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Abstract: In recent years, much progress has been made on the development of metal mirrors based
on additive manufacturing (AM). The sandwich mirror is well known for its excellent mechanical
properties and challenging machining. Now, AM can be used to fabricate this complex structure
and reduce the processing time and cost. In addition, with the aid of some new design methods for
additive manufacturing, such as lattice, topology optimization (TO), and Voronoi, the freedom of
mirror structure design is enormously improved. The common materials of mirrors include ceramics
(SiC), glasses (glass ceramics, fused silica), and metals (aluminum, beryllium). Among them, the AM
technology of metals is the most mature and widely used. Researchers have recently extensively
developed the new-generation metal mirror to improve performance and lightweight rate. This
review focuses on the following topics: (1) AM technologies and powder materials for metal mirrors,
(2) recent advances in optomechanical design methods for AM metal mirrors, (3) challenges faced by
AM metal mirrors in fabricating, and (4) future trends in AM metal mirrors.

Keywords: AM; additive manufacturing; 3D printing; metal mirror; sandwich mirror; DfAM; design
for additive manufacturing; lightweight structure

1. Introduction

With the rapid growth of space optics and aerospace technology, the applications of
reflective optical systems are increasing year by year. A case in point is that off-axis three-
mirror-anastigmat (TMA) systems have been widely used due to their unique advantages
of large aperture and no central occlusion [1]. Meanwhile, the growing requirements for
optical systems’ performance, such as resolution and imaging quality, drive the develop-
ment of focal length and aperture to larger sizes. In turn, the weight, surface accuracy,
manufacturing time, and mirror cost are progressively demanding. In recent years, the
lightweight space camera used for remote sensing with high resolution has become a global
research hotspot in advanced optics [2]. It should be noted that mirrors are critical elements
that directly affect the resolution and other optical systems’ characteristics. Therefore,
suitable mirror materials and optimal lightweight structures should be selected carefully
according to different requirements and boundary conditions.

The common materials of mirrors include ceramics (SiC), glasses (glass ceramics,
fused silica), and metals (aluminum, beryllium). The parameters of several common
materials are depicted in Table 1 [3]. The metal mirrors stand out from the crowd with
their distinctive advantages: easy to process and manufacture, extremely lightweight, short
fabrication time, and low cost [4,5]. Moreover, with ultra-precision machining technology
such as single-point diamond turning (SPDT), metal mirrors can be efficiently machined
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to the optical accuracy range [6–12]. Currently, beryllium and aluminum are two kinds
of materials that are widely used in metal mirrors. The 6.6 m aperture primary mirror
of the James Webb Space Telescope (JWST) consists of 18 beryllium sub mirrors [13], and
the Widefield Infrared Survey Explorer (WISE) [14,15] adopts an all-aluminum design
scheme, with aluminum mirrors mounted to an aluminum structure, as shown in Figure 1.
Furthermore, a lot of research has been done to develop metal mirrors with a lighter weight
and better structural rigidity to meet the requirements of optical systems.

Table 1. Relative figures of merit for aluminum and glass mirror substrate materials [3].

Material
Specific Stiffness

E/ρ
m2/s2

Thermal Expansion
α

K−1

Thermal Distortion Index
α/k

m/watt

Thermal Diffusivity
k/(ρ-cρ)

m2/s

Aluminum alloy, 6061-T6 255 × 106 23.6 × 10−6 141 × 10−9 690 × 10−3

Corning Pyrex 7740 283 × 106 3.3 × 10−6 2.92 × 10−6 483 × 10−9

Corning fused silica 7980 330 × 106 520 × 10−9 400 × 10−9 788 × 10−9

Corning fused silica ULE®

7972 307 × 106 30 × 10−9 22.9 × 10−9 776 × 10−9

Schott Zerodur® 357 × 106 20 × 10−9 68.5 × 10−9 721 × 10−9

Expectation Large Small Small Large
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The variants of lightweight mirror design include arched mirrors, open-back mirrors, 
and sandwich mirrors (Figure 2) [16–19]. Daniel Vukobratovich found that the sandwich 
mirror has the best mirror efficiency in 1989 (Figure 3). The mirror efficiency is defined as 
the total mirror height divided by the mechanical deflection; a high efficiency is desirable 
[20]. However, the high-precision welding techniques adopted in the fabricating process 
of metal sandwich mirrors greatly raises costs and risks. In recent years, AM technologies 
for metal fabrication have been developed rapidly. It provides an effective way to reduce 
the difficulty of manufacturing complex structures [16]. AM can offer a complete process 
chain (Figure 4) for the direct production of these complex lightweight mirrors such as 
sandwich mirrors [21,22]. 

Figure 1. (a) The primary mirror of JWST; (b) Optomechanical system of WISE; (c) Primary mirror of WISE [14,15].

The variants of lightweight mirror design include arched mirrors, open-back mirrors,
and sandwich mirrors (Figure 2) [16–19]. Daniel Vukobratovich found that the sandwich
mirror has the best mirror efficiency in 1989 (Figure 3). The mirror efficiency is defined as the
total mirror height divided by the mechanical deflection; a high efficiency is desirable [20].
However, the high-precision welding techniques adopted in the fabricating process of
metal sandwich mirrors greatly raises costs and risks. In recent years, AM technologies for
metal fabrication have been developed rapidly. It provides an effective way to reduce the
difficulty of manufacturing complex structures [16]. AM can offer a complete process chain
(Figure 4) for the direct production of these complex lightweight mirrors such as sandwich
mirrors [21,22].
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As shown in Figure 4, the process chain of AM metal mirrors is different from that of
conventional mirrors, mainly in the mirror blank prefabricating stage. After the preparing
stage, there are two paths: the design for additive manufacturing (DfAM) and design for
conventional machining (DfCM). DfAM is driven by design functionality. It can redesign
parts, components, and even systems in AM to achieve the overall requirements with fewer
materials and better optomechanical integration. Thus, DfAM has become a new paradigm
of advanced design and intelligent manufacturing compared to conventional design. The
core technology of DfAM is simulation-driven optimization design technology, including
creation-based design technology, topology optimization (TO) design technology, lattice
design technology, parameter optimization design technology, and simulation analysis
technology [23]. The development of DfAM and AM is changing the pattern of metal
mirror designing and manufacturing.

The porosity and residual stress of the forming parts during the AM process should be
carefully dealt with to avoid warpage, fracture, and other side effects. Hence, densification
and heat treatment must be carried out after prefabricating. The subsequent optical
processing and test stage are the same for metal mirrors based on conventional processing
including optical processing, surface modification, and polishing. These steps are all critical
to obtain the required surface accuracy and roughness.
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Table 2 shows the intercorrelations among material utilization, machining time, repair
rate, and cost of several processes in fabricating complex structural parts [24]. In brief, AM
has revolutionized the way of manufacturing optical and structural components compared
to conventional subtractive manufacturing. Furthermore, it is easier to achieve the optimal
structure to meet the requirements and optomechanical integration combining DfAM
means. Though few AM metal mirrors are put into actual engineering, the prospect is
still comprehensive, especially in optical remote sensing, which is of tremendous research
significance and value.
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Table 2. A comparison of AM and the conventional manufacturing methods for complex structural
components [24].

