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Abstract: 6D pose estimation of objects is essential for intelligent manufacturing. Current methods
mainly place emphasis on the single object’s pose estimation, which limit its use in real-world
applications. In this paper, we propose a multi-instance framework of 6D pose estimation for
textureless objects in an industrial environment. We use a two-stage pipeline for this purpose. In the
detection stage, EfficientDet is used to detect target instances from the image. In the pose estimation
stage, the cropped images are first interpolated into a fixed size, then fed into a pseudo-siamese
graph matching network to calculate dense point correspondences. A modified circle loss is defined
to measure the differences of positive and negative correspondences. Experiments on the antenna
support demonstrate the effectiveness and advantages of our proposed method.

Keywords: 6D pose estimation; metric learning; dense correspondences; antenna support

1. Introduction

Estimating 6D pose, i.e., 3D translation and 3D rotation of a target, is a fundamen-
tal problem in intelligent manufacturing, especially in the application fields of object
grasping [1,2], assembling [3,4], bin-picking [5,6], and stacking [7] with the help of the
visual sensors.

Visual sensors in an industrial environment can mainly be divided into three cate-
gories, namely, RGB, D, and RGB-D sensors. RGB sensors only achieve color information
through a CMOS unit. D sensors use structured light, lidar injector–receiver, or radar
injector–receiver to measure the distance from the camera to the target. RGB-D sensors
combine both RGB and D sensors and leverage the calibration method to assign color
information onto the depth information. However, there are limitations for D sensors in
industrial environments [8]. On one hand, using depth sensors in industrial environments
are not always useful, as there are plant of non-Lambert surface objects such as metal parts,
glasses, and ceramics, which have uncertain reflection ratios for the light to make the depth
immeasurable. On the other hand, thanks to the fast development of the deep learning
technologies in recent years, the performance of 6D pose estimation methods using only
RGB information is comparable with those using RGB-D information [9,10]. Therefore, we
focus on the investigation of RGB-based 6D pose estimation method in this paper.

Traditional methods use different kinds of hand-crafted descriptors [11–13] to extract
features surround the image points to establish the feature descriptions of the image points.
The property of scale and rotation invariant is always considered to ensure the feature
similarity of the same point of an object under different point-of-view in the image. These
methods are sufficient for rich textured objects because of the variant color gradients of their
surfaces; however, they are not capable of obtaining distinguishable point features from
textureless surfaces such as metal, glasses, and ceramics. To solve this problem, geometric
features such as lines [14,15], moments [16], circles [17], and gradients of edges [18,19],
which can represent the geometric structures of an object, have been designed to describe
the implicit features. Properties that are invariant to scale and rotation have also studied on
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these geometric features [20]. However, the geometric features usually describe the overall
structure of an object. When they are invariant to rotation and scale, they are only useful in
object detection from an image, but lose the ability to distinguish different translation and
rotation of the object.

With the fast development of deep learning technologies in recent years, many re-
searchers have used deep neural networks to predict the 6D pose of a textureless ob-
ject. SSD-6D [10] uses a direct regression strategy to predict a translation and orientation
based on the popular SingleShot multibox Detector (SSD) object detection framework.
DeepIM [21] proposes a CNN structure to iteratively measure the difference between the
current 2D image projection of the predicted pose and the real 2D image. A deep neural
network that outputs the optic flow between the two images was designed to provide
pose refinement for the current pose. [22] combines semantic key-points predicted by a
convolutional network with a deformable shape model to determine the 2D–3D correspon-
dences. PVNet [9] regresses pixelwise vectors pointing to the key-points with a modified
U-Net structure and proposes a voting scheme to decide the location of the key-points.
HybridPose [23] extends the approach of PVNet [9] by utilizing a hybrid intermediate
representation to express different geometric information in the input image, including
key-points, edge vectors, and symmetry correspondences. CosyPose [24] develops a robust
method for matching individual 6D object pose hypotheses across different input images
in order to jointly estimate camera viewpoints and 6D poses of all the objects in a single
consistent scene.

Recently, finding dense correspondences using the deep neural networks has shown
advantages in 6D pose estimation [25,26]. The per-pixel matching scheme was utilized to
design and train the network. In [26], a pseudo-siamese matching network was proposed
to match dense correspondences in high-dimension; then, the dense correspondences were
used to calculate the target pose through Perspective-n-Points (PnP) method [27]. This
method achieved state-of-the-art performance in LineMod [28] and Occlusion-LineMod [29]
datasets. However, both datasets contain only one instance for each object. The network
is designed to directly segment the object in the image. Thus, it is not applicable for
multitarget pose estimation tasks. In this paper, we improve this method in two main
aspects for industrial usage.

