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Abstract: There has been an increasing demand for the design of an optimum topological layout in
several engineering fields for a simple part, along with a system that considers the relative behaviors
between adjacent parts. This paper presents a method of designing an optimum topological layout
to achieve a linear dynamic impact and frictionless contact conditions in which relative behaviors
can be observed between adjacent deformable parts. The solid isotropic method with penalization
(SIMP) method is used with an appropriate filtering scheme to obtain an optimum topological
layout. The condensed mortar method is used to handle the non-matching interface, which inevitably
occurs in the impact and contact regions, since it can easily apply the existing well-known topology
optimization approach even in the presence of a non-matching interface. The validity of the proposed
method is verified through a numerical example. In the future, the proposed optimization approach
will be applied to more general and highly nonlinear non-matching interface problems, such as
friction contact and multi-physics problems.

Keywords: SIMP method; impact condition; non-matching interface; condensed mortar method

1. Introduction

The demand for creative and optimized designs that cannot be realized using con-
ventional manufacturing techniques has been increasing in recent years owing to the
development of additive manufacturing. The design of additive manufacturing (DfAM)
has received widespread attention due to developments in the industrial field [1,2]. DfAM
is an advanced technique compared to design for manufacturing (DfM) and can be used to
overcome the limitations faced by the DfM process. DfAM can be used to produce more
creative and high-quality designs since additive manufacturing can produce highly rigid
and lightweight products with complicated internal structures. Among the various DfAM
techniques, the most widely analyzed is topology optimization, which presents an excellent
synergistic effect when combined with additive manufacturing [1–5].

Topology optimization is a scheme which determines the means of the distribution
of materials in order to find an optimum topological layout based on the designer’s
purpose using various simulations [6–8]. The basic concept of topology optimization is
to distinguish between the necessary and unnecessary parts in order to best meet the
optimization formulation within a given design domain. It has been used in various
industries and in research owing to its theoretical simplicity and ability to produce a
concise, esthetic, and creative design [9–13]. Despite the several studies conducted on
topology optimization, most have been focused on a single part [6–13]. However, in the
practical engineering field, each part interacts with its adjacent parts, and most studies have
replaced the interaction effects by imposing an equivalent interface condition to address
this issue [14–17]. Unfortunately, it is incompatible and impossible in highly nonlinear
systems such as contact and impact conditions.

In order to consider the effects of adjacent parts, Strömberg et al. suggested a topol-
ogy optimization framework which simultaneously considers multiple deformable parts
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through a node-to-node contact condition [18]. However, this is only feasible in the match-
ing interface meshes owing to the features of the node-to-node contact condition. Jeong
et al. presented a new topology optimization technique based on a surface-to-surface
contact condition to handle both the matching and non-matching interface meshes [19].
The surface-to-surface contact condition was treated by the condensed mortar method and
a filtering scheme considering the size of the element was introduced to alleviate some
discontinuities present on the non-matching interface. Recently, Fernandez et al. proposed
a topology optimization technique to handle multiple deformable bodies in static and large
deformation contacts based on a mortar formulation approach [20].

This paper presents a method to determine an optimum topological layout for the
linear dynamic impact and frictionless contact conditions to present a more generalized
application of topology optimization. Firstly, the condensed mortar method is used to
handle the non-matching interface, which is inevitably caused by the relative motion near
the impact region. The condensed mortar method presents several advantages when
applied in topology optimization because it can be applied in the same manner as that
of conventional structural analysis, even in the presence of a non-matching interface [19].
Since previous studies only considered a linear static problem [19], the proposed approach
presents a way of applying the condensed mortar method in a linear dynamic topology
optimization. Secondly, the solid isotropic method with penalization (SIMP) method is
used to determine the optimum topological layout [13]. The mean dynamic compliance
and mean squared displacement of a target DOF are considered as an objective function
in this study to obtain an optimum topological layout for a linear dynamic system [13].
Furthermore, a filtering scheme that considers the size of an element is applied to handle
discontinuities along the non-matching interface [19]. As a result, the approach proposed in
this paper can be easily used in various applications including analysis and design because
the non-matching interface are simply handled by applying the condensed localized mortar
method to the well-known linear dynamic analysis methods.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
concept of the condensed mortar method, which is a scheme used to handle non-matching
interfaces. The validity of the condensed mortar method is verified through a simple
verification example for the linear dynamic analysis. Section 3 describes a method to
determine an optimum topological layout in the linear dynamic problems. The condensed
mortar method is applied to handle the non-matching interface on the impact regions,
based on the conventional dynamic response topology optimization framework. Section 4
presents the verification of the validity of the proposed method using an impact problem
in which a beam and a flying block are impacted by frictionless contact conditions. Lastly,
Section 5 presents the concluding remarks.

