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Abstract: This paper presents the modelling and calculations for a hybrid electric vehicle (HEV) in
parallel configuration, including a main electrical driving motor (EM), an internal combustion engine
(ICE), and a starter/generator motor. The modelling equations of the HEV include vehicle acceleration
and jerk, so that simulations can investigate the vehicle drivability and comfortability with different
control parameters. A model predictive control (MPC) scheme with softened constraints for this HEV
is developed. The new MPC with softened constraints shows its superiority over the MPC with hard
constraints as it provides a faster setpoint tracking and smoother clutch engagement. The conversion
of some hard constraints into softened constraints can improve the MPC stability and robustness.
The MPC with softened constraints can maintain the system stability, while the MPC with hard
constraints becomes unstable if some input constraints lead to the violation of output constraints.

Keywords: model predictive control; parallel hybrid electric vehicle; hard constraints; softened
constraints; fast clutch engagement; drivability and comfortability; tracking speed and torque

1. Introduction

Controllers for HEVs powertrains and speeds can be included model-free or model-
based. Model-free controllers are mostly used with heuristic, fuzzy, neuro, AI, or human
virtual and augmented reality. The use of model-free methods will be presented in the
next part of this study. Model-based controllers can be used with a conventional adaptive
PID, H2, H∞, or sliding mode. However, all conventional control methods cannot include
the real-time dynamic constraints of the vehicle physical limits, the surrounding obstacles,
and the environment (road and weather) conditions. Therefore, a MPC with horizon state
and open loop control prediction subject to dynamic constraints are mainly used to control
as real-time the HEV speeds and torques. Due to the limit size of this paper, we have
reviewed some of the most recent research of MPC applications for HEVs. In this paper,
vehicle dynamic formulas and calculations are referred to the reference [1].

A recent modelling and control of the dual clutch transmission for HEVs are presented
in [2], in which a new controller was designed for synchronizing the dual clutch transmis-
sion (DCT) with higher performances and lower fuel consumption. Another MPC for an
autonomous driving vehicle is developed in [3], in which the MPC was used to drive the
HEV to exactly track the given feasible trajectories. Moreover, a controller for a hybrid dual
clutch transmission powertrain for a HEV is introduced in [4], in which the ICE and EM
were driven by a DCT powertrain. A MPC for a HEV with linear parameters and a varying
model is presented in [5], in which the MPC controller was designed to improve the fuel
economy of the power-split HEV.

A MPC for a HEV is necessary not only to control the torque and speed, but also to
control the gas emission and improve the fuel economy. The authors of [6] developed a
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MPC with a multi-objective function for HEVs for fuel economy and exhaust emission
and collision detection as well as to optimize the vehicle speed and engine torque. A new
MPC design for HEVs with adaptive cruise of autonomous electric vehicles was presented
in [7]. A hybrid MPC to optimize the HEV mode selection was introduced in [8], in which
the vehicle thermal management was controlled by this MPC subject to decision-making
algorithms. Fuel economy and lower emission were also controlled by a MPC with outer
approximation and semi-convex cut generation, as presented in [9].

Due to the recent world commitment to limit the increase in global warming and stop
using fossil fuels, plug-in and the pure electric vehicles are expanding. MPC algorithms
are also being developed to control the plug-in hybrid vehicle (PHEV), as shown in [10]. In
this study, a non-linear MPC is designed to control the torque-split and to optimize fuel
management. The authors of [11] also present a data-based scenario MPC framework to
optimize power consumption.

Non-linear model predictive control (NMPC) has been widely used due to the rapid
increase in computer capacity and speeds. Computers now can calculate a real-time
solution from complex non-linear functions. Therefore, the authors of [12] provide a
MPC for the non-linear energy management of the power split HEV. Energy efficiency
management for HEVs is now also extended in communication among vehicles, as shown
in [13], in which a MPC framework is proposed to generate the optimal torque and velocity
by connecting the information from vehicle to vehicle.

The authors of [14] reviewed the latest model-based controllers in the market to assess
the improvement of energy management for HEVs, and, in this study, the MPC was used
to calculate optimal energy, torque, and speed. Since a MPC is a model-based algorithm,
difficulties will arise when there are existing mismatches between the model and the plant
or the plant uncertainties. These mismatches and uncertainties may lead to the instability
of the controller. Robust model predictive control (RMPC) algorithms are, therefore,
developed to deal to these uncertainties. The authors of [15] present a new method using
matrix inequalities based on RMPC for HEVs considering the external disturbances, the
time varying delays, and the model uncertainties. The authors of [16] introduce a real-time
NMPC for the energy management of HEVs using sequential quadratic programing.

