40]. Our method is based on the assumption of
prototype theory [11] and the hierarchical structure of prototypes and concepts [24,25].
These two assumptions are from the perspective of how humans form concepts. Given the
no-free lunch theorem, there is no universally applicable assumption. However, as our
motivation is to model concepts, our assumptions of hierarchical prototypes are instructive.

Unsupervised learning. Prototypes and concepts learning has also been an important
topic in unsupervised learning. With the assumption of density peaks [41], message propa-
gation [42], mixture of distributions [43] or disjunctive combination [44], the underlying
concepts can also be learned. A recent work [45] also extracts deep features for clustering.
The motivation of the introduced unsupervised learning methods is also to learn concepts
from samples, but the learning procedures are not supervised by labels. In summary, how
to learn fuzzy concepts unsupervisedly with a reasonable assumption is an important topic
in our future work.

4. Experiments

In this section, we conduct experimental studies of the proposed approach on
five datasets.

4.1. Datasets

The description of each dataset is given as follows.
Synthetic dataset [15]: The synthetic two-dimensional dataset contains three classes.

Each class follows the Gaussian distribution. The dataset contains 750 samples, and there
are 250, 300 and 200 samples in each class, respectively.

Forest [46]: The Forest dataset is from UCI Machine Learning Repository. This dataset
contains training and testing data from a remote sensing study which mapped different

https://archive.ics.uci.edu/ml/datasets/Forest+type+mapping
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forest types based on their spectral characteristics at visible-to-near infrared wavelengths
of four types (“s”-“Sugi” forest, “h”-“Hinoki” forest, “d”-“Mixed deciduous” forest, “o”-
“Other” non-forest land). The original data contains 27 attributes, of which 1–9 are numer-
ical spectral properties, 10–27 are non-numerical attributes. We only took the first nine
columns of numerical properties for the experiment followed by merging the training set
and the test set in the original data, a total of 523 samples as a 523 × 9 array.

Pendigits [47]: The dataset which is a digit database by collecting 250 samples from
44 writers stored in a 10,992 × 16 array. It is also from UCI Machine Learning Repository.

MNIST [48]: The MNIST database contains a total of 70,000 examples of handwritten
digits of size 28 × 28 pixels. It is a subset of a larger set available from NIST. The digits
have been size-normalized and centered in a fixed-size image.

MIT face [49]: This dataset from MIT contains synthetic face images of 10 subjects
with 324 images per item. These synthetic images were rendered from 3D head models
and stored as a 64 × 64 size figure. The final dataset is stored as an array of 3240 × 4096,
containing ten different categories for a different subject.

Table 1 shows the summarized characteristics of five datasets involved in the
experiment.

Table 1. The description of five datasets.

Datasets Instances Attributes Classes

Synthetic dataset 750 2 3
Forest 523 9 4

Pendigits 10,992 16 10
MNIST 70,000 784 10

MIT face 3240 4096 10

4.2. Initialization Method

The dataset needs to be preprocessed before starting the classification experiment.
To ensure the rationality of the dataset segmentation, the data of each category is firstly
extracted proportionally and then spliced together as the training set. Finally, we shuffle
the samples in the training set, and the remaining data is regraded as the test set.

For the initialization of the parameter P, we try a variety of methods.

• The first one is to perform K-means on each type of training set and get the clustering
centers as the initial prototypes.

• The second way is to get the clustering centers by K-means in the entire training set to
get the initial prototypes.

• The third way is to select samples in each category as prototypes randomly.
• The last way is to take the average of each category of data as initialization.

Along with our paper, we assume the number of clusters in initialization is equal to the
number of prototypes. The first three methods take a proportional number of prototypes
M to the number of categories K. Notice that we define K is the number of categories, and
K is not related to K-means in our scenario. The final method takes the mass centers of
the samples from each class as the prototypes, and it assumes the number of prototypes
equal to the number of categories. In the experimental section, we will compare these four
initialization methods to investigate the effects of different prototype initialization methods.