2. Linear Dynamic Analysis with Condensed Localized Mortar Method

This section presents a linear dynamic analysis framework using the condensed
localized mortar method to handle the impact and frictionless contact conditions. Figure 1
illustrates the overall analysis process.

When the analysis is initiated, it is necessary to define the system and to determine how
the system is considered at the problem start step. Subsequently, the contact region between
the adjoined parts is searched in the case of the impact and frictionless contact problem. A
linear dynamic structural analysis considering the contact conditions is performed in the
event of an impact or contact; otherwise, a linear dynamic structural analysis is performed
for one part. In this paper, only the impact and frictionless contact conditions are considered
among the various contact conditions (i.e., interface-tie, friction or frictionless contact, and
impact conditions). Additionally, the contact conditions are handled using the condensed
mortar method. A detailed explanation of this is presented in the following subsections.

The overall process ends when the time t is greater than the final time t f . Otherwise,
the variables including the time and information for node, displacement, velocity, and
acceleration are updated, and the process is repeated, as shown in Figure 1.
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Figure 1. Flowchart for linear dynamic contact analysis.

2.1. Linear Dynamic Finite Element Analysis Considering Contact Condition

This subsection presents the basic concept of the 2D linear dynamic finite element
analysis used to solve the impact and frictionless contact problems by employing the
condensed mortar method. Figure 2 presents a schematic diagram of the 2D contact
problem. Even though only two contacting parts are considered in Figure 2, it can be easily
extended to multiple parts. The initial boundary value problem of the general structural
mechanics comprises a set of combined second-order partial differential equations and a
given set of initial and boundary conditions [21].
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The initial boundary value problem for the linear dynamic structural mechanics is
given as:

DivP + b = ρ
..
u in Ω× [0, T]

u =
¯
u on Γu × [0, T]

P ·N =
¯
t on Γt × [0, T]

(1)

where Ω is the domain occupied by all the material points, Γu and Γt denote the Dirichlet

and Neumann boundary, where displacements
¯
u and tractions

¯
t are prescribed. P repre-

sents the first Piola-Kirchhoff stress tensor, b represents an external body force vector, ρ is
the density, u is the displacement vector, and the overdot indicates the time derivative.

In order to address the impact condition with the frictionless contact between adjoined
parts, the Karush-Kuhn-Tucker conditions must be satisfied in the normal direction

gn ≥ 0, τn ≤ 0, τngn = 0 (2)

where τn represents the normal component of the contact traction and gn indicates a gap
function in the normal direction, which is defined by:

gn = −n x(1)
[

x(1) − ~
x
(2)
]

(3)

where
~
x
(2)

is defined by projecting the point x(1) onto the surface Γc in the domain Ω2 along

the normal direction n. The projected point
~
x
(2)

can be obtained by using a well-known
contact search algorithm (e.g., [22]).

When the finite element method is employed to perform structural analysis based on
Equations (1)–(3), the momentum equation under an external load can be given by:

M
..
u + fint(u) + fc(u,λ)− fext = 0 (4)

where M is the global mass matrix and fint, fext and fc represent the global internal, external,
and contact force vectors, respectively. Here, the mass matrix M is assumed to be constant.

In order to obtain the discrete single unknown un+1 in single step ‘n + 1′, Newmark
approximation [23] is used to describe other quantities as a function of un+1.