Forming Process AM Forging Casting

Material utilization rate 2/3 <1/10 1/5
Design modification time 1–2 days 6 months 3 months

Processing time 1–2 days 4 months 6–12 months
Consumable Inert gas Mold Mold, gating system
Repair rate Low Low High

Cost Low High Medium

This paper aims to review the recent advances of AM metal mirrors and provide
a picture of current challenges and future trends. First, the AM technologies applicable
for metal mirrors are described, and a comparison of the characteristics among these
technologies has been made in Section 2. Some research results on lightweight mirror
design based on DfAM are listed in Section 3. Then, Section 4 discusses the current
problems for fabricating AM metal mirrors and the corresponding solution measures.
Finally, AM metal mirrors’ future development trends and the directions of AM metal
mirrors have been given in Section 5, providing reference and thinking for further research.

2. Additive Manufacturing Technology for Metal Mirrors

Additive manufacturing (AM), more commonly known as three-dimensional (3D)
printing, is a rapid prototyping technology. It is a craft of manufacturing parts layer-
upon-layer based on a digital model file. The specific process creates 3D models using
computer-aided design (CAD) software and then slices and designs support through
3D-printing software. Finally, all the information is sent to a 3D printer, which stacks
two-dimensional (2D) slices until the product is manufactured (Figure 5) [25].
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AM is a manufacturing method of “bottom-up” accumulation compared with the
conventional machining mode. This makes it possible to manufacture novel geometries,
complex structures, and customized parts limited by conventional processing methods [26].
AM offers some advantages, such as material savings, design freedom, parts almost in their
final shape, design freedom, and reduction of time to market. It has been used wildly in
aerospace, biomedicine, and automotive parts manufacturing.

2.1. Metal Additive Manufacturing Technology

Metal AM technologies fall into two categories: (Figure 6) powder-bed fusion (PBF)
and directed energy deposition (DED). DED covers 16% of the metal AM market and
uses laser beams, electron beams, or electric arcs as energy sources to deposit the melting
powder. It uses coaxial or lateral powder feeding methods, which are more practical than
PBF’s laying powder. Still, the accuracy of DEDed products is not as high as the PBFed.
DED is more suitable for manufacturing large and high-performance integral components.
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PBF is ideal for small, ultra-complex monolithic components such as metal mirrors, owing
to its products’ good surface finish and high density [27,28].
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Figure 7 shows the schematic of SLS. The first step is to coat a layer of powder on
the platform, then preheat the powder to near the melting point to reduce the residual
stress. After that, the laser beams illuminate specific areas on the cross-section according
to the data of the corresponding sliced model’s layer. Using the same technique, repeat
the process of laying powder and sintering until a part forms. The principles of other
PBF techniques are similar to this, repeating the coating and scanning processes. Table 3
presents an overview of the materials and AM technologies for fabricating metal mirrors
in recent years. It can be seen that all the mirrors are fabricated using PBF, namely EBM,
SLS/DMLS, and SLM. The most common choice is printing AlSi10Mg via SLM. This section
describes several PBF technologies and compares the pros and cons of each process for AM.
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Table 3. Summary of materials and AM technologies of manufacturing metal mirrors in recent years.

R and D Unit Time Material Technology Type Surface Accuracy

Corning [29] 2015 AlSi7Mg0.3 DMLS 1.5 nm (RMS)
General Dynamics [21] 2015 AlSi10Mg DMLS 43.2 nm (RMS)

University of Arizona [30] 2015 AlSi10Mg DMLS 255 nm (PV)
University of Arizona [30] 2015 Ti6Al4V EBM /

Lockheed Martin [31] 2016 AlSi10Mg SLM /
Optimax Systems [32] 2017 FeNi36 SLM /

IOF [33] 2018 AlSi12 SLM 12.5 nm (RMS)
IOF [34] 2019 AlSi40 SLM 7.3 nm (RMS)

UKAT [18,35,36] 2020 AlSi10Mg DMLS 16 nm
CIOMP [37] 2020 AlSi10Mg SLM 58 nm (RMS)

The examples of “/” are to research the feasibility of designing and fabricating AM metal mirror. The mirrors’ surface accuracy is relatively
poor. Therefore, the authors did not give the surface accuracy of mirrors.
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2.1.1. Electron Beam Melting (EBM)

EBM was invented in 1993 in Sweden at the University of Technology in Gothenburg.
Arcam was founded in 1997 and sold its first commercial system in 2002. The most
significant difference between EBM and the other two PBF technologies is that the heat
source replaces laser beams with electron beams. The EBM system consists of an electron
beam gun, vacuum chamber, forming a cylinder, and powder distribution mechanisms
(Figure 8). In a vacuum environment, high-energy fast electron beams are controlled to
melt the powder selectively and build up a forming part [38].
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The power of electron beams is about 3–6 kW, which is an order of magnitude higher
than laser beams. At the same time, the EBM has the advantage of high energy utilization.
EBM is suitable for printing high melting temperature powders such as Ti alloy. Moreover,
EBM is not influenced by the optical reflectivity of the powder. However, the disadvantages
of EBM are also evident. Intense X-rays can be produced during EBM, and therefore
adequate protection measures must be taken. Besides, EBM has limited dimensions for
building parts, with a maximum diameter of 350 mm and a height of 380 mm. Due
to the unique energy conversion mechanism of the electron beam, serious liquid metal
splash which results in porosity occurs in the process of printing aluminum alloy via EBM.
Furthermore, the precision of printing is low. There are few reports on fabricating Al alloys
by EBM to date because of its process characteristics [39]. In the research on metal mirrors,
only the University of Arizona used EBM to print a Ti alloy mirror. Its surface was poor,
so EBM is not an appropriate technology for mirrors.

2.1.2. Selective Laser Sintering (SLS)

SLS was developed by C.R. Dechard at the University of Texas in 1989. Sintering uses
a laser beam as the heat source to melt part of the powder with a low melting point so that
transient wetting liquid promotes metallurgical bonding or inter-particulate melting across
the layers of sintered components (Figure 9). The powder with high melting point bonds
together after the liquid metal solidifies and then forms a rough component, achieving
the liquid-phase sintering effect [40]. Due to only partial melting, the surface quality
and density of the forming parts are poor. Hence, SLS cannot meet the requirements for
high-precision metal mirrors.
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Figure 9. Schematic diagram of laser sintering.The powder composition of SLS is a mixture of high
and low melting point powder, mainly nylon, polyamide, and other polymers. For metal SLS, it can be
further divided into indirect metal laser sintering and direct metal laser sintering (DMLS) according
to powder composition. The binder material for DMLS is a metal powder with a low melting point,
while polymer powder is for indirect metal sintering. Researchers began utilizing DMLS to fabricate
aluminum mirrors around 2015 when AM metal mirrors were still in the initial exploration stage.
However, DMLS has been gradually replaced by SLM in the field of mirror manufacturing due to the
progress of AM technologies.