For the parameter σ, as a parameter for controlling the bell-shaped distribution width,
experiments show that the initialization of σ will affect the convergence speed and the
classification result of the algorithm. Empirically we discovered that a better classification
result can be obtained when the value of σ is one-third of the average distance between
training set samples and the corresponding prototype. However, no additional theoretical
support for this phenomenon has been discovered. We will leave it for future work.

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
http://yann.lecun.com/exdb/mnist/
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
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4.3. Experimental Results

Table 2 shows the changes of classification accuracy under different training set
scales. We repeat the experiment 100 times to obtain the mean and standard deviation
of the classification results, considering the randomness of the dataset segmentation and
differences in initializing parameters. In this experiment, we use the second initialization
method of P. In particular, we use K-means to initialize one prototype in each class and
then combine them together as the prototype initialization. As an initialization for σ, we
take one-third of the average distances between the samples of each category and the
prototypes. From the experimental results, we can see that our method is robust. Even in
the case of a small amount of data (only 10%), we can get an acceptable classification result.

Table 2. The classification accuracy in percentage (mean ± standard deviation) under different
proportions of the training set on the Forest dataset.

Ratio as Training Sets Train Test Accuracy on Training Sets Accuracy on Test Sets

10% 52 471 86.46 ± 1.58 82.64 ± 1.43
20% 104 419 89.91 ± 0.85 81.42 ± 1.19
30% 156 367 89.53 ± 1.26 79.69 ± 1.58
40% 208 315 90.57 ± 0.93 80.97 ± 1.54
50% 260 263 89.10 ± 1.25 76.81 ± 2.03
60% 312 211 87.08 ± 1.15 79.11 ± 3.79

For the initialization of the prototype, we can limit the initialization method and the
number of initial prototypes. In the following two experiments, 30% (3290 samples) of the
Pendigits dataset were used as the training set and the rest as the test set (7702 samples).

Table 3 shows the difference in classification results for different numbers of prototypes.
We initialize one to four prototypes in each category (a total of 10 categories) by K-means,
so the number of prototypes ranges from 10 to 40 in the prototype initialization. We also set
σ as one-third of the average distance that the samples of each category to the prototypes.
We also repeated the experiment 10 times to obtain the mean and standard deviation of
the classification results, taking into account the randomness of dataset segmentation and
differences in initializing parameters. The experimental results are consistent with the
above analysis. The classification effect will improve as the number of prototypes increases.
As a result, as the number of prototypes grows, so the computational complexity also
increases. At the same time, if there were too many prototypes, most fuzzy semantic cell
will become too small and redundant. As a result, we must select the appropriate number
of prototypes to strike a balance between computational efficiency and classification effect.

Table 3. The classification accuracy in percentage (mean ± standard deviation) under different
numbers of prototypes on Pendigits dataset (30% as training set).

Prototypes Accuracy on Training Sets Accuracy on TEST Sets

10 86.64 ± 0.05 83.78 ± 0.05
20 92.52 ± 0.11 91.46 ± 0.07
30 94.49 ± 0.30 92.27 ± 0.49
40 95.47 ± 0.20 94.03 ± 0.10

In the following experiment, we conducted a controlled trial in four ways as de-
scribed in Section 4.2 to show the classification accuracy under different initialization
methods of prototypes on Pendigits dataset as shown in Table 4. We used ten prototypes
(#prototype = #class), and the initialization method of σ is the same as before. The experi-
ment is repeated six times. The experimental results show that the training accuracy decays
slightly since more samples are difficult to fit. However, the testing accuracy increases
substantially as the model learns more about the training distribution. Despite the objective
function being a non-convex problem, the classification effect is nearly stable across the
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different prototype initialization methods. When prototypes are initialized by category, the
results are consistent after repeated experiments, and the standard deviation is low. When
the prototypes are initialized with a global method, the overall classification accuracy is
not significantly worse, though the result is slightly different and the standard deviation is
relatively larger. In the last prototype initialization with 0.3 and 0.5 as the training ratio,
the average training accuracy is slightly lower than the testing accuracy. However, when
considering the deviation, such difference is not significant. We attribute this phenomenon
to randomness.

