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Abstract: Many scientists are increasingly interested in on-site detection methods of phenol and
its derivatives because these substances have been universally used as a significant raw material
in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs,
antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a
toxic response that induces harsh impacts on plants, animals, and human health. This mini-review
updates recent developments and trends of novel plasmonic resonance nanomaterials, which are
assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon
resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful
analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection
of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel
trends in the optical sensors of phenolic compounds. The applications of Raman technologies based
on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented,
in which the remaining establishments and challenges are discussed and summarized to inspire the
future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid
and trace detection of phenol and its derivatives.

Keywords: phenolic compounds; plasmonic resonance; Raman spectroscopy; noble metal nanostructures;
environmental detection

1. Introduction

Plasmonic resonance-based optical sensor technology has been considered to be an
efficient method applied for sensing techniques of either indoor or outdoor carbon dioxide
molecules [1], various gases [2], inorganic arsenic compounds [3], and pesticides [4]. Opti-
cal sensors have been known as simple analytical techniques to demonstrate numerous
advantages such as facile design and effective detection, leading to promising potential
applications in environmental metal ion monitoring [5]. Recently, plasmonic nanomateri-
als [6] and 2D materials [7] have rapidly emerged as unique sensing platforms for varieties
of engineering applications thanks to their specific features such as enhanced electrical,
optical, and electrochemical signals.

Among various optical sensor materials, scientists are increasingly interested in pure
noble metals and combined structures of hybrids and MOFs to utilize their plasmonic
resonance. For example, some scientific reports have been published, such as an SPR
sensor of Hg2+ [8], Au-modified-tyrosinase enzyme-based graphene oxide used for phenol
detection [9], dopamine-inspired Au-assisted Raman monitoring of Cd2+ and polycyclic
aromatic hydrocarbons [10], Au@Ag nanorod dimer-introduced dopamine detection [11],
Ag nanocube-assisted Raman detection of protein [12] and thiram [13], and Ag-coated Au
nanostar-supported Raman sensing of microplastic pollutants in water [14].
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Phenol—also called benzenol, or mono-hydroxybenzene—has been known as the
simplest compound of the aromatic alcohol group. Its main structure includes a benzene
ring and a hydroxyl group (—OH) binding directly to one C atom of the aromatic ring.
Although phenol can be toxic and its solutions with high concentration induce burned skin,
it has been widely used as either primal raw materials or significant intermediates for the
modern industrial manufacturing of many household products. For example, phenol with
a suitable concentration has been used as one of the important ingredients in a mouth rinse
thanks to its efficient bactericidal features. In industrial products, phenol has been widely
adapted to use as an indispensable material to manufacture synthetic textiles, phenolic
resins, plastics, dyes, and aspirin. Besides the benefits, phenols also caused serious chemical
accidents through leakage [15], attracting many concerns of environmental scientists and
governments owing to its negative risk impact on humans and the environment. For exam-
ple, some researchers have recently investigated the ecotoxicity of phenol on four marine
microalgae [16], the toxicological effects of phenol and cresols on aquatic organisms [17],
and deriving hazardous concentrations of phenol in soil ecosystems [18].

Recently, various optical sensor techniques have been developed, such as colorimet-
ric [19,20], fluorescence [21,22], LSPR phenomenon [23,24], and plasmon-enhanced surface
enhanced Raman scattering (SERS) [25–27]. Among these techniques, the SERS method
based on plasmonic resonance nanomaterials is promising because of its high specific,
selective, and sensitive detection capability. Combining nanostructured materials, as an
effective plasmonic resonance phenomenon, with Raman spectroscopy is becoming a po-
tential analytic tool for trace detection of analyte molecules with many advantages such as
easy-to-use, low-cost, specific targets, and on-site detection. Specific studies on the develop-
ment of several novel nanomaterials have been reported to assist effective Raman platforms
including nanogold film-based Raman detection of rhodamine 6G and p-nitrophenol [28],
Raman detection of multiple analytes based on Ag nanoparticle-modified SiO2 nanofi-
brous [29], Ag nanostructure-assisted Raman sensing for monofluoroacetic acid [30], Ag
nanoparticle-introduced Raman detection of carbofuran [31], on-site Raman detection of
1,2,3-benzotriazole on colloidal lignin particles [32], Ag-capped silicon nanopillar-based
Raman detection of ochratoxin A [33], nano-shell composite array-based Raman sensor
for antioxidant [34], and bimetallic plasmonic nanoparticle-assisted Raman detection of
hazardous contamination [35]. Moreover, a series of scientific reports on several special
metal–organic framework (MOF) structures has been investigated, leading to success-
ful fabrication of novel Raman substrates applied in trace detection of phenol red [36],
phenol-soluble modulin [37], and engine oil [38].