2.1.3. Selective Laser Melting (SLM)

SLM based on SLS was proposed by the Institute of Fraunhofer in Germany in 1995
and successfully developed in 2002. It integrates the advantages of SLS, which melts
powders layer-by-layer and forms under the protection of inert gas to prevent the reaction
between powder and other gas. The main difference between the two is that SLM can
achieve full melting, as shown in Figure 10, in a single component, single material powder,
and was initially applied only to pure metals [41]. In contrast, SLS processes cannot heat
the powders above the melting temperature and form parts with somewhat less than ideal
density. Meanwhile, its equipment price and process complexity are above SLS.
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SLM is a technology that has been commonly used to manufacture metal mirrors in
recent years, as shown in Table 3. In theory, forming parts via SLM have higher density
and mechanical properties than via laser sintering. SLM’s products have high dimensional
accuracy, a smooth surface, and high density [42]. The laser power of SLM solutions’ 3D
printer can reach 700 W easily, which is high enough to pre-print mirror blanks. SLMed
parts’ density is up to 99.0% and above. The above technical advantages have gradually
promoted SLM to the mainstream technology for fabricating AM metal mirrors.
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2.2. Additive Manufacturing Metal Mirror Fabricating Considerations
2.2.1. Material Type

With the continuous development of AM technologies, printing materials have be-
come increasingly abundant. At present, there are more than 300 kinds of materials for
AM, mainly polymers, metals, ceramics, and biomaterials [43]. Metal materials that are
frequently used are aluminum alloys, titanium alloys, nickel-based superalloys, stainless
steel, and iron alloys. However, the representative materials are still Al alloy and Ti alloy
for metal mirrors, which dominate 3D-printed metal mirrors. In 2015, Herzog fabricated
AlSi10Mg and Ti6Al4V mirror blanks using SLM and EBM [30], respectively. Nevertheless,
after optical post-processing, the mirror surface of the final Ti mirror was far from the
requirements. The details of this are further described in Section 3. Therefore, aluminum
alloy is the material which more widely used to fabricate AM metal mirrors.

At present, the aluminum alloys used in manufacturing mirrors are mainly Al-Si alloy
and Al-Mg-Si alloy, including AlSi7Mg0.6, AlSi10Mg, AlSi12, and AlSi40. The addition of
silicon improves the fluidity of aluminum and reduces its melting temperature. Adding
magnesium to aluminum can not only improve its strength but also improve its strain-
hardening ability. AlSi10Mg is the Al alloy which most intensively investigated, and the
technology of printing AlSi10Mg by PBF is very mature. Table 4 provides the multiple
parameters of PBFed AlSi10Mg and as-cast AlSi10Mg after the high pressure of die-cast
(HPDC). The ultimate tensile strength and ductility values in additively manufactured
AlSi10Mg are generally higher than or equal to as-cast and HPDC AlSi10Mg, which can be
attributed to the fine microstructures seen in AM samples [28]. Therefore, the AlSi10Mg
mirrors have excellent microstructure and mechanical properties. However, in engineering,
the designers should consider the system requirements, prefabricating techniques, and
post-treatment to make the best material choice.

Noteworthily, the mismatch of CTE between AlSi10Mg and NiP is a problem for
the use of AlSi10Mg for mirrors. The bimetallic bending effect is serious in the service
environment with large temperature changes. The Institute of Fraunhofer (IOF) tested the
AM mirror of AlSi40, which can better improve temperature adaptability.

2.2.2. Design of Support

Support design is indispensable (Figure 11). Due to the sandwich mirror’s over-
hanging structures having no casting and molding support constraint, edge warping and
collapse easily occur during the forming process. Even severe deformation interruption
can happen [44]. Although some printing techniques have powder or liquid support
constraints, they are not strong enough. Moreover, support can also reduce the residual
stress of forming parts, and a high-quality support design is vital for the surface roughness
and accuracy of parts. However, support design is one of the craft difficulties in AM metal
mirrors depending on various factors such as forming processes, printing materials, and
parts’ characteristics [45].
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Table 4. Processing parameters and mechanical properties of AlSi10Mg alloys fabricated by AM compared to their
traditionally processed counterparts [28]. (P = Laser power, υ = Scanning speed, H = Linear heat input, q = Density,
E = Elastic modulus, σy = Yield strength, σuts = Ultimate tensile strength, HV = Vickers hardness).

Manufacturing
Method

P
(W)

υ
(mm/s)

H
(J/mm)

Post-
Treatment Orientation E (GPa) σy (MPa) σuts (MPa) Ductility

(%) HV

PBF 250 500 0.50 As built Longitudinal
Transverse

250
240

350
280

2.5
1.2 145

T6 Longitudinal
Transverse

285
290

340
330

4.5
2.2 116

250 500 0.5 As built Longitudinal
Transverse

125
140

250
270

6.6
4.6 75

T6 Longitudinal
Transverse

295
285

350
340

6.5
4.9 118

As built Longitudinal
Transverse

75 ± 10
70 ± 10

270 ± 10
240 ± 10

460 ± 20
460 ± 20

9 ± 2
6 ± 2 119 ± 5

2 h/300 ◦C Longitudinal
Transverse

70 ± 10
60 ± 10

230 ± 15
230 ± 15

345 ± 10
350 ± 10

12 ± 2
11 ± 2

200 1400 0.14 As built Longitudinal
Transverse 68 ± 3 391 ± 6

396 ± 8
5.55 ± 0.4
3.47 ± 0.6 127

200 1400 0.14 As built Longitudinal 68 ± 3 396 ± 8 3.5 ± 0.6 136 ± 9

6 h/175 ◦C Longitudinal 66 ± 5 399 ± 7 3.3 ± 0.3 152 ± 5

195 800 0.24 2 h/300 ◦C Longitudinal
Transverse

252 ± 10
240 ± 5

348 ± 5
347 ± 6

6.6 ± 0.3
5,1 ± 0.3

105 ± 2
108 ± 3

195 800 0.24 2 h/300 ◦C Longitudinal
Transverse

73 ± 1
72 ± 1

243 ± 7
231 ± 3

330 ± 3
329 ± 2

6.2 ± 0.3
4.1 ± 0.2

200 571 0.35 As built Transverse 33 ± 10 1.4 ± 0.3

6 h/160 ◦C Transverse 292 ± 4 3.9 ± 0.5

175 1025 0.17 As built Longitudinal
Transverse

250
225

340
320

1.2
1

400 1000 0.40 2 h/300 ◦C Longitudinal
Transverse

182 ± 5
184 ± 5

282 ± 5
288 ± 5

25.2 ± 1
18.3 ± 1

1000 2 h/300 ◦C Longitudinal
Transverse

70.2
70.7

169
169

267
273

9.1
8.2 94 ± 5

370 1300 0.28 2 h/300 ◦C Longitudinal
Transverse

181
177

284
285

18
15

370 1300 0.28 2 h/300 ◦C Longitudinal
Transverse

182
180

285
285

18
14

370 1300 0.28 2 h/300 ◦C Longitudinal
Transverse

260
260

375
340

2.8
2.4

Traditionally processed HPDC 71 160–185 300–350 3–5 95–105

HPDC-T6 71 285–330 330–365 3.5 130–133

The support structures can be added through 3D printing software automatically and
removed after AM prefabrication using wire cutting and labor-intensive manual removal.
However, some support structures are too complex. The optimization of the support is
essential. We can optimize support with the help of TO, which reduces materials waste
and the difficulty of removal [47]. The tilt angle prevents the need for added support in
sandwich mirrors’ interior and mirror distortion during printing. Some unique structures
can be designed to form self-support at a specific angle range to minimize the trouble of
removing them later [48,49]. The materials of the support should be consistent with mirrors
to ensure the mirrors’ accuracy. In addition, the numerical simulation should be used to
achieve the intelligent design of the support, and its forming effect should be predicted by
heat transfer and force analysis.
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2.2.3. Connectivity Constraints