The use of a MPC for pure electric vehicles is also mentioned in [17] regarding full
battery consumption and road slope condition. The authors of [18] presented a decentral-
ized MPC of plug-in electric vehicles charged based on the alternative direction method of
multipliers. A real-time control for HEVs, longitudinal tracking, jaw movement, dual-mode
power split, and minimizing energy were presented by the authors of [19–28]. However,
none of the recent MPC methods mentioned is concerned with the MPC with softened
constraints. The MPC is always subject to many strict constraints on states, outputs, and
inputs; therefore, the MPC may not find a feasible solution and it may become unstable.
Since the MPC is a real-time optimizer, any failure solution cannot be tolerated. We propose
to convert some physical strict constraints into softened constraints, while adding some
large penalty values into the MPC objective function. In this way, we can increase the
stability and the robustness of the system dealing with uncertainties and some initial
conditions, which may lead the input to violate output constraints.

The layout of this paper is as following: Section 2 presents the modelling of the parallel
HEV; Section 3 introduces the design of the MPC; Section 4 develops the MPC algorithms
with softened constraints; Section 5 illustrates the simulations of the MPC for the HEV; and
Section 6 is the conclusion.

2. Modelling of the Parallel HEV

In parallel hybrid electric vehicles, both combustion engine and main electric motor
are installed in parallel and work in independent configurations. The vehicle can run
and switch in four driving modes: pure main electric motor (EV1) at a low speed and/or
low load; pure combustion engine (EV2) at a high speed and/or high load; both main
electric motor and combustion engine (EV3) at a very high and/or very high load; and a
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combination of the main electric motor, generator motor, and combustion engine (EV4) at
extreme high speed and/or load. In 2021, Hyundai introduced a new version of Sonata
Hybrid, the middle size family passenger HEV that combines updated technologies for a
typical parallel electric vehicle, as shown in Figure 1.
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Figure 1. The 2021 Hyundai Parallel HEV.

This parallel HEV consists of one internal combustion engine (ICE) with four cylinders
with multiple point injection, a volume of 2.4 litters, a maximum power of 156 kW at
6000 rpm, and a peak torque of 265 Nm; one electric motor starter (EM2) with a maximum
power of 8 kW and a maximum torque of 43 Nm; the main electric motor (EM1) with a
maximum power of 35 kW and a maximum torque of 205 Nm; the battery HEV Li-ion with
a capacity of 6.1 Ah; a transmission gearbox with fully automated 6 speeds; and a friction
clutch engagement. The vehicle curb weight is 1569 kg. This Sonata Hybrid vehicle is used
to simulate our system modelling and test the new MPC scheme with softened constraints.

The schematic architecture of the 2021 Hyundai Sonata Hybrid in Figure 1 can be
modelled with a simple drivetrain and is shown in Figure 2. The first part of this mechanical
structure consists of an internal combustion engine (ICE) and the electric starter/generator
motor (EM2) can be grouped into one inertia J1, including the left clutch disk, the sharp 1,
EM2, and ICE. J1 is modelled as one rigid inertia. MICE and MEV1 are the torques on the
ICE and EM2, respectively. θ1 and ω1 are the angular position and the velocity of the sharp
1, respectively. Similarly, J2 is modelled as the lumped rigid inertia of the main electric
motor EM1 and the right clutch disk. θ2 and ω2 are the angular position and velocity of the
sharp 2, respectively. The third powertrain part connecting the gearbox and the vehicle’s
driven wheels can be modelled by a gear ratio i via a torsional spring and damper with
kθ , kβ, and kα as the stiffness, damping, and acceleration coefficient, respectively, of which
the acceleration has not been studied before. The third part, the lumped inertia J3, consists
of the rest of the vehicle, including the gearbox, differential gear, shaft 3, and the driven
wheels. θ3 and ω3 are the angular position and velocity of shaft 3, respectively. rr is the
rolling radius of the vehicle’s wheels.
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In this paper, all vehicle dynamic formulas and constraints were taken from the
technical book in [1]. The vehicle resistance torque is the approximation of the air density
ρ, air drag coefficient cw, the vehicle crossing area A, the wheel rolling radius rr, vehicle
friction resistant coefficient fr, natural gravity g, vehicle mass m, and the polynomial
coefficients of a0, a1 and a2 The vehicle rolling resistance torque Mv can be calculated as:

Mv =
(ρ

2
cw A(rω3)

2 + frmg
)

r + a0 + a1ω3 + a2ω2
3 (1)

In Equation (1), the additional road conditions, such as the road dynamics, the road
increase, and other environment conditions, can be added as disturbances that lead to some
reduction of or increase in the vehicle rolling resistance torque. Changes of vehicle velocity,
depending on the road conditions as well as the vehicle dynamic constraints between the
vehicle speed and vehicle steering wheel, are referred to in [1].