Phenolic compounds—such as catechol, p-nitrophenol, 2,4-dichlorophenol, 2,6-
dichlorophenol (2,6-DCP), cresol, 4-tert-butylphenol, 4-tert-octylphenol, alpha-naphthol,
dopamine, and so on—have been listed as hazardous substances by the United States
Environmental Protection Agency owing to their toxicity [39]. Besides their significant
potential application in industrial manufacturing, these compounds still faced some issues
including environmental pollution and harmful effects on human health, in their included
chemical products such as antioxidants, antimicrobials, and anti-inflammatory reagents
that have been widely used in the daily activities of people [40,41].

In addition, 2,6-DCP—one of the most significant chlorophenol compounds—has been
widely applied in industrial manufacturing for several chemicals, medical compounds, and
other products, despite being potentially carcinogenic [42]. Recently, organic compounds
with high toxicity such as p-nitrophenol have been found to cause increasingly serious
pollution in environmental water [28]. As bisphenol substances have been considered as
having a serious impact on the environment and human health risks, the early monitoring
of these compounds is not only significant, but also still has many challenges.

Recently, there have been a large number of scientific reviews promising not only
therapeutic applications of phenolic acids [43,44], but also phenolic compound’s effects
on the environment and human health risk [25,45]. Furthermore, several authors have
investigated varieties of analytical technologies using trace detection of phenolic sub-
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stances such as electrochemical [39,46–49], liquid chromatography with diode array and
mass spectrometry [50], high performance liquid chromatography [51,52], conductomet-
ric biosensor [53], photoelectrochemical reduction [54], voltammetric detection [55,56],
biosensor electrode [57], and nanomaterial-based sensing [58]. However, these methodolo-
gies often require additional procedures for separation of analytes in sample preparation,
leading to time-consuming and toxic organic solvents, as well as adverse effects on the
environment. Detection of phenols still needs more consideration, focusing on the novel
detection methods such as plasmonic resonance-based optical sensors.

Plasmonic resonance phenomenon-based Raman sensing has emerged as a scientific
tool for detecting analytes using molecular vibrations on nanomaterial surfaces [59]. Ra-
man technology has related to LSPR in terms of introducing nanogap-enhanced plasmonic
behaviors on noble metal surfaces [60]. Raman scattering as a supplementary application
in which LSPR plays a significant role, has been introduced to pollutant monitoring [61].
Although there have been several reports on surface plasmon-based Raman sensors for
detecting phenolic substances [59–61], there is no literature review, despite their universal
application. We evaluate and discuss the recent development and trends in designing
unique structured materials that aid in plasmonic sensor platforms used for efficient
detection of phenolic substances that affect the human health risk in this review to under-
stand the correlations between the Raman technique and plasmonic resonance phenomena
(Figure 1). The main content used for on-site detection of phenolic compounds using
plasmonic resonance-based optical sensors can be divided into four parts: (1) colorimetric,
(2) fluorescence, (3) localized SPR, and (4) Raman detection based on sensing platforms of
pure noble metals, hybrid nanomaterials, and MOF structures.
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2. Plasmonic Resonance-Based Colorimetric Sensor for Phenolic Compounds

The colorimetric sensor is a simple method that has been widely used in the selective
detection of analytes using color changes in probes under unique conditions. This method
can be widely applied in environmental gas sensing [62] and trace detection of tetracyclines
in foods [63] thanks to its convenient performance. For example, a paper-based bioassay has
been developed by assembling alginate and chitosan layer-by-layer. A tyrosinase enzyme
has been used to bind these layers, leading to successful bioassay-based colorimetric
sensing of not only phenol, but also bisphenol A, catechol, and cresols. The detection
limit of these phenolic substances has been estimated at 0.86 (±0.1) µg/L for each of the
analytes [64]. A colorimetric sensor, based on plasmonic resonance nanomaterials, is one
of the best analytical techniques for the efficient detection of various phenolic compounds
by observing the color change of nanomaterials with either UV/Vis or the naked eye [39].
The basic principle of colorimetric technology is based on the specific interaction between
the analytes with either pristine or probe-modified nanomaterials. For illustration, single-
stranded DNA-regulated gold nanoparticle (GNP)-based colorimetric sensors have been
demonstrated as an effective indicator for the sensitive detection of phenols [65]. As shown
in Figure 2A, colorimetric detection of phenol has been successfully performed using
Fenton reaction with a mixture of single-stranded DNA and initial GNPs. The authors have
found that single-stranded DNA assisted in making initial GNPs more stabilized owing
to electrostatic repulsion, leading to the prevention of GNP aggregation under the NaCl-
introduced condition. However, these single-stranded DNAs have been destroyed by the
Fenton reagents (OH free-radical) generating small fragments as mono- or oligonucleotide,
resulting in the disruption of AuNP stability. In the presence of the phenolic substances, a
reduction–oxidation between Fenton reagents and phenolic compounds will firstly occur
to avoid the destruction of single-stranded DNA to assist the stability of GNPs from NaCl-
induced aggregation. Meanwhile, Figure 2B illustrates that OH free-radical generated
from Fenton reagents could attack catechol, leading to a reduction in phenolic compounds.
Either with the naked eye or using UV/Vis spectroscopy, a GNP-assisted sensor exhibits
rapid micromolar detection of catechol and hydroquinone.
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Colorimetric detection of bisphenol A has been successfully performed using specific
aptamer-based and cationic polymer-assisted GNP aggregation with a limited detection
as low as 1.50 nM [66]. In contrast, an aptasensor-based and GNP-assisted colorimetric
technique has been developed for ultra-sensitive detection of bisphenol A. In this study,
the authors have reported that GNPs have been modified with the two types of specific
aptamers as truncated 38-mer and 12-mer, leading to the limits of bisphenol A detection of
7.60 pM and 14.41 pM, respectively [67]. On the other hand, elliptical or sphere shapes of
Fe3O4 nanoparticles with an average size of 7 nm indicate successful colorimetric detection
of phenol in a range of 1–200 mM concentration [19]. Among various plasmon resonance
nanomaterials, spherical Au nanostructures are well-known as the best colorimetric sensing
units. Recently, special MOF structures have emerged as a novel material construction
successfully applied in colorimetric detection. Numerous MOF structures with tunable
colorimetric characteristics have been well designed and synthesized, aiming to be applied
for sensing various analytes, including organic compounds and gaseous pollutants [68].