.
un+1 = γ

β∆t (un+1 − un)− γ−β
β

.
un − γ−2β

2β ∆t
..
un

..
un+1 = γ

β∆t2 (un+1 − un)− 1
β∆t

.
un − 1−2β

2β

..
un

(5)

where β and γ represent the algorithmic parameters for the Newmark method, typically
2β = γ = 1/2.

2.2. Application of Condensed Localized Mortar Method in Linear Dynamic Analysis

Based on the basic concept and framework of the linear dynamic analysis considering
frictionless contact conditions, this subsection presents a method to apply the condensed
localized mortar method [19] in the linear dynamic analysis to derive the contact force
vector fc in Equation (4).

The mortar method is the most widely used approach to solve the interface, contact,
impact, and multi-physics problems by introducing Lagrange multipliers to impose the
interface compatibility condition in a weak sense [24–27]. The mortar methods can be
divided into classical and localized versions depending on how the interface compatibility
conditions and Lagrange multipliers are defined. The classical mortar method is the
most widely used approach for treating the interface conditions by introducing Lagrange
multipliers as the interface pressure, as shown in Figure 3b. A fictitious frame is introduced
in the localized mortar method, and the interface compatibility condition is imposed
through the frame domain, as shown in Figure 3c [19,28–32].
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Figure 3. Simple patch test problem: (a) a continuum structure composed of two subdomains, and each subdomain is
connected using the (b) classical and (c) localized version.

This study employs the localized mortar method to impose the interface compatibility
conditions because it is successfully utilized in various problems by uniquely defining
the interface compatibility conditions through the frame domain [19,28–32]. In the case
of the localized mortar method, the interface compatibility condition between the newly
introduced frame domain and the adjacent two parts, as shown in Figure 3c, is given by

u(1) − u(2)= 0 ⇒
{

u(1) − u( f ) = 0
u(2) − u( f ) = 0

(6)

Subsequently, two sets of Lagrange multipliers, i.e., λ(1) and λ(2), are defined along the
interface to impose the interface capability condition (6) in a weak sense. By substituting the
interface condition (6) and two sets of Lagrange multipliers into the momentum equation
of the mortar method (4) and organizing the matrix form, the total system equation of the
localized mortar method in a linear dynamic condition is given by:


M(1) 0 0 0 0

0 M(2) 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





..
u(1)

..
u(2)

..
λ
(1)

..
λ
(2)

..
u( f )


+


K(1) 0 B1Q1 0 0

0 K(2) 0 B2Q2 0
QT

1 BT
1 0 0 0 −W1

0 QT
2 BT

2 0 0 −W2
0 0 −WT

1 −WT
2 0




u(1)

u(2)

λ(1)

λ(2)

u( f )

 =


f(1)

f(2)

G(1)

G(2)

0

,

Q1 =
∫

ΓI
NT

uΓ1
Nλ1dΓ, Q2 =

∫
ΓI

NT
uΓ2

Nλ2dΓ, W1 =
∫

ΓI
NT

λ1Nu f dΓ, W2 =
∫

ΓI
NT

λ2Nu f dΓ
G(1) =

∫
ΓI

NT
λ1g1 f dΓ, G(2) =

∫
ΓI

NT
λ2g2 f dΓ

(7)

where B1 and B2 are the Boolean matrices representing the boundary displacement compo-
nents, and Q1, Q2, W1, and W2 are the projection matrices, which represent the interface
condition between the interface displacements and frame displacement. Additionally, G(1)

and G(2) indicate the non-penetration condition caused by the KKT condition (2) and the
interface compatibility condition (6).

The condensed localized mortar method, which was developed to be easily applied
in topology optimization algorithms even in the presence of a non-matching interface,
is employed [19]. This can be obtained by condensing the Lagrange multipliers and
overlapping interface displacements using the localized mortar method (7).

When the total system equation is condensed, the numerical efficiency is increased
drastically, and the total system equation can be used universally because it can be consid-
ered equivalent to the framework of the general structural finite element analysis [19].