At a low speed of less than 40 km/h, the clutch is open, and only the main electric
motor EM1 propels the HEV. The contribution of some other exponential coefficients is
small and can be ignored. The vehicle rolling resistance torque at a low speed can be
simplified as:

Mv = Mv0 + kvω3 (2)

where Mv0 is the initial resistance constant of air drag and rolling friction. kv is a linear
coefficient that depends on the gear ratio.

On the first part, the torque applied is:

M1o = J1
.

ω1 (3)

This torque can be calculated as:

M1o = MICE + MM2 −MC (4)

where MICE is the torque from ICE; MM2 is the torque from motor ME2; and MC is the
torque from the clutch.

When the clutch is locked, the clutch torque MC is the maximum static clutch friction:

MC =
2
3

rCFNCµS when
(

MC = MStatic
f max

)
(5)

where rC is the clutch radius; FNC is the normal force; and µS is the clutch friction coefficient.
When the clutch is in the transitional period, MC < MStatic

f max , the clutch torque is:

MC = rCFNCsign(ω1 −ω2)µK when
(

MC < MStatic
f max

)
(6)

where µK is the clutch slipping coefficient.
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On the second part, the torque applied on the main motor ME1 is:

M2o = kθθ2 +
kθ

i
θ3 + kvω3 (7)

The sum of inertias is calculated as:

M2o = J2
.

ω2i + J3
.

ω3 + kvω3 (8)

The torque changing is calculated as:

.
M2o = J2

..
ω2i + kα

( .
ω2

i
− .

ω3

)
+ kβ

(ω2

i
−ω3

)
(9)

The balance of torque M2o is calculated as:

M2o = (MEM2 + Mc)ηi−Mv0 (10)

where η is the transmission efficiency of the gearbox and the differential gear.
The above torque equations can be transformed to the following dynamic equations:

.
θ1 = ω1 (11)

The angular acceleration of the shaft 1 is calculated as:

.
ω1 = −

kβ1ω1

J1
+

MICE
J1

+
MM1

J1
+
−MC

J1
(12)

where kβ1 is the shaft 1 friction coefficient.
The angular acceleration of the shaft 2 is calculated as:

.
ω2 = −

kβ2ω3

J2i
− J3

.
ω3

J2i
− ηMM2

J2
+

ηMC
J2
− Mv0

J2i
(13)

where kβ2 is the shaft 2 friction coefficient.
Finally, the angular acceleration of the shaft 3 is calculated as:

.
ω3 =

kβ3ω3

J3
+ Mv0 (14)

where kβ3 is the shaft 3 friction coefficient.
The jerk on the drivetrain is calculated as:

..
ω3 =

kβ2ω2

J3i
−
(
kβ2 J2i2 + kαkv

)
ω3

J2 J3i2
−
(

kv + kα

J3
+

kα

J2i2

)
.

ω3 +
kαη(MM2 + MC)

J2 J3i
− kα Mv0

J2 J3i2
(15)

The torque generated on the main motor is calculated as:

MDC_MOTOR =
kT
RI

V − kEkT
RI

ωMDC_MOTOR =
kT
RI

V − kEkT
RI

ω (16)

where MDC_MOTOR is the main motor torque; kT is the motor constant, kT =
MTorque
ICurrent

(Nm/A); kE is the electromotive force (EMF) constant, kE = kT ; RI is the resistance; V is
the voltage supply; and ω is the angular velocity.

Now we proceed and transform all the above equations into a first order linear
system as:
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.
θ1 =

[
0+ ω1+ 0+ 0+ 0+ 0+ 0

]
+
[

0+ 0+ 0+ 0+ 0
]

(17)

.
ω1 =

[
0+

−
(

kβ1+
kE1kT1

RI1

)
ω1

J1
+ 0+ 0+ 0+ 0+ 0

]
+
[

MICE
J1

+ kT1V1
RI1 J1

+ 0+ −MC
J1

+ 0
]

(18)

.
θ2 =

[
0+ 0+ 0+ ω2+ 0+ 0+ 0

]
+
[

0+ 0+ 0+ 0+ 0+
]

(19)

.
ω2 =

[
0+ 0+ 0+ 0+ 0+

−
(

kβ2+
kE2kT2

RI2

)
ω3

J2i + −J3
.