Furthermore, some specific studies on smart MOF nanomaterials can effectively detect
contaminants of phenolic compounds in the environment, which are extremely significant
for human health protection. For example, the dual-functional Co-MOF-74-based Co3O4
nanoparticle-decorated cellulose derivative membrane has been well-synthesized for colori-
metric detection of phenol [69]. Moreover, Zr-based MOFs capped with polyvinylpyrroli-
done have been reported to successfully contribute to the application of colorimetric
detection of phenol [70]. However, relying on the self-assembly of copper ions and DNA,
the authors have successfully fabricated a novel copper hybrid nanoflower, which induces
a new paper-based microfluidic device. This device has displayed effective application
for the colorimetric detection of catechol, dopamine, and hydroquinone [20]. In addition,
UV/Vis detection of 2,4-dichlorophenol has been successfully performed using an enzyme
mimic that has been well-synthesized by Cu ion and adenosine monophosphate [71].

Through a solvothermal route, a new core–shell nanostructured metal of Au and Ni
(Au@Ni) with a size < 8 nm on reduced graphene oxides (rGOs) was designed to obtain a
novel nanomaterial composite as Au@Ni/rGO (Figure 3A). Subsequently, the peroxidase
mimetic feature of this nanocomposite was checked by analyzing the process oxidation
of 3,3′,5,5′-tetramethylbenzidine in H2O2. As shown in Figure 3B, the examined results
indicated that this nanocomposite exhibited excellent peroxidase mimetic activity, which
has been successfully applied in colorimetric detection of phenol, relying on its oxidative
reaction with 4-aminoantipyrine, thereby inducing a change from colorless to pink of the
quinoid dye in the presence of H2O2. The detection limit and range of this method have
been estimated for phenol concentrations as low as 1.68 µM and 1–300 µM, respectively.
In addition, under natural irradiated sunlight, these Au@Ni/rGO nanostructures exhibit
an excellent photocatalytic reaction, thereby degrading over 87% of phenol and phenolic
substances as 2-chlorophenol and 2-nitrophenol [72]. However, reduced graphene-based
magnetic MOF nanocomposites exhibited an excellent enzyme-like feature. Phenol can
be identified based on this property using a visual colorimetric method in water solution
by oxidization of 4-aminoantipyrine in the presence of H2O2. Simultaneously, these
nanocomposites have also been exposed to a specific feature as a Fenton-like catalyst,
which shows a high ability to degrade phenol effectively [73].
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3. Plasmonic Resonance-Based Fluorescence Sensor for Phenolic Compounds