(1) We adopt EfficientDet [30] to first detect every object in the image. Each object in
the image is then cropped through the bounding box provided by the EfficientDet and
resized into fixed value. All the resized images are fed into the correspondences matching
network to predict dense correspondences. After obtaining the correspondences, PnP-
Ransac method is used to calculate the 6D pose of the target. By adopting the two-stage
network structure, we solve the problem for multi-instance 6D pose estimation.

(2) We introduce the circle loss, a well-known loss function in metric learning, to
measure the similarities between pixelwise deep features from a 2D image and nodewise
deep features from a 3D mesh model. We analyze the reason why the softmax cross-entropy
loss [31] used in [26] is not suitable for dense correspondences matching and compare the
proposed masked circle loss with the softmax cross-entropy loss though ablation studies to
show the superiority of the proposed loss.

In summary, our main contribution lies in the framework of the 6D pose estimation
that can deal with multiple instances in single frame and a novel metric learning loss that
efficiently constrains the matching of the 2D–3D correspondences.

The remainder of this paper is organized as follows: In Section 2, we introduce the
whole two-stage 6D pose estimation framework for multi-instance textureless objects.
The masked circle loss for 2D–3D correspondences matching is introduced in detail. In
Section 3, we test our proposed method on the pose estimation problem for the antenna
support and compare it with some other state-of-the-art methods to show the effectiveness
and advantages of our method. Conclusions are drawn in Section 4.
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2. Methodology

Given an RGB image, the main purpose of the 6D pose estimation is to predict a rota-
tion matrix R ∈ SO(3) and a translation vector t ∈ R3 from the objects’ coordinate system
to the camera coordinate system. When the pose is accurately detected, the transformation
between the industrial robot and the object can be easily inferred for further action such
as object grasping or assembling. In fact, the 6D pose estimation problem can be divided
into two subtasks: (1) Find out the target objects from the image. (2) Calculate the poses
for all the target objects. Most of the existing works [9,25,26,32] solve the two problems in
a unified framework for boosting the performance on commonly used open-evaluation
datasets such as LINEMOD, Occlusion LINEMOD, and YCB Video. However, all of these
datasets only contain a single target for each of the classes in one frame. When there are
plenty of targets of the same type, the model cannot handle the situation well. Therefore, in
this paper, we propose a two-stage framework to separately solve the 6D pose estimation
problem for multi-instance environments.

2.1. Overview

In this section, we introduce the framework of the proposed multi-instance pose
estimation method in detail. The framework consists of four modules, namely, the object
detection module, mesh feature encoding module, image feature encoding module, and
pose estimation module. The flowchart of the framework is shown in Figure 1.

conv conv conv conv
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Figure 1. Flowchart of our proposed two-stage pose estimation framework.

The input of the model is an RGB image taken by an industrial camera. The image is
first fed into the object detection module to find out the bounding boxes for each object in
the image. We chose to use EfficientDet [30] in this module due to its light weight and high
performance among current commonly used object detection modules. The EfficientDet
offers seven versions with different model sizes to fit the need for variant applications. The
bi-FPN used in the EfficientDet can effectively extract useful features for different kinds
of objects.
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After each bounding box of the objects in the image was correctly obtained, the objects
were cropped out of the image through the bounding box. We expanded the bounding box
by δw and δh in width and height, respectively, to ensure the object is inside the bounding
boxes. The bilinear interpolation method was used to resize all the cropped images into a
fixed size (Hcrop, Wcrop). Then, the resized images were parallely fed into the image feature
encoding module to achieve the deep representation for each pixel.

The image feature encoding module utilized the U-Net structure as the backbone for
feature extraction. The cropped images with the same size were fed into the U-Net to
extract deep features. Two multiple-fully-connected layers were designed to predict the
semantic segmentation and pixelwise deep representation, respectively. The function of
the U-Net can be represented as FI = Λθunet(I), where I denotes the input cropped image of

an object. θunet is the parameter of the U-Net model. FI = (Fseg
I , F f eat

I ) ∈ R(C+1+D)×H×W

indicates the output tensor of the U-Net. The Fseg
I ∈ R(C+1)×H×W part of the tensor is

responsible for the semantic segmentation for C classes objects while the F f eat
I ∈ RD×H×W

part of the tensor represents the pixelwise D dimensional deep features of the object in
the image.