The connectivity constraint requires no enclosed voids inside mirrors. For PBF, there
should be no residual powder inside parts. Compared to open-back mirrors and arch
mirrors, sandwich mirrors are closed-back, so connectivity constraints must be considered
in the design stage. In the mirror design, the structure walls are perforated to present
complete airflow channels inside the mirror, meeting the connectivity of the airflow and
facilitating the removal of residual powder (Figure 12) [50–52]. Finally, ultrasonic cleaning
and other methods are used to remove the powder from the interior of the parts altogether.
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3. Design Technology of Additively Manufactured Metal Mirrors

Mirrors’ weight is an important factor when highly dynamic scanning applications
are desired or for space optical system applications. Thus, a light weight is a key parameter
to the optomechanical design of metal mirrors. How to match the relationship between
weight and structural stiffness is the technical difficulty of mirror structural design. As
Section 1 mentioned, lightweight structures of mirrors include the arched mirror, open-back
mirror, and sandwich mirror. It is necessary to consider various factors, such as fabricating
difficulty, cost, and processing time. The introduction of AM provides mirrors’ structural
design more freedom. DfAM methods can offer a good compromise between mechanical
functionality and material usage. And a well-thought DfAM strategy is a major factor
in the economy and the success of an AM part. In this section, AM metal mirrors with
different internal lightweight structures are given, including conventional structure, TO
structure, lattice structure, and Voronoi structure. All the structures are explained and
compared in detail according to the corresponding research results. It is worth noting that
these internal structures can be combined in practical applications, such as TO and lattice
and TO and Voronoi.

3.1. Conventional Design

The so-called conventional design is a lightweight design that can be manufactured by
conventional machining and modeled by standard CAD software programs. Figure 13 and
Table 5 show quintessential lightweight holes for mirrors and the performance comparison
of each hole, respectively. Generally, quadrilateral holes and regular triangle holes are
preferred. However, the triangle holes are the best choice, given their highest stiffness with
the same weight [53,54].
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Table 5. Performance comparison of lightweight holes.

Performance Best Better Good

Lightweight rate Quadrilateral Hexagon Triangle
Stiffness Triangle Quadrilateral Hexagon

Deformation resistance of axial temperature gradient Quadrilateral Hexagon Triangle
Deformation resistance of radial temperature gradient Triangle Quadrilateral Hexagon

Corning’s researchers designed and fabricated a four-inch circular flat mirror with a
honeycombed lightweight structure in 2016. They prefabricated the mirror blank by print-
ing AlSi7Mg0.3 powder via DMLS. After SPDT and polishing, the surface roughness could
reach RMS 1.5 nm (see Figure 14). Therefore, Woodard’s team proposed and preliminarily
demonstrated the feasibility of manufacturing metal mirrors utilizing AM by comparing
them with various other materials and methods. They thought the layer-by-layer SLS
process and the resulting long cycle times, which are a function of the volume of material
rather than complexity, are what drive the costs [17]. Finally, they concluded that the AM
metal mirror has advantages in fabricating complex structures, reducing cost [29].
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Figure 14. DMLS Mirror with Corning enhanced performance surfacing process [17].

The round and square mirrors shown in Figure 15 were manufactured by Optimax
Systems in 2017 [32]. The material used was FeNi36, whose CTE is near zero. Furthermore,
it is suitable for the application of metal mirrors in cryogenic and space applications.
However, the finished mirrors were not entirely dense when measuring them with a
scanning white-light interferometer. The test result shows that the finished optical surface
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exhibited a 9 µm void. The mirrors were in the experimental stage and had not been put
into practice. Further surface modification and polishing are needed for applications at
wavelengths shorter than the infrared.
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In 2018, E. Hilpert’s team from IOF in Germany designed and compared the per-
formance of five lightweight metal mirrors: solid mirror, drill mirror, open-back mirror
with honeycomb, sandwich mirror with honeycomb, and empty mirror (Figure 16) [33].
For the sandwich mirror, the stiff and strong face sheets carry the bending loads, while
the core resists shear loads. The results of the modal analysis show that the sandwich
mirror with honeycomb has the best mechanical properties (Figure 17). It has the second
lightest weight, only after the open-back structure, which precisely verifies the sandwich
mirror’s advantages in many aspects given in Section 1. Moreover, this experiment has laid
a theoretical and practical foundation for the team’s next-generation AM metal mirrors.
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By summarizing the experience, Songnian Tan et al. from Changchun Institute of Op-
tics, Fine Mechanics and Physics (CIOMP) fabricated an Al mirror based on SLM technology
in 2020 [37]. The mirror is a flat metal mirror with the dimensions of 67 mm × 50 mm used
as a fast-steering mirror (FSM) in the infrared optical system. They adopted a rela-
tively conventional design method, as shown in Figure 18. The final lightweight rate
reached 43.7% while meeting the internal connectivity constraints. After AM prefabrica-
tion, λ/10 (λ = 632.8 nm) of the surface shape was achieved through CNC machining and
optical processing, which meets the application requirements of the infrared level.
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3.2. Topology Optimization (TO)

TO is one of the structural optimization methods. It is derived from topology and
used to calculate the optimal material spatial distribution for given problems. In general,
the topologically optimized part can theoretically meet the load demand and achieve the
optimal material distribution under a specific algorithm, which can obtain the optimal load-
bearing structure under a particular volume fraction [55]. In generative design, multiple
solutions are calculated simultaneously to create the most optimal solutions based upon
functional and non-engineering requirements, such as manufacturability [56,57]. The
results produced by TO are often very complex and challenging to manufacture directly. So,
the combination of TO and AM technologies has the potential to bring significant synergy
benefits. Now, AM metal mirrors based on TO are analyzed as follows.

First, Herzog et al. from the University of Arizona, USA, proposed a process chain
for manufacturing metal mirrors based on AM and hot isostatic pressing in 2015 [30].
They utilized DMLS and EBM technologies to print AlSi10Mg and Ti6Al4V, respectively.
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After that, the products’ quality and method feasibility obtained by the two routes were
compared. The mirror model is a cylinder with a bottom diameter of 4 in and a height of
38.1 mm. And the mirror structure was topologically optimized by applying a binding
force to the mirror surface to achieve a light weight (Figure 19). After further grinding and
polishing, the aluminum mirror was found to have a surface roughness of 22 nm and a
surface accuracy of PV 255 nm. However, the Ti mirror did not reach expectations because
of the subsurface porosity in the mirror (Figure 20).
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Subsequently, Carolyn Atkins’ team used DMLS to print an astronomical X-ray mirror.
Then the TO of the arches lightweight design was carried out, and the final lightweight
rate reached 62% through iterative calculation. The mirror’s diameter was 40 mm, with a
4mm thickness in total and a 1mm thickness of the front and back surfaces which formed
the sandwich structure. While satisfying the lightweight requirement, its support was a
continuous ring structure to reduce the print-through effect and improve its structural
stiffness (Figure 21). Finally, the optimized mirror’s mass was reduced from 9.2 g to 6.4 g,
but the surface roughness increased from 2.47 nm to 5.22 nm [18,35,36].