As a normal type of optical sensor, fluorescence techniques have been extensively
applied in many fields, such as fast detection of phenolic substances [22], bioimaging [74],
detection of aniline [75], determination of peroxynitrite products [76], analysis of total
phenolic substances in teas [21], quantification of bisphenol A and its derivatives [77],
determination of phenolics [78], and aptamer-labeled fluorescent detection of bisphenol
A [79]. Plasmonic resonance-based fluorescence method has been used predominantly,
because of its excellent plasmonic resonance mechanism. Various scientific studies have
reported the successful fabrication of novel plasmonic resonance nanomaterials that ex-
hibit uniform geometries and enhanced plasmon, aiming to assist fluorescence technology.
Great efforts have been made on new nanomaterials with high plasmon resonance, such as
AgNP-based fluorescence sensors for trace detection of dopamine [80], bimetallic Au-Ag
nanocluster-assisted fluorescent biosensing of dicofol [81], polyethyleneimine-modified
ovalbumin-stabilized gold nanoclusters (AuNCs) used for fluorescence sensor of tetra-
cyclines [82], and MOF-based fluorescence detection of bisphenol substances [40]. A
fluorescent sensor of 2,6-dimethyl phenol in seawater has been successfully performed
relying on Eu3+-2-aminoterephthalate immobilized on mesoporous silica nanoparticles [83].

As shown in Figure 4, although dopamine has been known as one of the most sig-
nificant neurotransmitters in the human body, its specific monitoring remains many chal-
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lenging. Using a one-pot process, the authors successfully fabricated bimetallic Au-Ag
nanoclusters using a protein template as bovine serum albumin. These initial Au-Ag hybrid
nanoclusters have been found to exhibit a weak level of fluorescent intensity. However,
dopamine has been introduced to enhance the extremely strong fluorescent intensity of
nanoclusters, simultaneously causing a red shift in the spectrum. Using electrochemical
spectroscopy, dopamine has contributed to reducing Au-Ag hybrid nanoclusters, enhancing
their fluorescence, which has been adopted for trace and sensitive detection of dopamine.
This facile and efficient method provided a limit of detection of dopamine at 6.9 nM [84].
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0, 0.01, 0.08, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, and 10 µM labeled from “a” to “m”. (b) A linear curve of
fluorescence intensities correlated with the concentrations of dopamine at pH 8.5 Tris-HCl buffer.
Fluorescence measurements under 370 nm excitation after 15 min incubations. Adapted from [84].

Figure 5 shows a dual-emissive AuNC-based sensor technique used for detecting
4-NP by means of fluorescence quenching. Herein, the first AuNCs were synthesized and
stabilized by BSA to form the AuNCs@BSA complex. Subsequently, the inner filter effect
(IFE), indicated that 4-NP selectively induced fluorescence quenching at 410 nm (F410) of
residual di-tyrosine (diTyr) more effectively than that at 630 nm (F630) of AuNCs. Within
1 min, this sensor was successfully employed for trace detection of 4-NP by measuring the
ratio of fluorescence intensity of F410/F630. Based on the 4-NP concentration-correlated
ratio of F410/F630, its limit of detection was estimated at 13.8 nM (1.9 ng/mL). Furthermore,
this technique shows highly sensitive and selective detection of 4-NP, despite the presence
of eight other common phenol derivatives. Thus, this method was practically applied for
an efficient analysis of trace 4-NP in actual river water samples [85].
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Figure 5. (A) Schematic illustration of AuNC-assisted and inner filter effect (IFE)-based fluorescence detection of 4-
nitrophenol (4-NP) by means of selectively induced quenching of 410 nm fluorescence intensity of residual di-tyrosine
(diTyr) using fluorescence intensity of AuNCs [85] at 630 nm in a complex of bovine serum albumin (BSA)-stabilized
AuNCs. (B) UV/Vis spectroscopy of AuNCs@BSA before and after 4-NP addition, illustrated by a black line and a red line,
respectively. (C) Under excitation at 330 nm, photoluminescent emission spectroscopy of AuNCs@BSA before and after
4-NP addition is demonstrated by a black line and a red line, respectively. Adapted from [85].

Other authors have successfully developed a novel Zn porphyrin MOF-based fluores-
cence sensor of bisphenol A detection using luminescence quenching. The experimental
fluorescence data indicated that these MOF structures exhibited excellent monitoring of
bisphenol A thanks to their electrostatic interaction, causing high sensitivity and selectivity
in fluorescence quenching. In contrast, there was no significant quenching when the MOFs
encountered the other phenolic substances, including p-cinnamyl phenol nonylphenol,
octylphenol, 4-tert-butylphenol, 2,4-ditert-butylphenol, and diphenyl carbonate [86].