ω3
J2i

]
+
[

0+ 0+ −ηkT2V2
RI2 J2

+ ηMC
J2

+ −Mv0
J2i

]
(20)

.
θ3 =

[
0+ 0+ 0+ 0+ 0+ ω3+ 0

]
+
[

0+ 0+ 0+ 0+ 0
]

(21)

.
ω3 =

[
0+ 0+ 0+ 0+ 0+

kβ3ω3
J3

+ 0
]
+
[

0+ 0+ 0+ 0+ Mv0
]

(22)

..
ω3 =

[
0+ 0+ 0+

−
(

kβ2+
kE2kT2

RI2

)
ω2

J3i + 0+
−(kβ2 J2i2+kαkv)ω3

J2 J3i2 + −
(

kv+kα
J3

+ kα
J2i2

) .
ω3

]

+
[

0+ 0+ −kαηkT2V2
RI2 J2 J3i + kαηMC

J2 J3i + −kα Mv0
J2 J3i2

] (23)

If we put the space vector as x0 =
[

θ1 ω1 θ2 ω2 θ2 ω3
.

ω3
]′, the input

variables as u0 =
[

MICE V1 V2 MC Mv0
]′ for the torque on the combustion engine

(ICE), the input voltage for motor EM1 and EM2, torque on clutch, and the initial air-drag
load, a linear space state of the vehicle dynamics system can be expressed as:

.
x0 =



0 1 0 0 0 0 0

0
−
(

kβ1+
kE1kT1

R1

)
J1

0 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0
−
(

kβ2+
kE2kT2

R2

)
J2i

−J3
.

ω3
J2i

0 0 0 0 0 1 0

0 0 0 0 0
kβ3ω3

J3
0

0 0 0
−
(

kβ2+
kE2kT2

R2

)
J3i 0

−(kβ2 J2i2+kαkv)
J2 J3i2 −

(
kv+kα

J3
+ kα

J2i2

)


x0

+



0 0 0 0 0
1
J1

kT1
R1 J1

0 −1
J1

0
0 0 0 0 0
0 0 ηkT2

R2 J2

η
J2

−1
J2i

0 0 0 0 0
0 0 0 0 1
0 0 kαηkT2

R2 J2 J3i
kαη
J2 J3i

−kα
J2 J3i2


u0

(24)

The linear first order state space model in Equation (24) can be used to form the MPC
algorithms in the next part. The system in Equation (24) includes acceleration

.
ω3 and jerk

..
ω3, which can be used to simulate and regulate the HEV driving comfortability.

When the HEV runs in a low speed of less than 40km/h, only the main motor EM1 is
activated. Considering the inputs of MICE = 0, V1 = 0, and MC = 0, and the state variables
of θ1 = 0 and ω1 = 0, then the above linear system can be simplified as:
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{ .
xp = Apxp + Bpup
yp = Cpxp + Dpup

Ap =


0 1 0 0

0 −
kβ2+

kE2kT2
RI2

J2
0 0

0 0 0 1

0 0 0 − (kβ3−kv)
J3

, Bp =


0 0

kT2
RI2 J2

0
0 0
0 −1



Cp =

[
0 0 0 1
kθ 0 kθ

i 0

]
; Dp =

[
0 0
0 1

]
(25)

where the states xp = [θ2 ω2 θ3 ω3]
′, inputs up =

[
V2 Mv0

]′, outputs
yp =

[
ω3 TTorque3

]′. The output TTorque3 is the unmeasured torque at shaft 3. In this

equation, kθ is the torsional rigidity, kθ =
MTorque

ϕ = GJ
l , and ϕ is the twist angle, ϕ = θ2− θ3

i .
G is the rigidity modulus. l is the shaft length. J is the lumped inertia moment, J = J2 + J3.

When the HEV runs in a high speed greater than 40 km/h, the starter motor EM2
activates the combustion engine ICE while the friction clutch is still open, the state equations
of the first part can be written as:

.
θ1 =

[
0+ ω1

]
+
[

0+ 0
]

(26)

.
ω1 =

[
0 −

(
kβ1+

kE1kT1
RI1

)
J1

ω1

]
+
[

ςkT1
RI1 J1

V1+
1
J1

MICE

]
(27)

where ς is the additional coefficient for starting motor EM2 as a compensation load for the
starting period. The linear state space system in the first part is:{ .

xe = Aexe + Beue
ye = Cexe + Deue

, with

As =

 0 1

0 −

(
kβ1+

k2
T1

RI1

)
J1

; Bs =

[
0 0

ςkT1
RI1 J1

1
J1

]
; Cs =

 0 1

0

(
kβ1+

kE1kT1
R1

)
J1

; Ds =

[
0 0
0 0

] (28)

where xe = [ θ1 ω1 ]
′, ue =

[
V1 MICE

]′, and ye =
[

ω1 TTorque1
]′. The output

TTorque1 is the unmeasured torque at shaft 1.