Table 4. The classification accuracy (%) under different prototype initialization methods on Pendigits dataset. The ratio of
training samples varies from 0.1 to 0.7. All results are the summary of repeated six runs on different training sets.

Ratio as Training Set 0.1 0.3 0.5 0.7

Prototypes Initialization Train Acc/Test Acc Train Acc/Test Acc Train Acc/Test Acc Train Acc/Test Acc

K-means in categories 84.75±7.11/75.60±8.67 79.08±6.13/75.04±6.71 79.52±5.51/77.17±5.83 78.12±5.24/76.39±5.12

K-means the training set 67.95±4.51/60.26±4.78 65.00±5.34/61.97±5.85 65.29±5.14/63.54±5.28 67.55±4.03/66.14±4.31

Randomly selection 72.87±6.06/70.39±6.03 69.39±7.36/68.06±7.45 70.60±4.80/70.12±4.56 70.45±6.16/70.55±5.81

Average in categoryies 83.25±0.94/82.37±0.64 83.05±0.45/83.10±0.44 82.97±0.32/83.07±0.60 82.92±0.31/82.71±0.66

Using Adam [17] is based on the following empirical findings. The learning problem
of our method is an unconstrained non-convex optimization, and the loss is estimated
within batches of samples. It has been shown Adam converges faster than other first-order
optimization methods do [17], like SGD and RMSprop [50]. For second-order optimization
methods, Newton and Quasi-Newton require expensive computation and memory cost.
Besides, L-BFGS is an efficient Quasi-Newton approximation. We conduct experiments on
SGD, RMSprop and L-BFGS. We use the fourth initialization method of prototypes and
compares the test accuracy in Table 5. The L-BFGS introduce instability when the ratio is 0.1.
The performances of other methods are worse than Adam in this scenario. Evolutionary
optimization and particle swarm optimization are also used in related works [26,27], but
we believe numerical optimization methods are more reproducible.

Table 5. The classification accuracy in percentage (mean ± standard deviation) when using different
optimization methods. All results are the summary of repeated six runs.

0.1 0.3 0.5 0.7

Adam [17] 82.37 ± 0.64 83.10 ± 0.44 83.07 ± 0.60 82.71 ± 0.66
SGD 78.72 ± 1.07 79.71 ± 0.61 79.54 ± 0.39 79.36 ± 0.73
RMSprop [50] 82.32 ± 0.71 82.27 ± 0.50 82.56 ± 0.27 82.25 ± 0.41
L-BFGS 44.89 ± 37.8 80.68 ± 0.01 80.45 ± 0.01 81.17 ± 0.01

In the final experiment, we compared the differences between the proposed method
and the six conventional classification methods. We conduct this experiment with packages
in scikit-learn [51]. SVM uses the polynomial kernel function, and AdaBoost’s learning rate
is set to 0.3. The Neural Network is a multi-layer perceptron model of two hidden layers,
which have five and two neurons, respectively. The nonlinear activation is ReLU, and
the out neurons are softmaxed to give a probability distribution. To optimize the model,
a cross-entropy loss and an L-BFGS optimizer are used. Other settings are the default.
We test typical classification methods (DecisionTree, NaiveBayes, KNN, SVM, AdaBoost,
Neural Network) in classification accuracy for five different datasets. For each dataset,
we select 10% as the training set and the remaining 90% as the test set to compare the
classification effects in the case of a small size of the training set. Because fewer samples
are employed for training, most algorithms can achieve outstanding performances on the
training set, but algorithms perform variedly on the test set. The classification accuracy on
the test set is shown in Table 6.