3.3. Lattice

The word “lattice” derives from the old French “latte” which is defined as a struc-
ture consisting of strips of wood or metal crossed and fastened together with square-
or diamond-shaped spaces left between [58]. However, in DfAM, it is a type of cellular
material with truss-like frames optimized for specific loading conditions. Lattice structures
are obtained by arraying abundant lattice cells. They perform similarly to atoms inside
a crystal in space. Multiple extensive research studies have been performed to deter-
mine the mechanical behavior of lattices and to find the optimal structure. In [59–61], the
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properties, performance, applications, and challenges of SLM lattice structures were well
reviewed. The current ultra-lightweight metal lattice structures can achieve a lightweight
of 85% or more as well as high specific stiffness, specific strength, and high energy ab-
sorption [62]. Their applications in 3D printing have been relatively widespread, such
as in medicine, acoustics, and electronics, but there are few examples of their usage in
mirror manufacturing.
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There are about20 sorts of lattice cells, and Figure 22 gives several quintessential
structures. They are repeated over a part of the volume of the component to be manufac-
tured. Furthermore, numerous lattice structures can be obtained by arranging lattice cells
with different sizes, densities, and types. Proper lattice cells can be decided via the finite
element analysis (FEA) method. Figure 23b below shows a lightweight hammer handle
made by adding lattice cells of different densities [63]. Hence, the structures obtained
by arranging the same lattice periodically are known as the uniform lattice. Conversely,
the non-uniform lattice structures consist of the lattice cells inclined to randomization.
Furthermore, TO can be introduced to achieve a macro–micro integrated structure with
lattice. PTC Creo, Siemens NX, Autodesk Netfabb, and Materialise Magics are commercial
3D-printing software that generate lattice structures conveniently.
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3.3.1. Uniform Lattice

As mentioned above, the uniform lattice periodically arranges lattice cells with the
same type and density into a uniform lattice structure. Carolyn Atkins’ team at the UK
Centre for Astronomical Technology applied the lattice to the internal structure of a metal
mirror for the first time, with the support of the CCAM CubeSat project. The product is
a concave spherical mirror with a radius curvature of 350 mm. Its mechanical diameter
and thickness are 84 mm and 17.3 mm, respectively. Researchers used Autodesk Netfabb
software to design and optimize the lattice structure of the mirror. Then they tested and
summarized the structure of numerous lattice cells. The final choice is BCCz lattice, whose
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performance and weight are optimal, and the resulting mirror’s lightweight rate reached
31% (Figure 24) [64].
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The team performed a set of comparative experiments with six technical routes,
as shown in Figure 25. The results in Table 6 show that, except for the directly polishing
AlSi10Mg mirror blank (Route 5), all other mirrors reached the visible or infrared levels.
The reason for that may be that the polishing process touched a fractured layer through
the analysis of X-ray tomography and microscope magnification. The pores are large,
so the sample’s surface roughness did not meet the requirements. This experiment demon-
strated the feasibility and practicality of the lattice structures in metal mirrors and laid the
foundation for future iterative experiments [65,66].

Table 6. Experimental methods and results [65].

Material Post-Treatment Surface Shape/RMS Roughness

1 AlSi10Mg SPDT 30 nm 5.64 nm
2 AlSi10Mg SPDT 28 nm 4.85 nm
3 RSA 6061 SPDT 25 nm 4.96 nm
4 AlSi10Mg + NiP Polishing 35 nm 2 nm
5 AlSi10Mg Polishing 83 nm 15 nm
6 Ti6Al4V Polishing 28 nm 2 nm

3.3.2. Non-Uniform Lattice

The non-uniform lattice, in contrast to the uniform lattice, tends to be arranged ran-
domly. It is denser at locations where greater stiffness is required. Moreover, combining it
with TO can achieve greater design freedom compared with the uniform lattice. The model
in Figure 26 is the iterative product of Carolyn Atkins’ team in Section 3.3.1, and the
lightweight rate is up to 50%. However, this is not the final product of the project. The
team is carrying out the third and fourth iterations to seek the relatively optimal structure
and explore a technical route for fabricating metal mirrors with lattice structures [65–67].

3.4. Voronoi

Voronoi, named after George Voronoi, refers to contiguous polygons composed of
vertical bisectors for segments connecting two adjacent points. The distance from any point
in a Voronoi polygon to a point controlled by the polygon is less than that of others [68].
It was first applied to calculate the average rainfall based on the discretely distributed
weather stations. After that, people found that a lot of examples of Voronoi exist in nature,
such as in cell structure and leaf micro-texture (Figure 27). Due to its particular structure
and good mechanical properties, Voronoi has been widely used in the architecture and
biomedical fields. For metal mirrors, it is challenging to realize this complex structure with
conventional processing. Hence, the combination of AM and Voronoi is a perfect choice.
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3.4.1. 3D Voronoi

Voronoi can be divided into 2D and 3D manufacturing types according to the spatial
distribution, whereas 3D Voronoi looks more like foams. Mici from Lockheed Martin
proposed using 3D random foams to further optimize the TO mirror (Section 3.2) [31].
The ultra-lightweight mirror is designed with a macro–micro combination of TO and 3D
Voronoi (Figure 28). Then, it was fabricated with the same material and printing method.
The randomness of the seeds that generate Voronoi may cause unnecessary overlaps among
them. So, they used Lloyd’s algorithm to drive the distribution of the random foams to
homogeneity. Finally, the feasibility of this method was verified by FEA and mechanical
property testing
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3.4.2. 2D Voronoi

The team of Hilpert from IOF finally chose a sandwich mirror with the honeycomb
structure after an experimental comparison of the five structures introduced in Section 3.1.
By summarizing the previous designing and manufacturing experience, they optimized
the mirrors’ internal structure. The honeycomb structure was replaced with the 2D Voronoi
cell pattern to make the design of the mirror’s support more effective. AlSi40 was chosen
as the substrate material, which CTE matches electroless nickel as plating. Thus, it was
conducive to minimizing the influence of the bimetallic bending effect on the stability of
mirrors [69–74].

The internal structure was obtained as follows. Firstly, the Poisson disk sampling
method is used to distribute seeds, avoiding undesired clustering. However, the uniform
Voronoi cannot satisfy the whole mechanical requirements of the mirror body, so the
Voronoi should be further optimized through FEA and modal analysis. In order to make
the interface of mounting structures stiffer, the 2D Voronoi was denser in the three areas
(Figure 29). The wall thickness was set at 0.5 mm, and then the 2D Voronoi was pulled up
to mirrors’ 3D support by SLM. Finally, the lightweight rate of the secondary mirror was
60.5%, with a surface accuracy of RMS 7.3 nm and surface roughness of 1.1 nm [39].

Then they machined the primary mirror and the third mirror on one substrate, dras-
tically reducing the processing time and the number of alignment degrees of freedom
to be fixed during the integration phase. The bounding box of the whole element was
205 mm × 339.5 mm × 60 mm. The mirrors had a surface accuracy of RMS 20 nm and
surface roughness of RMS 1 nm, so all mirrors were at the visible level [75,76].