4. Localized Surface Plasmon Resonance Phenomenon-Based Optical Sensor for
Phenolic Compounds

LSPR has been responsible for an enhanced electromagnetic field, inducing surface-
enhanced spectroscopic technologies [87]. Several scientists are increasingly interested in
plasmon resonance-based optical sensors, especially noble metal nanostructured materials
such as Pt, Au, and Ag nanoparticles with various shapes and sizes, exhibiting plasmonic
features that have been successfully used as a powerful analytic technique [6,88]. Here,
these plasmonic nanostructures were practically employed as efficient transducers that
convert changes in the spectral location of refractive index, thereby shifting the LSPR peak
upon binding of analytes to either the surface of bare plasmonic nanostructures or specific
receptor-conjugated nanomaterials. By coating unique probe molecules on the surface of
plasmonic nanomaterials, LSPR-shift assay-based sensor techniques were introduced for
specific analytics, considering a change in the signal localization of refractive index around
their surfaces [89]. In addition, graphene oxide-based nanostructured hybrids have been
successfully used as a novel material for enhanced SPR sensors thanks to their significant
features, including strong adsorbed molecules, amplificated signals, high electronic bridge,
and simple fabrication. Moreover, regarding amplification of signals obtained by plas-
monic materials, graphene-based nanostructure composites can significantly increase the
sensitive detection of analytes up to fM [90]. Owing to their sensitivity and the selectivity
of the spectral location of the refractive index, SPR-based optical sensors have been widely
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investigated in sensing applications such as mercury ion detection [8,91], CO2 detection [1],
and gas sensors [2]. Some special emphasis on plasmonic nanostructures has been devel-
oped for the fabrication of novel surfaces, exposing high SPR-based optical sensors for
phenolic compounds, such as GNP impregnation in TiO2 structure-assisted hydroquinone
detection [24], Au- and tyrosinase-modified graphene oxide film-introduced detection of
phenol [9], and polymeric film-based phenol determination [92].

As shown in Figure 6A, an SPR-based optical sensor method was successfully im-
plemented for dopamine detection based on a sensing layer of chitosan and graphene
quantum dots, which were fabricated on Au thin film. The system of the SPR angle shift-
based optical sensor showed a detection limit of 1.0 fM of dopamine [93]. In contrast,
Figure 6B shows an innovative polyaniline/Pt-coated fiber optic-based SPR sensor used
for ultra-sensitive detection of 4-nitrophenol, with a limit of detection of 0.34 pM [23].
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Recently, SPR-based sensor systems have also been introduced for application in
photoelectrochemistry. Many scientists have investigated the optimized fabrication of
new plasmonic nanomaterials, demonstrating unique features such as high and excel-
lent plasmon enhancement as well as assistance for photoelectrochemical technologies.
For example, there are several reports on Au-decorated La2Ti2O7/rGO-based plasmon
enhancement-assisted photoelectrochemical monitoring of bisphenol A [94], SPR of GNP-
activated g-C3N4 nanosheet-based photoelectrochemical determination of bisphenol A [95],
and LSPR using carbon dot-functionalized GNPs for sensing of dopamine [96].

5. Plasmonic Resonance-Based Raman Sensors for Detection of Phenolic Compounds

Raman spectroscopic technologies—including micro-Raman mapping, imaging, and
SERS spectroscopy—have been widely adopted in many fields such as food safety [97],
the monitoring of contaminants [98], and the diagnosis of disease biomarkers [99]. Raman
substrates may be divided by several kinds of pure noble metal nanostructured materials,
hybrid nanomaterials, and MOF structures.

5.1. Pure Noble Metal Nanomaterial-Based Raman Sensors

Plasmonic nanostructured materials have been well known as one of the most signifi-
cant keys leading to the success of sensing technologies thanks to their effective Raman-
active substrates. Among various nanomaterials, Au and Ag as noble metals have been
adapted as a potential platform, which has contributed to the sensitive Raman detec-
tion [5,100]. Furthermore, the unique shape and size of noble metals induce highly dense
plasmonic hotspots to increase the sensitivity of the Raman method. Many scientists have
discovered more novel structures of noble metals that aim to maximize the generation
of a high density of plasmonic hotspots, inducing enhanced electromagnetic fields and
amplified Raman signals. Besides the preparation of new structures, the modification of
the surface of nanostructures were performed by specific probes for the sensitivity and
selectivity of Raman sensing. For example, great efforts have been made toward this goal.
AgNP-assisted Raman detection for bisphenol A determination [101] and GNP-induced
Raman platforms for methyl parathion detection [102] have been considered.

Interestingly, Figure 7A shows SEM images of unique nanostructures of Ag nanorod
bundles. Herein, Ag nanorods were well aligned as vertical bundles distributed on an
Au/Cu template. This uniformity of Ag nanorod bundles demonstrates a potential applica-
tion as a Raman-active platform used for trace detection of phenolic pollutants, including
4-chlorobiphenyl, methyl parathion, 2,4-dichlorophenoxyacetic acid (2,4-D), and two pesti-
cides mixtures in water environments. Vertical bundles of Ag nanorod were well designed
by combining porous anodic aluminum oxide membranes and spherical polystyrene tem-
plates. Based on the well-controlled ~65 nm diameter of AAO pores, the diameter of
the Ag nanorods was also well achieved, such as the size of AAO pores. Figure 7A(a,b)
show that vertical bundles of Ag-nanorod were well arranged with a P6mm hexagonal
symmetry. Each vertical bundle was surrounded by three other bundles and comprised
an ~800 nm length size of 30–45 nanorods with a ~65 nm diameter (Figure 7A(c,d)). This
unique structure exhibits a small gap (2 nm), leading to highly dense hot spots, inducing
an enhanced Raman signal up to 108. As shown in Figure 7B, to further illustrate the
practical application of this Raman platform, vertical bundle arrays of Ag nanorods were
used to detect phenolic pollutants of methyl parathion and 2,4-D in the environment using
Raman spectroscopy, whose limits of detection were estimated as 21.5 × 10−9 M and
61.9 × 10−9 M, respectively [103].