3. Model Predictive Control for the HEV

A MPC is an open loop, infinite horizon prediction, and optimization subject to
dynamic constraints. The continuous first order linear space state equation in Equation (24)
can be discretized into time intervals with a discrete k and k + 1 = k + ∆t (∆t is the
computer scanning speed or the time sampling interval). Now, the continuous time form
in Equation (24) can be discretized into:{

xt+1 = Axt + But
yt = Cxt + Dut

(29)

which is subject to the states, inputs, outputs, and the input increase constraints

ut ∈ U , ∆ut = ut − ut−1 ∈ ∆U , and yt ∈ Y (30)

A MPC calculates the open loop input and output prediction horizon. For the calcu-
lation simplicity, we assumed the input prediction length is always equal to the output
prediction length, or Nu = Ny. The objective function of the MPC for the HEV is:

min
U,{∆u1,...,∆u1+Nu−1}

{
J(U, x(t)) =

Ny−1

∑
k=0

[
(yt+k|t − r)′Q

(
yt+k|t − r

)
+ ∆u′t+kR∆ut+k

]}
(31)
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By substituting xk+j|k = Akx(k)+
k−1
∑

j=0
AjBuk+j−1−j, Equation (31) can be transformed as

V(x(k)) =
1
2

x′(k)Yx(k) + min
U

{
1
2

U′HU + x′(k)FU
}

(32)

subject to the linear matrices inequality (LMI), GU ≤W + Ex(t), where the column vector
U ,

[
u′k, . . . , u′k+N−1

]
∈ Rs, s , mNu is the optimization vector, H = H′ > 0, and

H, F, Y, G, W, E are obtained from Q, R and in (9) as only the optimizer vector U is
needed, the term involving Y is usually removed from (10). The optimization problem
(10) is a quadratic program (QP). The MPC optimizer will calculate the optimal input
vector U ,

{
∆uk, . . . , ∆uk+Nu−1

}
subject to the hard constraints of the inputs, uk ∈ U ,

and uk+i ∈ [umaxmin]; of the outputs yk ∈ Y , and yk+i|k ∈ [ymaxmin]; and of the input
increments ∆uk+i ∈ [∆umaxmin]. But only the first input increment, ∆uk, is taken into the
implementation. Then, the optimizer will update the outputs and states variables with
the new update input and repeat the calculation for the next time interval. Therefore, the
MPC is also called as the receding time horizon control. A diagram control system for this
NMPC is shown in Figure 3.
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The MPC scheme for the HEV in Figure 3 calculates the real-time optimal control
action, ∆uk, and feeds into the vehicle dynamic equations and updates the current states,
inputs, and outputs. The updated states, inputs, and outputs will feedback and compare to
the reference desired trajectory data for generating the next optimal control action, ∆uk, in
the next interval.

When the system is non-linear and has a general derivative nonlinear form, it is
calculated as: .

X = f (x, u) (33)

where x is the state variables and u is the inputs. The non-linear equation in (33) can be
approximated in a Taylor series at referenced positions of (xr, ur) for

.
Xr = f (xr, ur), so that:

.
X ≈ f (xr, ur) + fx,r(x− xr) + fu,r(u− ur) (34)

where fx.r and fr.x are the Jacobian function calculating approximation of x and u, respec-
tively, moving around the referenced positions (xr, ur).

Substituting Equation (34) for
.

Xr = f (xr, ur), we can obtain an approximation linear
form in continuous time (t):

.
X̃(t) = A(t)X̃(t) + B(t)ũ(t) (35)

The linearized system in Equation (35) can be used as the linear system in Equation (24)
for the MPC calculation. However, the MPC real-time optimal control action ∆uk+i|k must
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be fed into the original non-linear system in Equation (33) for the updated states, outputs,
and inputs.