Appl. Sci. 2021, 11, 10723 11 of 14

From the results in Table 6, we can conclude that seven algorithms have similar per-
formance on the synthetic datasets. When the sample size used for the training is relatively
large, the neural network algorithm has the best consequences, such as in handwritten
datasets Pendigits and MNIST. However, when the number of training samples are small,
the neural network algorithm stability rapidly declines. Not only does the classification
effect deteriorate, but it also fluctuates dramatically (high standard deviation) in the Forest
and MIT face datasets. In contrast, regardless of the amount of data, the algorithm proposed
in this paper produces a stable output. Moreover, we also found that the KNN algorithm
also has outstanding performance on different datasets. However, a better performance of
KNN is reached when the parameter of neighborhood is manually chosen.Accordingly, in
our algorithm, the same parameter initialization method is utilized for all datasets, and a
general classification algorithm is obtained without further human intervention. In this
experiment, we use K-means (K = 3) in each category as the prototype initialization and
take one-third of average distances that the samples of each class to the prototypes as
corresponding σ initialization. The Naive Bayes algorithm is more sensitive to datasets
and has diverse experimental results for different datasets. For example, it has a better
performance on Forest datasets but lags behind other methods on MIT face datasets. This
shows that the NaiveBayes algorithm does not have a strong generalization ability. The
performance of the SVM algorithm on each dataset is neither remarkable nor bad. As for
the DecisionTree algorithm and AdaBoost algorithm, the performance lags behind other
algorithms when only 10% of the data is used as a training set. In general, the method
proposed in this paper has strong competitiveness both in terms of classification effect,
robustness and generalization ability.

Table 6. The classification accuracy in percentage (mean ± standard deviation) of test set on five datasets (only 10% as
training set). All results are the summary of repeated six runs. The best and second best results are in bold.

Synthetic Dataset
75 as Training

675 as Test

Forest
52 as Training

471 as Test

Pendigits
1090 as Training

9902 as Test

MNIST
7000 as Training

63,000 as Test

MIT Face
320 as Training

2920 as test

DecisionTree 96.07 ± 1.21 79.45 ± 2.09 88.00 ± 0.31 76.24 ± 0.16 53.02 ± 8.44
NaiveBayes 98.81 ± 0.00 82.59 ± 0.00 85.41 ± 0.00 78.65 ± 0.00 57.53 ± 0.00
KNN 97.93 ± 0.00 83.86 ± 0.00 95.58 ± 0.00 90.63 ± 0.00 90.34 ± 0.00
SVM 97.93 ± 0.00 82.80 ± 0.00 95.35 ± 0.71 90.78 ± 0.00 71.76 ± 0.02
AdaBoost 96.74 ± 0.00 77.49 ± 1.73 69.01 ± 0.00 72.12 ± 0.00 60.96 ± 0.74
Neural Network 96.89 ± 0.31 31.66 ± 14.94 98.29 ± 0.00 92.37 ± 0.11 75.42 ± 4.95
FSC (ours) 98.50 ± 0.04 82.93 ± 1.66 96.27 ± 0.14 90.88 ± 0.43 91.32 ± 0.59

Further experiments show that the Euclidean distance measurement method is not
applicable in high-dimensional data spaces. However, after dimension reduction, the data
can produce notable experimental results. As a result, the classification results for the
high-dimensional data in this experiment are based on the data after dimension reduction.

In most of our experiments, we repeat six times. The reason for this is to reduce
estimation error. We find most existing works repeat experiments three times to get the
average and standard deviation of performances for comparison. Suppose the standard
variance of the ground-truth performance as a random variable is std, so the standard
variance of an average of three repeats is std/3. As the mean is an unbiased estimation of
the expectation, the standard variance is equivalent to the estimation error. The three-time
repeat is an acceptable balance between computational cost and estimation accuracy. As
our method is trained on a small number of samples, we are able to repeat six times to get
a more precise estimation, with a standard variance of std/6.

5. Conclusions

In this paper, we propose a hierarchical concept learning model based on the fuzzy
semantic cell. There are two main contributions of this model. Firstly, the model can be
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used to model and learn abstract concepts in a supervised manner. Secondly, this model
can be used to achieve a good learning effect with a small amount of data (even only 10%).
According to the experimental results, our proposed method is comparable with typical
techniques in terms of robustness and generalization ability under the circumstances of
limited training data.

In the future, we will improve the objective function to make it more modeling capable
while also looking for a better strategy to initialize parameters and to solve non-convex
problems. We will concentrate on combining the proposed concept learning mechanism
with other common models and investigating a feasible method of expanding more complex
abstract concepts to improve concept learning performance.
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