Before proceeding with the condensed localized mortar method, the displacement u(n)

at each part must be divided into the internal component u(n)
i and the interface component
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u(n)
b as shown in Figure 4. When the displacements are decomposed, the total system

Equation (7) for the localized mortar method is rewritten as:



M(1)
ii M(1)

ib 0 0 0 0 0
M(1)

bi M(1)
bb 0 0 0 0 0

0 0 M(2)
ii M(2)

ib 0 0 0
0 0 M(2)

bi M(2)
bb 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





..
u(1)

i
..
u(1)

b
..
u(2)

i
..
u(2)

b
..
λ
(1)

..
λ
(2)

..
u( f )


+



K(1)
ii K(1)

ib 0 0 0 0 0
K(1)

bi K(1)
bb 0 0 Q(1) 0 0

0 0 K(2)
ii K(2)

ib 0 0 0
0 0 K(2)

bi K(2)
bb 0 Q(2) 0

0 Q(1)T 0 0 0 0 −W(1)

0 0 0 Q(2)T 0 0 −W(1)

0 0 0 0 −W(1)T −W(1)T 0





u(1)
i

u(1)
b

u(2)
i

u(2)
b

λ(1)

λ(2)

u( f )


=



f(1)i

f(1)b

f(2)i

f(2)b
G(1)

G(2)

0


(8)
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The following two steps must be performed to derive the condensed localized mortar
method. Firstly, two relations must be obtained through the fifth and sixth rows of the
total system Equation (8), to condense the boundary displacements u(1)

b , u(2)
b into the frame

displacement u( f ).

5th− row : Q(1)Tu(1)
b −W(1)u( f ) = 0→ u(1)

b =
(

Q(1)T
)−1

W(1)u( f ) = C1 f u( f )

6th− row : Q(2)Tu(2)
b −W(2)u( f ) = 0→ u(2)

b =
(

Q(2)T
)−1

W(2)u( f ) = C2 f u( f )
(9)

Secondly, the second and fourth rows of the total system Equation (8) are used as
follows to eliminate the Lagrange multipliers, λ(1) and λ(2):

2nd− row : M(1)
bi

..
u(1)

i + K(1)
bi u(1)

i + M(1)
bb

..
u(1)

b + K(1)
bb u(1)

b + Q(1)λ(1) = f(1)b

→ λ(1) =
(

Q(1)
)−1(

f(1)b −M(1)
bi

..
u(1)

i −K(1)
bi u(1)

i −M(1)
bb

..
u(1)

b −K(1)
bb C1 f u( f )

)
4th− row : M(2)

bi
..
u(2)

i + K(2)
bi u(2)

i + M(2)
bb

..
u(2)

b + K(2)
bb u(2)

b + Q(2)λ(2) = f(2)b

→ λ(2) =
(

Q(2)
)−1(

f(2)b −M(2)
bi

..
u(2)

i −K(2)
bi u(2)

i −M(2)
bb

..
u(2)

b −K(2)
bb C2 f u( f )

)
(10)

When the relations (9) and (10) are substituted into the total system Equation (8), the
Lagrange multipliers λ(1) and λ(2) and the overlapped boundary displacements u(1)

b and

u(2)
b are condensed by the internal displacements u(1)

i and u(2)
i and the frame displacement

u( f ). Lastly, the matrix form of the total system equation can be obtained as follows by
summarizing and re-organizing Equation (8):
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M̂
..
û + K̂û = F̂ where M̂ =


M(1)

ii 0 M(1)
ib C1 f

0 M(2)
ii M(2)

ib C2 f

CT
1 f M(1)

bi CT
2 f M(2)

bi CT
1 f M(1)

bb C1 f + CT
2 f M(2)

bb C2 f

, û =

 u(1)
i

u(2)
i

u( f )

,
..
û =


..
u(1)

i
..
u(2)

i
..
u( f )



K̂ =


K(1)

ii 0 K(1)
ib C1 f

0 K(2)
ii K(2)

ib C2 f

CT
1 f K(1)

bi CT
2 f K(2)

bi CT
1 f K(1)

bb C1 f + CT
2 f K(2)

bb C2 f

, F̂ =


f(1)i
f(2)i

CT
1 f f(1)b + CT

2 f f(2)b


(11)

The internal displacements u(1)
i and u(2)

i and the frame displacement u( f ) can be
obtained directly by solving the total system equation of the condensed localized mortar
method (11). The condensed variables u(1)

b , u(2)
b , λ(1) and λ(2) can then be calculated using

the relation (9) and (10), if required.