In the mesh feature encoding module, a 4-layer SplineCNN FM = Φθspline(M) ∈ RD×L

is used to extract nodewise deep features from the 3D mesh model. M is the 3D mesh model
of the target object. θspline denotes the parameters of the SplineCNN. FM represents the
node features calculated through the SplineCNN, where L is the number of the nodes from
the 3D mesh model. The affinity submodule explicitly provides an affine transformation
between the pixelwise deep features and nodewise deep features through Equation (1).

sk
i,j = Fk

Mxi
AkFIyj

(1)

where Ak ∈ RD×D are the learnable parameters of the affinity submodule for the k-th
object. Fxi

M ∈ RD and F
yj
I ∈ RD are the xi pixel and yj node in the image and 3D mesh

model, respectively. This submodule provides the ability for the network to learning affine-
invariance features that can match with each other through feature similarity si,j ∈ R.

In the pose estimation module, the deep features encoded from the image feature
encoding module and the mesh feature encoding module are multiplied through dot
product to calculate the similarity of the correspondences. The features with the maximum
similarities were chosen as the 2D–3D correspondences. As there was one correspondence
from 3D model for each pixel in the RGB image, dense correspondences were directly
obtained for the RANSAC-based PnP method to calculate relative pose from the camera to
the object.

2.2. Masked Circle Loss for Matching Dense Correspondences

The core operation in dense 2D–3D correspondences matching is to calculate the
similarity between the pixelwise deep features from an image and the nodewise deep
features from a 3D model. The cosine similarity is used to measure the distance between
the features

Sk = Fk
M AkFI (2)

where Sk denotes the similarity matrix for object k. In [26], the softmax cross-entropy loss—
which is the most generally used loss function for traditional classification problem—was
chosen to select the corresponding node from 3D model for each image pixel that belongs
to the target object. The lost function can be described as

Li = −log
esil

n
∑

j=1
esij

(3)
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where sij denotes the similarity between the i-th pixel in the image and the j-th node from

the 3D model. l is the correct label for the matching. The softmax step piq =
esil

n
∑

j=1
esij

,

q = 1. . . n turns each similarity sij into a probability pij. Then, the pij is used to calculate the
cross entropy with the one-hot vector, which only the true class equals to one, while all the
other classes remain zero. The gradient of the j-th node in the softmax cross entropy loss is

∂Li
∂sij

=

{
pij − 1, i = l
pij, i 6= l

. (4)

As shown in Equation (4), the gradient of the true class is pil − 1, which means the
network is trained to make the similarity of the true class to be one, while the similarity of
the false class to be zero. However, in the case of feature matching, the divergence among
the classes is not as large as that in the traditional classification problems.

As shown in Figure 2, the red point denotes the true class matching from the image
pixel i to the node j in 3D model. The green circle denotes a nearby region for node j. As
in the softmax cross-entropy loss, all the nodes in the green circle are trained to have zero
similarities with respect to pixel i while the node j is trained to have a similarity of one.
This situation is apparently not reasonable for the training. In fact, the main purpose of the
correspondence matching is to find the most similar node from 3D model for pixel i instead
of the same node from 3D model. Thus, it is more suitable to learn a distance metric for the
2D–3D correspondences.

2D Image 3D Mesh Model

true correspondence false correspondences

Figure 2. The illustration for the dense matching correspondences using softmax cross-entropy.

Metric learning, which is also known as similarity learning, is a conventional research
area before the deep learning era. Deep metric learning introduces deep neural networks
into conventional metric learning. One of the most popular metrics of learning loss is
contrastive loss

LC =
{
‖ fi − f j ‖2

2, ci = cj

max(0, m− ‖ fi − f j ‖2
2), ci 6= cj

(5)

where m is a margin among different classes and ci denotes the i-th class. Another well-
known metric loss is triplet loss

LT = max(0, m+ ‖ fi − f j ‖2
2 − ‖ fi − fk ‖2

2), ci = cj, ci 6= ck (6)

The main difference between these two methods is that triplet loss stops the opti-
mization of the inner class distance ‖ fi − f j ‖2

2 when the condition m+ ‖ fi − f j ‖2
2 − ‖

fi − fk ‖2
2< 0 is fulfilled, while the contrastive loss always optimizes the distance among
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features that belong to the same class. Apparently, triplet loss is more suitable for the task
of dense feature matching, as the similarity of the true correspondences does not have to
be one, it only needs to be more similar with its correspondence compared with the others.

Circle loss [33] proposes a unified perspective of view to explain the triplet loss and
the softmax cross-entropy loss. Assume there are Kin within-class similarities and Kout

between-class similarities, which are denoted by si
p(i = 1, 2, ..., Kin) and sj

n(j = 1, 2, ..., Kout),
respectively; p and n mean the positive and negative similarity, respectively.