3.5. Summarization

This section reviewed the internal structures for AM metal mirrors. The unique fab-
rication capabilities of AM processes have offered more design freedoms for engineers.
Specific design methods are needed to meet these opportunities and challenges. How-
ever, conventional designs cannot surpass the advantages of AM. Research on DfAM has
gradually increased in recent years. It can be seen that TO plays a crucial role among
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DfAM methods. The idea and application of TO can be found in numerous DfAM methods,
such as generative design, optimization for Voronoi, and optimization for non-uniform
lattice. Hence, designers should master TO algorithms and the application of the related
software. Furthermore, the FEA simulation is a necessary means to verify the design. In
addition, the thermodynamic analysis for space mirrors is essential because of the special
working environment.
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After reviewing the summary of the mirrors’ structural designs, it is clear that the
stochastic lattice has better mechanical properties. Moreover, the multiscale design is the
future development trend of DfAM, such as micro lattice infilling after macro TO. While
realizing the ultra-lightweight condition, it meets the requirements of structural mechanics.

It is worth noting that many structures are inspired by nature. Lattice mimics the
microstructure of crystals, and Voronoi is enlightened by bionic ideas such as cells. Is it
possible to draw on nature to find other, more suitable structures for metal mirrors in future
scientific research? For example, the unique royal water lily can bear an adult without
sinking into the water. Likewise, there are a thousand strange snowflake microstructures
(Figure 30). Further exploration should be carried out [77–79].
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4. Challenges Faced in the Development of AM Metal Mirror

Figure 3 shows the process chain of AM metal mirrors, and the steps can be sum-
marized into five parts: the preparing stage, designing stage, mirror blank prefabricating
stage, optical processing stage, and testing stage. The mirror blank prefabricating stage and
designing stage have been described in detail in Sections 2 and 3. Post-processing includes
the following steps: (1) densification is a necessary step in the AM process, which helps to
reduce the porosity of parts and enhance the mechanical properties; (2) heat treatment helps
to reduce the residual stress generated during the printing and improve the dimensional
stability; (3) optical processing includes the SPDT, surface modification, and polishing,
which is the final step to obtain mirrors with good surface roughness and surface accuracy.
According to engineering experience, post-treatment accounts for a large part of the overall
cost and time. Due to the broad scope of post-processing techniques available to mirror
fabrication, this section addresses only several key issues encountered in post-processing
and gives the corresponding solutions.

4.1. Porosity

Porosity is one of the most important criteria for evaluating AM products. Fusion
errors, gas pores, and shrinkage pores are three types of pores in AM parts. PBF can be seen
as a micro-welding, which causes sizeable residual stress inside the part during the unique
process of rapid melting and solidification. Improper selection of laser power, scanning
speed, or other parameters can result in cracking, holes, low density, and poor forming
quality [80]. Other pores are attributed to an insufficient supply of liquid metal during the
solidification process. As shown in Figure 31, the mirror’s holes are obvious under the
light, which affect surface accuracy. Therefore, selecting the best processing parameters
and carrying out densification for the forming parts are essential. Surface modification is
required if necessary. Moreover, the standard methods used to test porosity are scanning
electron microscopy (SEM) and computed tomography (CT).
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4.1.1. Powder Quality

The quality of the powder directly affects the finished products. The main parameters
of powder are particle size, sphericity, fluidity, and density. PBF requires infinitesimal
powder, a narrow size range, and a sphericity of 98% or more to manufacture high density
and performance parts [27]. The more refined powder, the smaller the pores between
particles, so the denser powder layer. The fine powder melts more with the same heat
source than coarse powder because of the more prominent surface area.

Consequently, it lends to the greater sintering drive, which is conducive to obtain-
ing excellent metal parts. Generally, the suitable particle size range for SLM powder is
15–53 µm. If the range distribution is vast, the surface of powder laying will be delaminated.
That will also result in the uneven melting of metal powder and a severe increase in the
porosity or surface roughness of formed parts [23]. Powder with the normal distribution of
particle size range has the best effect. Owning to the high energy conversion rate and the
high energy density of electron beams, the suitable particle size range for EBM powder is
53–150 µm. Other parameters are similar to those of the SLM.

The manufacturing of high-quality powder remains a critical challenge due to its
high surface area and susceptibility to oxidation. In the process of SLM, the gas elements
may form holes and other local defects, resulting in the reduction in densification and
mechanical properties of parts. Therefore, the content of oxygen, nitrogen, and other
elements shall be strictly controlled. Generally, the mass fraction of oxygen in metal is less
than 0.15 wt%, and the mass fraction of nitrogen in metal is less than 0.05 wt% [81]. An
assessment of the manufacturing routes of powders and their respective performances
during the AM processes is important. The most commonly used is conventional gas
atomization (GA), which has the advantages of high capacity, good efficiency, and a low
cost [82,83]. The powder cannot satisfactorily print the high-quality and high precision
parts due to deficiencies of varying powder size and high oxygen content. Other ways of
mainly making alloy powders are plasma rotating electrode process (PREP) and plasma
atomization (PA) [84].

Figure 32 shows the SEM images of Ti-6Al-4V powder generated by different methods.
PREPed powders are perfectly spherical in shape with smooth surfaces. However, high-
quality powders are expensive because of the high cost of the fabrication process, such as
PREP, and the low yield of the atomization process. In the PBF process, the solid powders
can be reused to reduce cost, although such reuse of powder particles results in an irregular
shape and poor surface finish of the final part [85]. Therefore, powders used as feedstock
materials must be selected by considering both their quality and cost in association with
the corresponding AM process. So, the powder with better sphericity and more uniformity
is obtained, which meets the requirements of preparing metal mirrors.

4.1.2. Hot Isostatic Pressing (HIP)

HIP is an effective method used for densifying metal parts which began in the 1950s.
It is mainly used to prepare powder superalloy and improve casting properties as well
as metallic structures. The principle is to place a part in a closed chamber and heat.
At the same time, inert gas is used as the working medium to exert the same pressure
on the part from all directions, which densifies it under high temperature and pressure
(Figure 33) [86]. Hence, this process is termed isostatic pressure. The high pressure and
temperature can eliminate the most pores and cracking in the parts. Because the part
is extruded from all directions, HIP has relatively little effect on the part’s dimensions.
Moreover, it positively impacts residual stress relief, anisotropy reduction, and fatigue
behavior improvement [87,88].
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HIP is necessary post-processing for AM mirror blanks. Figure 34 presents a compar-
ison of Songnian Tan’s product before and after HIP. The porosity of the mirror blanks
reduced from 0.092% to 0.005% [37]. The result of the study showed that in the following
HIP treatment, the internal pores were reduced, and the tensile strength was reduced due
to the microstructure changes. It further illustrated the feasibility of HIP in post-processing.



Appl. Sci. 2021, 11, 10630 25 of 34

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 35 
 

HIP is necessary post-processing for AM mirror blanks. Figure 34 presents a compar-
ison of Songnian Tan’s product before and after HIP. The porosity of the mirror blanks 
reduced from 0.092% to 0.005% [37]. The result of the study showed that in the following 
HIP treatment, the internal pores were reduced, and the tensile strength was reduced due 
to the microstructure changes. It further illustrated the feasibility of HIP in post-pro-
cessing. 

 
(a) (b) 

Figure 34. CT results of AlSi10Mg samples: (a) deposited state and (b) HIPed state [37]. 