2.3. Verification Example for Linear Dynamic Impact and Frictionless Contact Problem

The problem of ring contacts to the rigid support beam [33] is considered to ensure
that the condensed localized mortar method works well in the linear dynamic impact and
frictionless contact conditions. Figure 5a presents the problem definition.
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Figure 5. Problem definition and deformed configurations of a ring with rigid support.
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As shown in Figure 5a, both side of the rigid support with a size of 24 by 3 is completely
fixed and the displacement boundary condition is imposed on the top surface of the ring so
that the ring goes down constantly. All the parts are modeled with a 2D linear quadrilateral
element for both parts. In the verification example, the elastic ring consists of an inner and
outer ring with the same thickness and different materials [33]. In order to ensure that the
inner ring is stiffer than the outer ring, the material properties of the inner and outer rings
are defined as follows:

Einner = 1E + 05, ν = 0.3
Eouter = 1E + 03, ν = 0.3

(12)

By imposing the condition of pressing on the top side of the ring, as shown in Figure 5a,
the finite deformable ring is in contact with a rigid support, and a non-matching interface
is then observed on the interface. The contact condition is solved by using the condensed
localized mortar method (11).

A linear dynamic finite element analysis is conducted in 120 steps to solve the verifica-
tion example. The deformed configurations are presented in Figure 5b–f. The contact area
is changed from one spot to one region and then expanded to two regions to distribute the
pressure by increasing the contact surface in order to support a given boundary condition
as the analysis proceeds. These analysis results demonstrate identical appearances as
shown in reference [33].

This result indicates that the condensed localized mortar method used in this study
works well even in the linear dynamic impact and frictionless contact conditions, and that
the contact regions are changed. Therefore, the interface is treated by the condensed local-
ized mortar method to handle the topology optimization with the impact and frictionless
contact conditions.

3. Dynamic Response Topology Optimization with Condensed Localized
Mortar Method

Topology optimization is widely applied as a conceptual design that can be used to
derive well-matched structures without any intervention from the designer [6–8]. The
SIMP method is the most widely used approach among the various topology optimization
techniques [9–12]; it is used to gradually find an optimum layout by determining the
material existence or absence of each element in a given design domain. The SIMP method
uses a relative density function to determine the existence of a material η.

η(x) =
{

1 if x ∈ Ω
0 if x /∈ Ω

(13)

where x indicates the location of the finite element in the design domain, Ω. From Equa-
tion (13), it can be inferred that the material exists when the relative density function η
is 1, and the material does not exist when the relative density function η, is 0. In the
modified SIMP method [13], material properties such as Young’s modulus and density of
each element are defined based on the function of relative density η as given below:

Ee = E0

(
αη

p
e + (1− α)ηe

)
ρe = ρ0ηe

(14)

where E0 and ρ0 are the Young’s modulus and density of the material, respectively, α is a
positive constant that is typically defined as 15/16, and p is a penalization parameter that
is typically set as 3.

3.1. Optimization Formulation with Condensed Localized Mortar Method

The optimization formulation used to obtain an optimum topological layout in a linear
dynamic system [13,34,35] is represented by Equation (15), where the condensed localized
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mortar method described in the previous section is adopted by the matrices M̂, K̂, and
vectors û(t),

..
û(t) and F̂(t) to handle the impact problem with the non-matching interface.

minimize
η

Jd

subject to


M̂

..
û(t) + K̂û(t) = F̂(t) , t ∈ [0, t f ]

g(η) = V(η)−Vreq =
N
∑

e=1
ηeve −Vreq ≤ 0

0 < ηmin ≤ η ≤ 1

(15)

The optimization formulation (15) is organized to minimize the objective function Jd
using the momentum equation and volume constraint, g(n) [13]. In this study, the objective
function Jd is defined for mean dynamic compliance to find a stiff structure as follows:

Jd =
1
t f

t f∫
0

c(û(t),η)dt, c(û(t),η) = F̂T
(t)û(t) where

∂c
∂ηe

= 0,
∂c
∂û

= F̂(t) (16)

Additionally, for the mean squared displacement of a target, DOF is given as:

Jd =
1
t f

t f∫
0

c(û(t),η)dt, c(û(t),η) = (Lû(t))2 where
∂c
∂ηe

= 0,
∂c
∂û

= 2û(t)L (17)

where L represents the role in selecting the target DOF from the displacement û(t).
The optimum topological layout that minimizes the objective function can be deter-

mined, which includes the mean dynamic compliance and mean squared displacement of a
target degree-of-freedom while satisfying the constraints, by performing the optimization
formulation defined in Equations (15)–(17).

The sensitivity of the optimization formulation (15) must be calculated when a
gradient-based optimization algorithm is used. Since the topology optimization presents
several design variables by defining the relative density function η, for each element, the
adjoint method is more appropriate than the direct method [6,7,13]. The adjoint variables
λadj must be introduced to simplify the objective function in order to use the adjoint method
to calculate the sensitivities of the objective function. When the adjoint variable λadj is

inserted with the additional adjoint equation M̂
..
û + K̂û− F̂ the objective function Jd can be

rewritten as:

Jd
∼= Jd + λT

t f∫
0

(M̂
..
û + K̂û− F̂)dt (18)

Since the additional adjoint equation M̂
..
û + K̂û− F̂ is always zero, as illustrated in

Equation (11), it can be confirmed that the objective function Jd does not change even when
the adjoint variable and the adjoint equation are added.

The sensitivity of the objective function is calculated by using the adjoint method,
as follows:

∂Jd
∂ηe

=
∂Jd
∂ηe

+

t f∫
0

λT ∂

∂ηe
(M̂

..
û + K̂û− F̂)dt =

t f∫
0

[{
∂c
∂ηe

+
∂û
∂ηe

T ∂c
∂û

}
+

{
λT ∂

∂ηe
(M̂

..
û + K̂û)

}]
dt (19)

Subsequently, by integrating-by-parts and re-organizing, Equation (19) yields:

∂Jd
∂ηe

=

t f∫
0

[
λT ∂M̂

∂ηe

..
û + λT ∂K̂

∂ηe
û +

∂c
∂ηe

]
dt +

t f∫
0

[
∂û
∂ηe

T( ∂c
∂û

+ M̂
..
λ+ K̂λ

)]
dt +

 ∂
.
û

∂ηe

T

M̂λ− ∂û
∂ηe

T
M̂

.
λ

∣∣∣∣∣∣
t=t f

(20)
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In Equation (20), to obtain the adjoint variable λadj that is arbitrarily inserted to
simplify the sensitivity process, the following differential equation must be solved:

M̂
..
λ+ K̂λ = − ∂c

∂û
, t ∈

[
0, t f

]
where λt f = 0,

.
λt f = 0 (21)

where Equation (21) is a similar form of the equation of motion (11), which is widely known.
Therefore, the adjoint variable is transformed by Λ(s) = λadj(t f − s) in order to make an
equivalent form, and Equation (21) is re-written as:

M̂
..
Λ(s) + K̂Λ(s) = − ∂c

∂û

∣∣∣∣
t f−s

, s ∈
[
0, t f

]
where Λ(0) = 0,

.
Λ(0) = 0 (22)

Since the form of Equation (22) is exactly identical to that of Equation (11), the trans-
formed adjoint variable Λ(s) can be easily calculated, along with the adjoint variable λadj
through an inverse transformation.

3.2. Verification Example for Dynamic Response Topology Optimization

A Michell-type structure problem is used to validate the optimization formulation (15)
for the linear dynamic system. The geometry and boundary conditions are shown in
Figure 6a,b. The material properties of the entire design domain are assumed to be those of
structural steel (E = 2× 1011, Poisson’s ratio is 0.3, and density ρ = 7890). The total time
step is considered as 50.
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Figure 6. Problem definition for Michell-type structure problem: (a) schematic description (b) load condition.