Appl. Sci. 2021, 11, 10519 11 of 21
Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25 
 

 
Figure 7. (A) SEM images of vertical bundles of Ag nanorods including top views with different 
scale bars of (a) 1 μm and (b) 2 μm, (c) side view of vertical bundle arrays of Ag nanorods, and (d) 
top view of one unique bundle of Ag-nanorods. (B) Vertical bundle arrays of Ag nanorod-based 
Raman detection of phenolic pollutants of (a) methyl parathion (0.3 × 10−6 M). (b) Linear curve of 
logarithmic concentration of methyl parathion-correlated Raman intensities (1260 cm−1). (c) Raman 
spectra of 2,4-D (2 × 10−6 M). (d) Linear curve of logarithmic concentration of 2,4-D-correclated Ra-
man intensities (1177 cm–1). Adapted from [103]. 

Figure 7. (A) SEM images of vertical bundles of Ag nanorods including top views with different
scale bars of (a) 1 µm and (b) 2 µm, (c) side view of vertical bundle arrays of Ag nanorods, and
(d) top view of one unique bundle of Ag-nanorods. (B) Vertical bundle arrays of Ag nanorod-based
Raman detection of phenolic pollutants of (a) methyl parathion (0.3 × 10−6 M). (b) Linear curve of
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spectra of 2,4-D (2 × 10−6 M). (d) Linear curve of logarithmic concentration of 2,4-D-correclated
Raman intensities (1177 cm−1). Adapted from [103].
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An easy and rapid detection of bisphenol A detection has been successfully developed
using Raman spectroscopy and a matrix of molecularly imprinted polymers (MIPs), where
silver nanoparticles (AgNPs) were fabricated in situ inside this matrix. AgNPs have been
well distributed in the matrix, leading to highly dense hotspots. Therefore, these Raman
nanosensors of MIPs@AgNPs exhibit not only highly selective detection of bisphenol A in
the presence of various similar molecules such as bisphenol AF and diethylstilbestrol, with
an excellent detection limit as low as 5 × 10−8 M. Raman nanosensors exhibit the potential
for practical applications with many benefits of easy fabrication, reusability, selectivity, and
sensitive recognition [101].

Interestingly, Figure 8 demonstrates an AgNP-based microfluidic Raman biosensor
for the highly sensitive detection of dopamine using DNA-assisted fabrication of ortho-
nanodimers. Raman probes were modified with dopamine aptamers and 5,5′-dithiobis-(2-
nitrobenzoic acid) (DTNB); these aptamers were well designed as unique zipper-like ortho-
Ag nanodimers. Owing to the small gap in the specific zipper-like ortho-Ag nanodimers,
the microfluidic Raman biosensor exhibited a highly targeted detection of dopamine, with
a limit of detection as low as 10 aM [104].
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of ortho-nanodimers (DaSON) of AgNPs. SEM images of Raman platforms with a scale bar of 500 nm
(B) before and (C) after the adsorption of Raman probes containing DA aptamers and DTNB. Inserted
pictures show an enlarged view of the yellow rectangle. Adapted from [104].

5.2. Hybrid Nanomaterial-Based Raman Sensors

As one of the most efficient plasmonic materials, hybrid nanomaterials—either bimetal-
lic nanostructures or nanocomposites—have been widely adapted to prepare Raman sub-
strates used in various fields as biosensors and environments. Recently, a novel Raman
method has been developed to detect phenolic acids—vanillic acid, syringic acid, and
gallic acid—using three-dimensional nanoprobes of a self-assembled composite of GNPs
and SiO2 [34]. In addition, AgNP-embedded poly (diallyl dimethyl-ammonium) chloride
has been successfully used as a Raman substrate for biosensors, where this substrate was
fabricated by modifying graphene oxide nanosheets. AgNPs have been well designed,
yielding highly dense hotspots for enhanced Raman signals [105]. Owing to their excellent
electromagnetic mechanism, bimetallic nanostructures have been used predominantly as
biosensors, as shown in Figure 9.
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Figure 9. Schematic diagram of dopamine detection using bimetallic Au@Ag nanorod dimers, Raman
reporter of 4-aminothiophenol, and aptamer. Adapted from [11].