4.2. Dimensional Stability 
Dimensional instability refers to the change in the dimensional accuracy of mirrors 

during the designing, manufacturing, using, and storing stages. It is the main factor that 
determines whether AM mirrors can be used in engineering. Therefore, the smaller the 
change, the more likely it is that mirrors can meet the requirements of the technical con-
ditions. The dimensional stability that metal mirrors need to reach is the 10−6 level, so the 
size changes relative to the meter level should be controlled at the micron level [89,90]. 

Dimensional changes can be divided into four types: (1) First, when the part is placed 
in a stable environment, the dimension of the mirror changes with time. This process is 
prolonged and irreversible. (2) The second type is the dimensional change caused by ther-
mal or force cycles, which refers to when the mirror returns from a changing environment 
to a stable environment. This situation is also a permanent deformation. (3,4) The third 
and fourth types are dimensional deformations caused by temperature and hysteresis, 
respectively. There are subtle differences between the two. Both describe the deformation 
of a part that is moved from a stable environment to another stable environment. The 
temperature-induced deformation is independent of the change path and a reversible de-
formation; the hysteresis-induced deformation is related to the change path, resulting in 
deformation that may be reversible or permanent [89–92]. 

Then, these types of dimensional change can be summarized into four factors 
through a detailed analysis: externally applied stress, non-uniformity, anisotropy of ma-
terial properties, microstructural variations, and internal stress variations. In practical en-
gineering, the dimensional stability of metal mirrors can be improved, starting from these 
factors. 

4.2.1. Material Characteristics 
The material characteristics have a vital influence on the dimensional stability of mir-

rors. The characteristic parameters include the characteristic thermal parameters: CTE, 
specific heat, thermal conductivity, and thermal diffusion coefficient; force characteristics 
include the parameters: stiffness, Young’s modulus, specific stiffness, micro yield 
strength, and Poisson’s ratio. Among them, the micro yield strength and CTE are essential 
factors for dimensional stability. The materials can be selected from those introduced in 
Section 2.2.1 to ensure dimensional stability. Moreover, the same material of optical and 
mechanical structure can realize the optimal athermalization of optical systems. 

Figure 34. CT results of AlSi10Mg samples: (a) deposited state and (b) HIPed state [37].

4.2. Dimensional Stability

Dimensional instability refers to the change in the dimensional accuracy of mirrors
during the designing, manufacturing, using, and storing stages. It is the main factor
that determines whether AM mirrors can be used in engineering. Therefore, the smaller
the change, the more likely it is that mirrors can meet the requirements of the technical
conditions. The dimensional stability that metal mirrors need to reach is the 10−6 level, so
the size changes relative to the meter level should be controlled at the micron level [89,90].

Dimensional changes can be divided into four types: (1) First, when the part is placed
in a stable environment, the dimension of the mirror changes with time. This process
is prolonged and irreversible. (2) The second type is the dimensional change caused
by thermal or force cycles, which refers to when the mirror returns from a changing
environment to a stable environment. This situation is also a permanent deformation.
(3,4) The third and fourth types are dimensional deformations caused by temperature
and hysteresis, respectively. There are subtle differences between the two. Both describe
the deformation of a part that is moved from a stable environment to another stable
environment. The temperature-induced deformation is independent of the change path
and a reversible deformation; the hysteresis-induced deformation is related to the change
path, resulting in deformation that may be reversible or permanent [89–92].

Then, these types of dimensional change can be summarized into four factors through
a detailed analysis: externally applied stress, non-uniformity, anisotropy of material prop-
erties, microstructural variations, and internal stress variations. In practical engineering,
the dimensional stability of metal mirrors can be improved, starting from these factors.

4.2.1. Material Characteristics

The material characteristics have a vital influence on the dimensional stability of
mirrors. The characteristic parameters include the characteristic thermal parameters: CTE,
specific heat, thermal conductivity, and thermal diffusion coefficient; force characteristics
include the parameters: stiffness, Young’s modulus, specific stiffness, micro yield strength,
and Poisson’s ratio. Among them, the micro yield strength and CTE are essential factors for
dimensional stability. The materials can be selected from those introduced in Section 2.2.1
to ensure dimensional stability. Moreover, the same material of optical and mechanical
structure can realize the optimal athermalization of optical systems.

4.2.2. Process Parameters

PBF technologies use an energy source to scan the specific areas to melt the powder.
There are over 20 process input parameters that need to be set automatically or manually,
and possibly more that are not adequately identified, such as scanning speed, scanning
path, layer thickness, and laser power. These parameters directly affect the printing speed
and the parts’ quality [93]. Olakanmi et al. studied the densification mechanism and
microstructure evolution law of SLMed Al alloy parts and considered whether the process
parameters play a decisive role in the porosity and pore direction [94]. However, the
influence of process parameters on formed parts is not a single effect. Only when different
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process parameters cooperate can high-performance parts be obtained. For example, when
the laser power is relatively weak and the layer thickness is too large, the alloy powder
cannot be completely melted. Therefore, before fabricating high-precision AM parts,
stimulation for the whole printing process must be performed to find the best scanning
strategy and other parameters [95].

The first step is to preheat the forming platform and chamber before printing. Then
reduce the areas of uneven thickness and avoid significant cross-section changes. The
choice of laser power is also crucial. Generally, the central temperature of the laser beams
can reach 3500 K, and its choice is related to the melting point of printing powder. The
density increases accompany the laser power as the powder absorbs more energy to
facilitate total melting. However, the energy densities begin to cause balling at some point,
thereby reducing the density and surface roughness. In addition, different laser scanning
strategies can be used to minimize the accumulation of residual stress (Figure 35) [96].
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Laser energy density can reflect the influence of scanning speed and laser power on
laser energy input. The laser energy density increase can fully melt the power to reduce the
pores of the parts. If the laser power density is too high, defects will occur, such as thermal
cracks and liquid metal splashes, which can easily happen. A simplified energy density
equation has been used by numerous investigators as a simple method for correlating input
process parameters to the density and strength of the forming parts. In their simplified
model, energy density EA can be found using Equation (1) [25].

EA =
P

υ × HS
(1)

where P is laser power, υ is scan speed, and HS is the scan spacing/hatch spacing between
parallel scan lines. In this model, energy density increases with increasing laser power
and decreases with increasing scanning spacing and velocity. Due to the high thermal
conductivity of Al alloy materials, their laser energy is easily consumed during SLM.
Therefore, the molten pool temperature and the fluidity decrease results in defects such
as pores and cracks. Table 3 gives some of the performance data of AlSi10Mg printed
with different parameters. Obtaining the appropriate liquid viscosity by adjusting the
laser energy density reasonably can possibly restrain the spheroidization effect and the
generation of microcracks [97].

4.3. Heat Treatment

As mentioned above, residual stress is a critical factor affecting dimensional stability.
Like welding, there is much residual stress in metal AM parts. In the process of PBF, each
new layer of a part is formed by moving the laser beams through the powder layer, melting
the top layer of powder and fusing to the layer below at the same time. The heat flows
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from the pool to the solid metal below, so the temperature gradient of the melting zone
is considerable. It is constrained below the solid structure when a new layer is cooled
and solidified on the previous layer [98]. Therefore, shear force is generated between
layers because of shrinking. Then, holes, delamination, thermal deformation, and cracking
may appear, which deteriorates the dimensional accuracy and mechanical properties of
end-use parts. To sum up, residual stress is one of the main challenges in the high-quality
manufacturing of metal AM products.