Topology optimization is performed to obtain the stiffest design while satisfying
50% of the volume using the optimization formulation (15) and (16). The adjoint method
is used for sensitivity analysis. In order to identify the differences and effectiveness of
implementation in the linear dynamic system before performing the dynamic response
topology optimization, the static response topology optimization under the same conditions
and optimization formulations is performed as shown in Figure 7.

In order to perform topology optimization, it is necessary to confirm whether the
dynamic analysis is performed adequately due to which, the Michell-type structure is
analyzed first. Figure 8 shows the vertical directional displacements at point “A”. The
red color represents the result of the static analysis, and the other results indicate the
displacement of the dynamic analysis corresponding to the final time t f . In the verification
example, analysis and optimization is conducted with the final time t f set to 0.01, 0.05, 0.1,
and 0.5 to check the response in the topology optimization for the dynamic system.
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Figure 7. Optimized results for Michell-type structure with static analysis: (a) Optimized layout (b) convergence history.
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Figure 8. Displacement histories of the tip point for Michell-type structure.

As shown in Figure 8, the results of the displacement at point “A” are converged to
the quasi-static results as the final time t f increases. Figure 8a shows the displacement at
point “A” when the final time t f is 0.01 s, and the structure acts as an impact state because
the load is applied for a very short period of time. This indicates that the dynamic effect
produced by the impact phenomenon is essential in the state of Figure 8a with a final time
t f of 0.01 s.

In the case of the impact state as shown in Figure 9a, the material is concentrated
near the point “A” where the load is applied due to the effect of inertia. Conversely, in
the case of quasi-static cases, as shown in Figure 9b–d, the optimized topological layout is
identical to the result of the static analysis presented in Figure 7 because the structure acts
as a quasi-static state when the final time t f is greater than 0.05.
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Figure 9. Optimized results for Michell-type structure with dynamic analysis.

The verification example is used to verify that the dynamic response topology opti-
mization adequately derives the optimized layout when the dynamic effect is critical. As
shown in Figure 9, the material is concentrated near the impact region due to the inertia
effect in the impact state. However, in a quasi-static state, the optimized topological layout
is obtained as the result of the static analysis as the final time t f increases. This indicates
that the dynamic response topology optimization is applied well in both the impact and
quasi-static states when the formulation (15) is used.

4. Numerical Example: Impact between Fixed Beam and Flying Block

Hitherto, two methods have been employed to find an optimum topological layout in
the linear dynamic impact problem: the condensed localized mortar method and the dy-
namic response topology optimization approach. The condensed localized mortar method
used to handle the non-matching interface at the impact and frictionless contact region was
described in Section 2, and the simple frictionless contact problem is solved to verify its
effectiveness in the impact state. The dynamic response topology optimization was intro-
duced in Section 3, and an optimization formulation with the condensed mortar method
was presented. Additionally, by performing topology optimization on the verification
example, the effectiveness of the dynamic response topology optimization is confirmed
when the beam is in the impact state.

In this section, topology optimization is performed by assuming a situation in which
two independently behaving objects are in the impact and frictionless contact conditions to
examine the applicability of the proposed approach to the linear dynamic impact problem.
The problem definition is presented in Figure 10. A block is separated at 0.05 intervals on a
lower beam which is completely fixed on both sides, as shown in Figure 10a. A constant
pressure is applied to the block for 0.12 s as depicted in Figure 10.
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Figure 10. Problem definition of beam with a flying block.

The frictionless contact condition (2) is imposed to allow for minimal sliding in the
tangential direction after the occurrence of the impact. Therefore, a situation in which
the configurations on the non-matching interface inevitably occur is considered. The
material properties for both the structures are assumed to be those of the structural steel
(E = 2× 1011, Poisson’s ratio is 0.3, and density ρ = 7890). The mean squared displacement
of a point “A” is used as an objective function (17) and the volume is limited to 50% for the
topology optimization process (15).