Some authors have successfully self-assembled core–shell structured dimers of bimetal-
lic Au@Ag nanorods, which were used as Raman nanosensors, particularly for detecting
dopamine—a neurotransmitter—playing a key role in life. Based on aptamers and the elec-
tronic field of Ag shell coating outside the Au nanorod dimer, Raman signals have been
well enhanced, indicating that the substrates exhibited an ultra-sensitive limit of dopamine
detection at 0.006 pM [11]. As shown in Figure 10, Raman detection of chlorophenols was in-
vestigated by MIPs based on composites of SiO2, rGO, and Au. Nanocomposite-based Raman
have significantly enhanced signals, leading high sensitivity in chlorophenol detection [106].
Despite numerous efforts of Raman sensors based on plasmonic materials as nanostructures of
noble metals and hybrids, more scientific studies are required to develop functional plasmonic
nanostructured materials used for optical sensors. To understand plasmonic phenomena and
interfaces of materials, some authors have discovered various MOF structures and revealed
their effective ability for multi-detection of phenolic substances using SERS spectroscopy. In
the next section, this review reveals several significant contributions to phenolic compound
detection from MOF-assisted SERS sensors, according to some interesting examples.
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of polydopamine modified SiO2/rGO/Au, (c) nanocomposites of SiO2/rGO/Au, and (d) SEM
image of SiO2/rGO/Au nanocomposites. (C) Concentration-dependent Raman spectra of 2,6-DCP.
(D) Linear curve of 2,6-DCP concentration-correlated Raman intensities at 661 cm−1. Adapted
from [106].

5.3. Metal–Organic Frameworks Structure-Introduced Raman Sensors

As shown in Figure 11A, a core–shell nanostructure of Cu2O and SiO2 was coated
with ~4 nm porous Zn-based MOFs (ZIF-8) using an organic bridge as 5-mercapto-1-
methyltetrazole, successfully yielding a novel Cu2O@SiO2@ZIF-8. Subsequently, in situ
synthesis of AgNPs with various sizes from 2 nm to 29 nm on the surface of these MOFs was
performed, inducing new MOFs and Cu2O@SiO2@ZIF-8@Ag. Owing to the strong interac-
tion with ZIF-8, AgNPs were uniformly distributed in the structures of Cu2O@SiO2@ZIF-8.
Interestingly, 4 nm AgNPs, assembled on Cu2O@SiO2@ZIF-8 templates, exhibited an excel-
lent limit of detection, as low level as 5.76 × 10−12 M concentration of phenol red in real
samples. These Cu2O@SiO2@ZIF-8@Ag as 3D substrates could be employed for Raman
monitoring of environmental contaminants [36]. Figure 11B shows the electromagnetic
and chemical enhancement mechanisms of these Raman substrates. Firstly, owing to the
many porous structures in Cu2O@SiO2@ZIF-8, AgNPs can be powerfully adsorbed and
well loaded by the strong interaction with N and S atoms inside the ZIF-8 structure, thereby
effectively preventing AgNP aggregation.
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Second, Cu2O@SiO2@ZIF-8@Ag exhibited a large surface area, assisting in the absorp-
tion of many phenol red molecules and strong binding between Ag and S atom via the Ag-S
bond. However, owing to the high density of AgNPs on the surface of the MOF template,
this SERS substrate generated many hotspots, enhancing Raman signals of phenol red
that correspond to the electromagnetic mechanism. In contrast, charge transfer occurs as a
result of the chemical enhancement mechanism between MOFs and phenol red molecules.
Here, AgNPs provided an SPR phenomenon and encouraged charge transfer in the SERS
system, increasing SERS signals. Importantly, a small size ~4 nm of AgNPs provides a
maximum SERS signal of an MOF template because of more AgNPs located in porous
ZIF-8. Nevertheless, different sizes of AgNPs will not properly match ZIF-8 pores, yielding
weak Raman intensities [36].