Heat treatment is the most essential and practical measure for reducing residual stress.
The main principle is to evenly heat a part and let it soak through the whole part, both
the thick sections and thin sections, until it reaches a temperature equilibrium [23,99,100].
The heat treatment for SLMed aluminum alloy parts mainly includes annealing and aging.
The main purpose of annealing is to reduce residual stress, eliminate defects, and improve
ductility. Aging is a strengthening heat treatment, and its main purpose is to further
improve the strength of the alloy. Aging can be also divided into artificial aging and natural
aging. At present, T6 heat treatment is the most commonly used. The heat treatment
temperature and time of different compositions and content of alloy elements vary greatly.
If the heating temperature is too high or the holding time is too long, abnormal grain
growth and burning easily to occur, which reduces the mechanical properties. Shielding
gas needs to be added in order to relieve stress, even in the vacuum furnace in some
exceptional cases. Moreover, the excellent design of parts is also the crux of eliminating
residual stress, which minimizes the residual stress and maximum dimensional stability.

The mechanical properties of AlSi10Mg after heat treatment can be found in Table 3.
Table 3 shows that after T6 heat treatment, yield strength and ultimate tensile strength
increase remarkably. However, for other heat treatment experiments, yield strength and
ultimate tensile strength decrease. This can be attributed to the Si phase undergoing
thermally activated growth during heat treatment at a high temperature. Therefore, the
appropriate parameters should be selected before carrying out the heat treatment. In
addition, the precipitated Si phase is spherical, which can reduce the local shear and
restrain crack initiation and propagation when deformed. In addition, an increase in the Si
particle size and a decrease in the number of Si particles reduce the local stress and strain
during tensile loading [101]. Generally, proper heat treatment plays a positive role in the
later processing procedure for printing mirror blanks.

4.4. Quilting

The quilting (print-through effect) stems from the influence of mechanical properties
during SPDT and polishing [102]. Afterward, the support structures appear on the mirror
surface under the FEA, thus deteriorating the surface accuracy (Figure 36). Quilting can
reduce the maximum energy at the center of the diffraction disk for the diffraction-limited
systems. In the design stage of mirrors, especially for sandwich mirrors, both the cell wall
thickness and support structure are the factors that make the quilting of mirrors. Therefore,
it must be reduced as much as possible. Daniel Vukobratovich summed up a formula for
calculating the quilting amplitude [20]. It can be expressed by Equation (2):

δc = ψ[
Et3

f
12(1 − v2)

]−1PB4, (2)

where δc denotes the quilting amplitude (peak to peak), ψ the geometric quilting constant,
E Young’s modulus, tf the front face sheet, ν the Poisson’s ratio, P the polishing pressure,
and B the diameter of the cell-inscribed circle.
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It can be seen that the quilting should be reduced in the design stage of mirrors.
Firstly, it is important to choose the appropriate material because Young’s modulus and
Poisson’s ratio affect the quilting. ψ is the geometric quilting constant which is different
for every lightweight hole (Figure 13), such as ψsquare = 0.00126, ψtriangle = 0.00151,
ψhexagonal = 0.00111. In addition, the polishing pressure and the thickness of the front skin
are all factors. Figure 37 gives an illustration of the surface distortions created during
the polishing process of a lightweight structure. Therefore, it is important to reserve an
appropriate machining allowance and control the post-treatment process well to mini-
mize quilting.
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DfAM provides more thoughts for mirror design. For example, TO or random foams
can provide more uniform and denser support for the mirror surface, which minimizes the
low-frequency surface error caused by the processing (Figure 38). The quilting of optimized
and unoptimized mirrors from Carolyn Atkins’ team was compared in Section 3.2. The
results show that the optimized mirror’s quilting was significantly reduced. Therefore, it is
verified that DfAM is effective in reducing the quilting of metal mirrors. In the future, the
internal structures of the sandwich mirror could be designed via drawing on the bionic
structures to achieve the desired results.
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5. Conclusions and Future Trends

The present review shows significant progress has been made in designing and manu-
facturing AM metal mirrors and lists the problems encountered in the process and solutions.
The designing and manufacturing criteria for the metal mirrors are light weight and high
stiffness. Furthermore, the sandwich mirror is the primary design in this field because
of its well-known stability and light weight. However, compared with the conventional
processing method, the difficulty and time of manufacturing sandwich mirrors can be sig-
nificantly reduced by AM. In addition, there are several internal structure design methods
based on DfAM, such as lattice, TO, and Voronoi, which greatly increase the freedom of
mirrors design.

SLM has become the most mature and effective metal 3D-printing technology for
fabricating metal mirrors now. In the future, material limitations, excessive residual stress
in parts, continuous improvement of requirements, a light weight, and change of machining
processes are all main factors driving the development and selection of next-generation
products. Therefore, further work on AM metal mirror should focus on the following
three topics:

(1) Explore and develop other materials suitable for AM metal mirrors, such as beryl-
lium and beryllium-aluminum alloy, and adopt current metal AM techniques to a broader
range of materials. Previously, General Dynamics prefabricated a beryllium-aluminum al-
loy mirror, but the result was not as expected [21]. We should focus on matching processing
technologies and powder materials, such as printing beryllium-aluminum alloy powder
with high melting points and high-power electron beams. Moreover, AM technologies
can also fabricate other materials’ optical components, such as ceramic mirrors, polymer
lenses, and liquid lenses [103–105]. Utilize them in the application of optical instruments
and precision engineering as soon as possible;

(2) High-entropy alloys, magnetic alloys, bulk metallic glasses (BMG), functionally
graded materials (FGM), and nano-architected metals are all materials for which advanced
research is developing now [106]. Amorphous metals have high elasticity and fracture
resistance advantages and are lightweight and beneficial for obtaining high-quality AM
products. Moreover, amorphous metal 3D printing technologies, which are ideal for fabri-
cating metal mirrors, can help decrease the internal stress and porosity of the AM products
as well as optimize the system’s dimensional stability and environmental adaptability.
Figure 39 shows a 3D-printed gear of amorphous metal. However, it is a challenging
technology that is limited by multiple factors, such as material crystallization due to the
high temperatures, residual stress relieving, and laborious post-processing. Therefore,
related research is in the exploration stage [107];
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(3) The idea of the integration of macro and micro has been advanced to realize a
lightweight design. In Section 3.4, researchers from Lockheed Martin have created a metal
mirror which is ultra-lightweight and stiff by combining TO with 3D Voronoi. Furthermore,
we should give full play to the idea of multiscale optimization in the design of AM metal
mirrors, for example, combing the lattice with TO or Voronoi (Figure 40). In the future, this
idea will provide strong technical support for AM metal mirrors, as well as the development
of related disciplines and industries.
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Though, few AM metal mirrors are put into practical engineering applications. With
the continuous development of the AM parts’ densification and surface treatment processes,
metal mirrors’ mechanical property and dimensional stability will greatly improve. In a
few years, AM metal mirrors can be used at the visible level and even the laser level, so
they have broad application prospects.
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