4. The MPC with Softened Constraints for the HEV

The conventional MPC objective function in Equation (31) subject to the constraints
in Equation (30) regarding states, outputs, inputs, and input increase may deal with so
many hard constraints. The MPC optimizer may not find out a solution that satisfies all
constraints. Thus, we considered to widen the MPC feasibility by converting some possible
hard constraints from Equation (30) into softened constraints to increase the possibility
of finding a solution. The new MPC scheme subject to the softened constraints has the
following form:

min
U,{∆uk ,...,∆uk+Nu−1}{

J(U, x(k) =
Ny−1

∑
i=0

[
(yk+i|k − rk+i|k)

′Q
(

yk+i|k − rk+i|k

)
+ ∆u′k+i|kR∆uk+i|k + ε′i(k)Λεi(k) + 2µ′εk+i|k

]} (36)

subject to [
1 z′i
zi X + µεi I

]
≥ 0


min

j
Xjj ≤ x2

max

∀zi ∈ vert
{

χ
k+i|k
u∗(.|k)(x(k))

}
, ∀i ∈ {1, . . . , N}

(37)

where µ is assigned as big values as a weighting factor (µ > 0), and εi is the constraints
penalty terms (εi ≥ 0) added into the MPC objective function. X and zi are the correspond-
ing matrix of the hard constraints.

The new items in Equation (37) are softened constraints selected from hard constraints
in uk ∈ U , and uk ∈ U , ∆uk+i ∈ [∆umaxmin], for i = 0, 1, . . . , Nu − 1,

yk ∈ Y , and yk+i|k ∈ [ymaxmin], for i = 0, 1, . . . , Ny − 1, ∆uk = uk − uk−1 ∈ ∆U , and
∆uk+i = 0, for i ≥ Nu, xk|k = x(k), xk+i+1|k = A(k)xk+i|k + B(k)uk+i, uk+i|k = uk+i−1|k +

∆uk+i|k, yk+i|k = C(k)xk+i|k, where, εi(k) =
[
εy; εu

]
, yk+i|kymaxmin, and uk+i|kumaxmin;

and Λ = Λ′ ≥ 0 is the additional penalty matrix (generally Λ > 0 and assign to
small values). In this new MPC scheme, the penalty term of the softened constraints
Np

∑
i=0

[
ε′k+i|kΛεk+i|k + 2µ′εk+i|k

]
is added into the objective function with the positive definite

and symmetric matrix Λ. This term penalizes the violations of constraints and, where
possible, the free constrained solution is returned.

This MPC calculates the new optimization vector US =

[
U
ε

]
and the new MPC

computational algorithms are:

ΨS(x(t)) = min
US

{
1
2

US
′HSUS + x′(t)FSUS

}
, (38)

subject to GSUS ≤WS + ESx(k), where US ,
[
u′k, u′k+1, · · · , u′k+Np−1, ε′k, ε′k+1, · · · , ε′k+Np

]′
is the new optimization input vector; HS =

[
H 0
0 M

]
; FS =

[
F µ

]
; and the matrices

for inequality constraints H, F, G, W, and E are obtained from Equation (38),
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GS =

 G 0
gS −I
0 −I

 with gS =


0 0 0 . . . 0

ZB 0 0 . . . 0
ZAB ZB 0 . . . 0

. . .
. . . . . . . . .

...
ZANp−1B ZANp−2B . . . . . . ZB

,

WS =

 W
wS
0

 with wS =

 z
...
z

, and ES =

 E
eS
0

 with eS =


−Z
−ZA
−ZA2

. . .
−ZANp

.

To illustrate the ability of this controller, we test the two MPC schemes in Equa-
tions (31) and (36) by the following simple example as considering the non-linear system
shown below: .

x1 = 2x2 + u(1 + x1).
x2 = 2x1 + u(1− 3x2)

(39)

It is assumed that the system in Equation (39) is subjected to the hard state and input

constraints xmin =

[
−1
−1

]
and −2 ≤ u ≤ 2. The linearized approximation of this system

in (35) is:
.
x = Ax + Bu, in which A =

[
0 2
2 0

]
and B =

[
1
1

]
. The weighting matrices

are chosen as Q =

[
1 0
0 1

]
and R = 1. The weighting matrices for softened constraints

are chosen as A =

[
0 2
2 0

]
and B =

[
1
1

]
. It is assumed that the system is starting form

an initial state position, x0 =

[
−0.72
−0.35

]
. Figure 4 shows the performance of two NMPC

schemes: this initial state position, x0, does not lead to any violation of states and input

(xmin =

[
−1
−1

]
and −2 ≤ u ≤ 2). In this x0, the solutions of the two control schemes

are always available. We can see that the NMPC with a softened state approaches the
asymptotic point faster than the hard constraints. It means that, if we somehow loosen
some of the constraints, the optimizer can generate easier optimal inputs and the system
will be more stable.
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It is interesting to see in Figure 4 that both schemes have xHard
1 min = −0.8475 and

xSo f tened
1 min = −0.8483, which almost reach the hard constraint of xmin =

[
−1
−1

]
. These

states still have not violated the state constraints but selecting other initial positions x0 may
lead to state and input violations.