As shown in Figure 12, the Raman sensor was combined with MIPs, inducing the
distribution of a new Raman detection for selectivity of chloro-phenols. The Raman
platforms as Ag@MIL-101(Fe)@MIPs were successfully fabricated by in situ synthesis of
AgNPs on the surface of MOFs octahedral structures as MIL-101(Fe), subsequently, by
polymerized precipitation between a template and a functional monomer as 2,6-DCP and
acrylamide, respectively. MOF-based nanocomposite-assisted Raman monitoring of 2,6-
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DCP with a limit of detection of 4.5 nmol/L. This method provides a potential Raman
template not only for sensing other chlorophenols, but also for real sample analysis using
Raman spectroscopy [42].
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As summarized in Table 1, based on plasmonic nanomaterials, numerous novel optical
sensor technologies have been successfully developed for trace detection of phenol and
phenolic compounds, with improvements in aspects such as selectivity and sensitivity as
well as economical and reproducible benefits. The following aspects were studied and
evaluated on the current spectroscopic and optical sensor methods. There are several
perspectives to be addressed in future studies: (i) improving optical sensor methods based
on pure, noble metal nanomaterials, and hybrid nanostructured materials; (ii) developing
more MOFs that exhibit high target sensor; (iii) exhibiting the ability of multiple detections
of similar analytes under various conditions; (iv) developing a dual functional sensing
platform used for both Raman spectroscopy and fluorescence detection or both colorimetric
and fluorescence; and (v) preparing a new nanomaterial that exhibits the ability of trace
detection simultaneously and the removal of phenol and phenolic contaminants.
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Table 1. Comparison of plasmonic resonance-based optical sensors for on-site detection of phenolic compounds.

Plasmonic Structures Detection Methods Target Compounds Limit of Detection Reference

Au-modified tyrosinase-based GO
thin film SPR phenol 1 µM [9]

Au@Ag nanorod dimers Raman dopamine 0.006 pM [11]

DNA–copper hybrid nanoflowers colorimetric

dopamine 4.5 µg/mL
[20]catechol 3.0 µg/mL

hydroquinone 4.5 µg/mL

polyaniline/Pt-coated fiber optic SPR 4-nitrophenol 0.34 pM [23]

GNPs@TiO2 SPR hydroquinone 33.8 nM [24]

SiO2/GNPs Raman

vanillic acid 10–250 µM
[34]syringic acid 10–110 µM

gallic acid 5–55 µM

Cu2O@SiO2@ZIF-8@Ag Raman phenol red 5.76 × 10−12 M [36]

Ag@MIL-101(Fe)@MIPs Raman 2,6-dichlorophenol 4.5 nmol/L [42]

GNPs colorimetric
catechol 0.11 µM

[65]
hydroquinone 1.6 µM

Co-MOF-74-based Co3O4/cellulose colorimetric phenol 1.02 µM [69]

Zr(IV)-based MOFs colorimetric phenol 1.28 µM [70]

Adenosine monophosphate-Cu
nanozymes UV/Vis phenolic compounds 0.033 µmol/L [71]

Au@Ni/rGO nanocomposite colorimetric phenol 1.68 µM [72]

Fe3O4/rGO/MOF colorimetric phenol 3.33 × 10−6 M [73]

AgNPs fluorescence dopamine 5.3934 × 10−6 M [80]

Au-Ag nanocluster fluorescence dopamine 6.9 nM [84]

Au nanoclusters fluorescence 4-nitrophenol 13.8 nM [85]

chitosan/graphene quantum dots/Au
thin film SPR dopamine 1.0 fM [93]

carbon dot-functionalized GNPs SPR dopamine 0.23 µM [96]

GNPs Raman methyl parathion 0.011 µg/cm2 [102]

Ag-nanorod bundles Raman
methyl parathion 21.5 × 10−9 M [103]

2,4-D 61.9 × 10−9 M

zipper-like ortho-Ag nanodimers Raman dopamine 10 fM [104]

AgNPs-graphene based nanosheets Raman p-cresol 10−5 M [105]

SiO2/rGO/Au Raman 2,6-dichlorophenol 100–1.0 nM [106]

Au-ZnO nanoparticle-modified
tapered optical fiber SPR p-cresol 57.43 µM [107]

ZnO/MoS2 SPR p-cresol 28 nM [108]

cetyltrimethylammonium-bromide-
functionalized ZnO/carbon nanotube
nanocomposite coated over Ag film

plasmonic sensor catechol 0.1 µM [109]
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6. Conclusions

This review focused on recent developments in optical sensors, including colorimetric,
fluorescence, LSPR, and plasmon-enhanced Raman scattering, used to determine phenol
and phenolic compounds. Combined with numerous plasmonic nanomaterials such
as noble metals, hybrids, and MOFs, these optical methods have been widely applied
in many chemical and biological fields by improving sensing performance. Here, this
review mainly discussed numerous novel designs of unique nanostructures, inducing
enhanced signals, and selective sensing analytes. Among these optical sensors, colorimetric
methods showed many benefits such as facile observation with the naked eyes, whereas the
Raman method exhibited more selective molecular fingerprints. While the LSPR method
revealed an excellent feature of high sensitivity, fluorescence assays showed an ultra-
sensitive detection and limited stability for photo-bleaching. Notably, the development of
plasmon resonance-based optical sensors for phenol detection indicates that future work
would continue exploring superior nanomaterials for phenol determination with simpler
manipulation, faster response, higher sensitivity, and better selectivity. We also believe that
the combination of new plasmonic nanomaterials with traditional molecular design can
improve sensing performance even further.
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