In order to minimize sj
n(∀j ∈ 1, 2, ..., Kout) as well as to maximize si

p(∀i ∈ 1, 2, ..., Kin),
the unified loss function can be designed as

Luni = log[1 +
Kin

∑
i=1

Kout

∑
j=1

exp(γ(sj
n − si

p + m))]

= log[1 +
Kout

∑
j=1

exp(γsj
n)

Kin

∑
i=1

exp(γ(−si
p + m))]

= −log

Kin
∑

i=1
exp(γ(si

p −m))

Kin
∑

i=1
exp(γ(si

p −m)) +
Kout
∑

j=1
exp(γsj

n)

(7)

where γ is a scale factor. We can find out that if we set γ = 1, m = 0, and Kin = 1,
Equation (7) degenerates to the softmax cross-entropy loss, as shown in Equation (3). The
main purpose of the function is to minimize (sn − sp), in which reducing sn is equivalent
to increasing sp. Circle loss introduces (αnsn − αpsp) instead of (sn − sp), where{

αi
p = [Op − si

p]+,

α
j
n = [sj

n −On]+,
(8)

in which [�]+ is the ReLU function that ensures αi
p and α

j
n are non-negative; αi

p and α
j
n

adjust the weight so the gradient of reducing sn is equivalent to increasing sp. When sn
approaches zero and sp approaches one, the gradients drop to a small value according to

αi
p and α

j
n. It intuitively emphasizes the hard examples where sn is similar to sp.

As for the purpose of dense 2D–3D correspondence matching, we need to emphasize
the hard examples and pay less attention to the easy case. Thus, the circle loss is more
suitable than the softmax cross-entropy loss.

Another problem for the 2D–3D correspondence matching is that the ground-truth
poses of the objects have measurement errors that lead to the mismatch of the correspon-
dences. To overcome the problem, we assign a neighborhood area N for each pixel. If the
nodes on the 3D mesh model lie in the neighborhood area, they are regarded as positive
correspondences. Each pixel has its own neighborhood area to eliminate the influence of
the measurement errors of the ground-truth poses.

For every neighborhood area, we set a mask on it, and name the overall loss function
the masked circle loss. The masked circle loss can be formulated as

Lm_circle =
1
u

u

∑
k=1

log[1 + ∑
i/∈Nl

exp(γα
j
n(s

j
n − ∆n)) ∑

j∈Nk

exp(−γαi
p(s

i
p − ∆p))] (9)

where u denotes the number of pixels that belong to the object in the image; ∆p = 1−m
and ∆n = m are the margin between the positive pairs and negative pairs; Nk denotes the
set of nodes from 3D mesh model that lie in the neighborhood area of pixel k.
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The final loss of the network is defined as the combination of the segmentation loss
and the correspondence matching loss

Lall = Lseg + ζLm_circle (10)

where ζ is a hyperparameter to balance the two parts of the loss; Lseg is the pixelwise
softmax cross-entropy for the semantic segmentation of the objects. After the dense corre-
spondences are obtained, PnP with RANSAC method is used to calculate the final pose of
the target.

3. Results

In this section, we use our proposed method in a real industrial application to verify the
effectiveness and advantages of the proposed method. The target object in the experiment
is an antenna support, as shown in Figure 3a. The target is first molded through injection;
then, the mounting hole is conducted using a hole puncher. Between these two steps, the
antenna support needs to be collected from the conveyor belt with a correct pose, and then
put on the screw for the punch. Therefore, we train a deep learning model based on our
proposed method to predict the pose of the antenna support.

(a) (b)

(c) (d)

Figure 3. Preparation for the training and testing dataset of the antenna support. (a) The appearance
of the antenna support. (b) Selected key points from 3D mesh model of the antenna support.
(c) Correspondences in the 2D image. (d) Final ground-truth poses of the antenna supports calculated
through PnP.

3.1. Implementation Details

Data collections. In order to recognize the pose of the antenna support correctly, we
collected ten videos (5679 frames) of the antenna support in total as the training dataset, two
videos (1096 frames) for evaluation, and another 5 videos (3105 frames) as the validation
dataset. For each video, we manually selected some key points on the 3D model of the the
antenna support, as shown in Figure 3b. The 2D correspondences in the first frame of the
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video were then pointed out (Figure 3c) and the ground truth of the objects were calculated
through PnP method, as shown in Figure 3d.

The Aruco markers were used to calculate the pose of the camera with respect to
the board. The property of relevant stills among frames in the same video were used to
calculate the poses of each objects with respect to the camera for the rest of the frames.
To enhance the performance of the model, we further rendered 20,000 synthetic images
through the BOP [34] renderer for training, as shown in Figure 4. We also added data
augmentation to the original images including random cropping, resizing, 3D rotation, and
color jittering during training.