If we select x0 =

[
−0.9
−0.8

]
, this initial condition will lead to the violations of the state

and the input constraints as x1 min = −1.0441 and umax = 2.2303. These violations will
make the RMPC with hard constraints infeasible. Meanwhile, the RMPC scheme with
softened constraints is still running well and it is still easy to find optimal input solutions,
as shown in Figure 5. After a very short transitional period, the fully constrained solution
is returned, or there is no more constrained violation.



Appl. Sci. 2021, 11, 10668 12 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 16 
 

If we select 𝑥 = −0.9−0.8 , this initial condition will lead to the violations of the state 
and the input constraints as 𝑥  = −1.0441 and 𝑢 = 2.2303. These violations will 
make the RMPC with hard constraints infeasible. Meanwhile, the RMPC scheme with sof-
tened constraints is still running well and it is still easy to find optimal input solutions, as 
shown in Figure 5. After a very short transitional period, the fully constrained solution is 
returned, or there is no more constrained violation. 

 
Figure 5. Softened constraint NMPC. 

The new MPC scheme with softened constraints for the HEV will be further analyzed 
and simulated in the next section. 

5. The MPC with Softened Constraints for the HEV 
5.1. The MPC for the HEV in Pure Electrical Drive 

The main motor ME1 was used to run the HEV at a low speed. In this mode, the 
clutch is open. ICE and ME2 are off. We run the MPC in this mode with the discrete time 
interval of 0.05 s. ME1 has a maximum power of 35 kW, a maximum torque of 205 Nm, 
rigidity torque 𝑘 = 1158, inertia 𝐽 = 1, constants 𝑘 = 𝑘 = 10, inertia 𝐽 = 2, gear ra-
tio 𝑖 = 2.34, damping 𝑘 = 0.5 and 𝑘 = 12, and resistance 𝑅 = 5. 

Some softened constraints were converted, as input constraints for the DC voltage 
applied for the vehicle is |𝑉 | ≤ 300 V, 𝑢(𝑡) = +/−5 V. The output softened constraints are 
also set on the shaft with the shear strength for carbon steel of 𝜏 = 25 MPa or N/mm2. The 
output torque on the shaft 2 is constrained as |𝑇| = 𝜏𝜋 , with the diameter 𝑑 = 0.05 m. 
Then, the torque softened constraint on shaft 2 is |𝑇 | = 455 Nm. 

The MPC parameters were set up with the predictive horizon of 𝑁 = 𝑁 = 𝑁 = 5; 
the weighting matrices are set at 𝑄 = 1 00 1  and 𝑅 = [1]. The MPC performance with sof-
tened constraints is shown in Figure 6. 

10 20 30 40 50 60 70
Time

-1

-0.5

0

0.5
Softened constraint states

zero origin
x1 softened
x2 softened

10 20 30 40 50 60 70
Time

0

1

2

3
Softened constraint input

zero origin
u softened input

Figure 5. Softened constraint NMPC.

The new MPC scheme with softened constraints for the HEV will be further analyzed
and simulated in the next section.

5. The MPC with Softened Constraints for the HEV
5.1. The MPC for the HEV in Pure Electrical Drive

The main motor ME1 was used to run the HEV at a low speed. In this mode, the
clutch is open. ICE and ME2 are off. We run the MPC in this mode with the discrete time
interval of 0.05 s. ME1 has a maximum power of 35 kW, a maximum torque of 205 Nm,
rigidity torque kθ = 1158, inertia J2 = 1, constants kE2 = kT2 = 10, inertia J3 = 2, gear ratio
i = 2.34, damping kβ2 = 0.5 and kβ3 = 12, and resistance RI2 = 5.

Some softened constraints were converted, as input constraints for the DC voltage
applied for the vehicle is |V2| ≤ 300 V, u(t) = +/− 5 V. The output softened constraints
are also set on the shaft with the shear strength for carbon steel of τ = 25 MPa or N/mm2.
The output torque on the shaft 2 is constrained as |T| = τπ d3

16 , with the diameter d = 0.05 m.
Then, the torque softened constraint on shaft 2 is |T2| = 455 Nm.