The optimization was performed considering only the lower beam and not the upper
block. A dynamic analysis is preferentially conducted to confirm the contact kinematics
before performing topology optimization. Figure 11 illustrates the deformed shapes ob-
tained by conducting the dynamic analysis, where it is observed that the impact occurs
after 0.06 s, and then the frictionless contact occurs between two parts.

The topology optimization results based on the analysis are presented in Figure 12.
In the numerical example, the optimization is performed for three cases: no contact
(t = 0.04), impact (t = 0.08) and steady state (t = 0.12). The topological change in the
design domain does not occur since there is no contact until 0.06 s, as shown in Figure
12a. The optimized layouts in the impact (t = 0.08) and steady state (t = 0.12) are derived
as shown in Figure 12b,c, after 0.06 s to minimize the beam deflection. A large portion of
the materials are distributed in the position where the beam is impacted when the design
domain is in the impact state (t = 0.08), since the force is not completely transmitted to the
beam, as shown in Figure 12b. However, when the analysis is performed over a period of
0.12 s, a shape in which the material is spread throughout the design domain is observed
since the load is distributed throughout the beam, as shown in Figure 12c. The result shown
in Figure 12c is a truss-type layout similar to the optimized results that can be derived
under static analysis with the same boundary conditions.
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As a result, it is possible to obtain the optimum topological layout to which the
dynamic effect is applied in the impact state in which the non-matching interface inevitably
occurred. In addition, after the impact state, it is confirmed that the identical layout with
the quasi-static state can be obtained when the load by the frictionless contact condition is
transmitted to the entire design domain.

It is confirmed through this example that the proposed approach can derive an ac-
ceptable result in the case of dynamic analysis where impact and frictionless contact are
observed. Consequently, it is concluded that this approach can be used to perform topology
optimization for various linear dynamic impact and frictionless contact problems.

5. Conclusions

This study presents an approach to apply the treatment of the non-matching interface
to the dynamic response topology optimization for determining an optimum topological
layout in the problem where the non-matching interface inevitably exists owing to the linear
dynamic impact and frictionless contact conditions. First, the condensed localized mortar
method is used to deal with linear dynamic impact and frictionless contact conditions which
must occur in the non-matching interface during the analysis. The detailed explanation is
in Section 2, and its usefulness is verified through the verification examples in Section 2.3.
Second, the SIMP method, the most widely used topology optimization approach, is
applied to treat the linear dynamic problems with the non-matching interface by using
the condensed localized mortar method. The detailed explanation is in Section 3, and
its effectiveness is verified through the verification examples in Section 3.2. Since the
non-matching interface could be considered as the general structural analysis in the same
framework by the features of the condensed localized mortar method, it can be easily
applied to the well-known and well-established linear dynamic optimization framework.
The effectiveness of the proposed approach is verified through a numerical example in
Section 4. From Section 4, it is confirmed that physically reasonable results are obtained
when the presented approach is applied in the dynamic response topology optimization
in which the non-matching interface inevitably exist during the impact and frictionless
contact conditions. Consequently, the problem of relative behavior including the impact
and frictionless contact conditions along the adjacent parts could be adequately designed
using the proposed method.

This study focuses on the linear dynamic impact and frictionless contact conditions
to determine an optimum topological layout. In the future, the proposed optimization
approach will be applied to more general and highly nonlinear non-matching interface
problems, such as friction contact and multi-physics problems.
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Abbreviations/Nomenclature:

Ωi Domain for domain “i”
Γ Boundary (Subscript, u: Dirichlet, t: Neumann, c: Contact)
X(i) Position for un-deformed domain “i”
x(i) Position for deformed domain “i”
ρ Density
E Young’s modulus
P First Piola-Kirchhoff stress tensor
b External body force
u(i) Displacement for domain “i”
gn Gap function in normal direction
τn Contact traction in normal direction
α, β Algorithmic parameter for Newmark method
λ Lagrange multiplier
fint Internal force vector
fc Contact force vector
fext External force vector
η Design variable for topology optimization
Jd Objective function for topology optimization
V Volume constraint for topology optimization
λadj Adjoint variable for topology optimization
Λ Transformed adjoint variable λadj
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