(a) (b) (c) (d)

Figure 4. Examples of the rendered images. (a–d) are examples that random selected from the synthetic dataset with
different view angles.

Model settings. We used EfficientDet-D2 as the object detection backbone in terms
of the balance between detection accuracy and memory usage. The dimension D of the
pixelwise and nodewise deep features was set to 128. The hyperparameter ζ to balance
the loss of the segmentation and the loss of similarity matching was set to 0.01 through
cross validation on the evaluation dataset. All the objects detected by the EfficientDet were
resized to 256× 256 for further calculation by the U-Net.

Training strategy. We used Pytorch [35] to implement our framework. The network
was trained on two Nvidia RTX 3090 graphics cards with 24 GB RAM. The batch size was
set to 16. We utilized the Adam optimizer [36] to process gradient decent of the parameters.
The initial learning rate was set to 0.001 and divided by two for every twenty epochs. The
model was totally trained for two hundreds of epochs and evaluated for every ten epochs.
The model with the best score in the evaluation dataset was chosen as the final model
for testing.

Mesh model Simplification. To reduce the memory usage of our model, we simplified
the 3D mesh model of the antenna support to possess less than 8000 triangular patches and
4000 vertices through quadric edge collapse decimation in MeshLab [37]. The average of
the node–pixel matching error is less than 0.5 pixel under this setting.

3.2. Evaluation Metric and Comparison

We utilized two commonly used evaluation metric to compare our proposed method
with some state-of-the-art methods.

2D Projection metric. This metric computes the mean distance in the 2D image between
the projections of the 3D mesh model from the estimated pose and the ground truth pose.
A pose is considered correct if the distance is less than σ pixels.

ADD metric. This metric [32] computes the mean distance between two transformed
model points using the estimated pose and the ground-truth pose through

ADD =
1
m ∑

x∈M
‖ (Rx + t)− (R̃x + t̃) ‖ (11)

When the distance is less than a certain percentage of the model diameter, it is claimed
that the estimated pose is correct.
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We compare our method with PSGMN [26], DPOD [25], and HybridPose [23]. As all of
the three methods are one stage pose estimation schemes that are not able to detect multiple
instances in one frame, we used the EfficientDet as the backbone for all the methods and
tested these methods with the fixed size image that only contains one object per image.
The results in terms of 2D Projection metric are shown in Table 1. It can be seen that our
proposed method achieves better performance than the other methods, especially when
the metric is stricter.

Table 1. Comparison of the proposed method with the other methods in terms of 2D Projection metric.

Methods HybridPose DPOD PSGMN Proposed Method

σ = 5 89.3 86.2 93.9 96.5
σ = 4 83.2 85.3 88.5 92.0
σ = 3 76.5 77.6 81.0 87.3
σ = 2 64.1 69.8 74.5 82.6

The results of comparison in terms of ADD metric are shown in Table 2. Our method
also outperforms the other method with a large margin. As this metric focus on the
measurement of the distances between the 2D–3D correspondences, our method takes
advantages of the dense matching loss and shows a great improvement in the scores.

Table 2. Comparison of the proposed method with the other methods in terms of ADD metric.

Methods HybridPose DPOD PSGMN Proposed Method

0.1-ADD 72.2 71.4 76.5 84.3
0.08-ADD 64.3 65.2 72.3 79.4
0.05-ADD 51.1 53.3 57.9 74.7

Some qualitative examples of our proposed method are shown in Figure 5. It is shown
that our proposed method can handle the multi-instance situation well and successfully
deal with partial occlusion and light changing conditions.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Some qualitative results of our proposed method. The bounding boxes in blue denote
the ground-truth poses of the antenna support, while the bounding boxes in red denote the poses
estimated using our method. (a–d) are examples that random selected from the test dataset to show
the effectiveness of our proposed method. The pictures are captured from different view angles.

4. Conclusions and Future Work

In this paper, a multi-instance 6D pose estimation framework was proposed to solve
the localization problem of certain objects in intelligent manufacturing. EfficientDet is used
as the backbone for object detection. The detected objects in image are resized and fed into a
U-Net model to further extract pixelwise deep features for 2D–3D correspondence matching.
We proposed a novel, metric-based loss, named masked circle loss, for the feature matching.
The results of the pose estimation of the antenna support demonstrate the effectiveness of
our proposed method compared with the state-of-the-art pose estimation methods.

However, current frameworks do not consider the geometric structure and constraints
among pixels; further studies will focus on the investigation of the relationships between pixels.
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