The MPC parameters were set up with the predictive horizon of Nu = Ny = Np = 5;

the weighting matrices are set at Q =

[
1 0
0 1

]
and R = [1]. The MPC performance with

softened constraints is shown in Figure 6.
It is worth noting that the weighting matrix for output Q and input R can be varied

according to the desired variation on outputs or inputs. If we want to limit the errors
or keep the output variation in a small value, we have to pay for more input energy or
increase the input variation. With this aim in mind, we increased Q and reduced R. It
means that any small variation in output will lead to a big penalty amount adding to the
MPC objective function. Figure 7 shows the MPC for the HEV performance with Q = 100
and R = 1.
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As shown in Figures 6 and 7, we set up softened constraints on the input voltage
of |V2| ≤ 300 V. The MPC allows some input voltage violation at the starting time to
ensure the controller stability and feasibility. Then, after a very short transitional period,
the solution is returned without constraint violation. In these cases, the MPC with hard
constraints becomes infeasible and unstable.
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5.2. The MPC for the HEV in High Speed with ICE

When the HEV runs at a high speed, the starter/generator ME2 starts the ICE. De-
pending on the required output torque, the ICE alone, or the ICE and ME1, or all ICE, ME1
and ME2 will be running and together providing torque.

In this mode, we assumed that the vehicle runs at ω3 = 2000 rpm, and the torque
of the air drag resistance at this speed of Mv0 = 30 Nm. The parameters of the starter
motor EM2 are as constants kE2 = kT2 = 15, inertia J1 = 1, damping coefficient kβ1 = 0.5,
resistance RI1 = 7, compensation ς = 0.5, and a discrete time of 0.05 s.

The softened constraints were imposed on the input voltage constraints for the starter
of |V1| ≤ 48 V, u(t) = +/− 5 V/interval, and the output constrained torque on shaft 1 of
|T2| ≤ 455 Nm.

For the MPC parameters, we selected the predictive horizon length of Nu = Ny =

Np = 5 and the weighting matrices Q =

[
10 0
0 10

]
and R =

[
1 0
0 1

]
. The MPC

performance with starting EM2 is shown in Figure 8.
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Figure 8 shows that the EM2 starts in 1 s and the ICE is fully ignited and runs in 2.3 s;
the ICE speed reaches the setpoints of 2000 rpm and steadily runs at 6.2 kW, providing the
output torque of 31 Nm.

In the next simulation, we run the EM2 and the ICE to track the speed desired
setpoints and ignite the clutch engagement. It was assumed that the main motor EM1
runs at 1500 rpm and the starter EM2 starts the ICE and is engaged into the system. The
clutch engagement must take place at ω1 ≥ ω2 or ω1 = 1.05 ∗ω2 for driving comfortability
and a low jerk. The ICE and ME2 must track on the EM1 speed at +5% offset. The full
engagement is completed in 2.3 s, as shown in Figure 9.
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Figure 9. The MPC for the HEV with ICE and ME2.

In Figure 9, we see the ICE and ME2 tracking ME1 on the desired setpoints in 1.9 s.
In the normal mode, at speed higher than 40 km/h, the starter ME2 ignites the ICE and
is turned as a generator charging to battery. The main motor EM1 now is also turned off.
Only the ICE propels the HEV.

In Figure 10, it can be seen that the ME2 is turned off and becomes the generator after
igniting the ICE. The main motor EM1 is also turned off, and the ICE alone propels the
HEV. The HEV reaches and tracks the desired speed setpoints after 3.5 s.
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Finally, we compared the performances of the MPC with hard constraints and he MPC
with softened constraints. We run the MPC with hard constraints in Equation (31) and the
MPC with softened constraints in Equation (36) to track the desired speed setpoints, as
shown in Figure 11.
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Figure 11 shows that the MPC with hard constraints generates smaller inputs and,
hence, it needs a longer time to track into the speed setpoint. The MPC with hard constraints
reaches the speed setpoint after 4.5 s, while the MPC with softened constraints needs only
3.5 s to fully track into the speed setpoint.

6. Conclusions

In this study, we have presented the modelling of the HEV and the MPC algorithms
for controlling the HEV. In the HEV modelling, we have included the system acceleration
and jerk into the equations to investigate and compare the vehicle driving comfortability
with different control parameters. The MPC scheme with softened constraints has proved
its superiority over the MPC with only hard constraints. The control system now becomes
more flexible, stable, and robust against model uncertainties, time variant, and constraint
violations. The new MPC scheme can control the HEV with faster clutch engagement and
lower jerk reduction. The MPC with softened constraint still stable and robust, while the
MPC with only hard constraints becomes unstable and infeasible because of the constraint
violations. In a following study, we will investigate the control of the HEV friction clutch
for a smooth and fast engagement with high comfortability and low jerk, and apply these
algorithms in the real HEV.
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