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Featured Application: MR-derived cerebral metabolic rate of oxygen in contrast-enhancing and
peritumoral non-enhancing regions, as calculated by an artificial neural network, allows for ro-
bust differentiation of glioblastoma and brain metastasis.

Abstract: Glioblastoma may appear similar to cerebral metastasis on conventional MRI in some cases,
but their therapies differ significantly. This prospective feasibility study was aimed at differentiating
them by applying the quantitative susceptibility mapping and quantitative blood-oxygen-level-
dependent (QSM + qBOLD) model to these entities for the first time. We prospectively included
15 untreated patients with glioblastoma (n = 7, median age: 68 years, range: 54–84 years) or brain
metastasis (n = 8, median age 66 years, range: 50–78 years) who underwent preoperative MRI
including multi-gradient echo and arterial spin labeling sequences. Oxygen extraction fraction
(OEF), cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) were calculated
in the contrast-enhancing tumor (CET) and peritumoral non-enhancing T2 hyperintense region
(NET2), using an artificial neural network. We demonstrated that OEF in CET was significantly
lower (p = 0.03) for glioblastomas than metastases, all features were significantly higher (p = 0.01)
in CET than in NET2 for metastasis patients only, and the ratios of CET/NET2 for CBF (p = 0.04)
and CMRO2 (p = 0.01) were significantly higher in metastasis patients than in glioblastoma patients.
Discriminative power of a support-vector machine classifier was highest with a combination of two
features, yielding an area under the receiver operating characteristic curve of 0.94 with 93% diagnostic
accuracy. QSM + qBOLD allows for robust differentiation of glioblastoma and cerebral metastasis
while yielding insights into tumor oxygenation.

Keywords: brain metastasis; glioblastoma; machine learning; oxygenation; tumor infiltration

1. Introduction

Glioblastoma (GBM) and cerebral metastasis (cMET) are the most common brain
tumors in adult patients [1]. Reliably differentiating GBM and cMET based on their conven-
tional magnetic resonance imaging (MRI) characteristics has proven difficult [2,3], as both
tumor types can show necrotic centers, contrast-enhancing peripheral areas and peritu-
moral edema (Figure 1) [4]. However, studies employing advanced MR-imaging techniques
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focusing on the tumor microenvironment and hypoxia-induced changes in the microvascu-
lature found that an elevated cerebral blood flow (CBF) and proxies for increased metabolic
activity including a higher resulting cerebral metabolic rate of oxygen (CMRO2) were
associated with high-grade gliomas [5,6]. Therefore, we performed a prospective feasibility
study to differentiate between GBM and cMET by using an artificial neural network (ANN)
approach for non-invasive estimation of CMRO2, combining quantitative susceptibility
mapping (QSM) and the quantitative blood-oxygenation-level-dependent effect (qBOLD).
To the best of the authors’ knowledge, the concept of using the combined QSM + qBOLD
approach for estimation of CMRO2 is new for differentiating these two entities.
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Figure 1. Axial contrast-enhanced magnetization prepared rapid gradient echo (MP-RAGE) brain
images comparing (a) a right temporal metastasis from known esophageal cancer in a 50-year-old
male patient and (b) a glioblastoma in the frontal lobe of the left hemisphere of a 71-year-old male
patient. Both tumors show cystic elements and peripheral contrast enhancement, complicating a
differentiation based on solely morphological criteria.

GBMs constitute between 60% and 70% of all malignant gliomas [7]. Median survival
for this highly malignant, infiltratively growing tumor is between 12 and 15 months with op-
timal treatment [7–9]. A higher median survival of 22 months has been reported for patients
with recurrent glioblastoma undergoing a second surgical therapy [10]. The metabolism of
GBM cells is adapted to the increased uptake of nutrients by utilizing aerobic glycolysis [11],
thereby linking glucose metabolism to oxygen metabolism [12]. Although benefiting from
a greater supply of components for cell upkeep and increased perfusion, GBMs frequently
grow too fast for their vasculature, eventually resulting in the typical central necrosis with
peripheral ring-enhancement [7,8].

Similarly, cMETs can also become ring-enhancing after developing a necrotic center
due to them outgrowing their blood and nutrient supply [13,14]. Over 20% of cancer
patients develop disseminations to the central nervous system [15]. One study identified
that 55% of cMET cases had no known primary at diagnosis [16], while between 30% to
50% of cMETs have been found to first appear as solitary lesions, further complicating
their correct identification [2,17,18]. Accurately discriminating between GBM and cMET
is of great clinical importance because therapy approach and surgical decisions are quite
different and directly affect patient outcomes [9,17,19]. The current diagnostic standard is
an invasive tissue biopsy with subsequent histopathological examination [4], a procedure
that is not without inherent risks with a complication rate of about 6% [20].
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Hence, the discrimination of GBM and cMET has been attempted many times using a
variety of different radiological approaches [4,19,21–24]. Perfusion-based studies showed
relative cerebral blood volume (rCBV) in the proximal peritumoral non-enhancing T2
FLAIR hyperintensity (NET2) to be significantly higher in GBM than in cMET [21–24].
In the distal parts of NET2, GBM and cMET showed similar rCBV values which may reflect
a lack of GBM cell infiltration and angiogenesis, supporting the notion that angiogenesis
follows a gradient around the tumor and is highest on the surface of the contrast-enhancing
tumor region (CET) [24,25]. With regards to oxygenation, tissue hypoxia is widely accepted
as a predictor of therapy resistance to radiation and chemotherapy in gliomas [5]. Hypoxia
has been found to stimulate the growth of new blood vessels via the induction and release
of vascular endothelial growth factor [10]. This neovascularization leads to a dilated
and tortuous vessel configuration, abnormal branching and arteriovenous shunts [26].
The resulting inefficiencies in the tumor vasculature were found to be correlated with
greatly increased CBF, lower oxygen extraction fraction (OEF) and, in sum, a higher
CMRO2 [6].

In this work, tissue oxygenation was estimated using a combined QSM + qBOLD
model that was introduced in 2018 and which utilizes both signal magnitude and phase of
a 3D multi-gradient echo (mGRE) sequence [27–29]. We built upon an existing artificial
neural network approach to perform the QSM + qBOLD analysis [29]. The artificial neural
network was previously used only for mapping OEF in healthy individuals, making this
study its first application in a clinical setting by employing it for the differential diagnosis
of two brain tumor entities. Perfusion was measured with pseudocontinuous arterial
spin labeling.

The purpose of this study was, therefore, to apply the QSM + qBOLD method for the
first time to a prospectively recruited collective of GBM and cMET patients and to compare
their cerebral oxygenation and perfusion. Based on the hypothesis that the infiltrative
growth of GBM and the lack thereof in cMET would create differences in CET and NET2,
a machine learning classifier was trained to differentiate the two entities.

2. Materials and Methods
2.1. Patients

Between December 2019 and October 2020, 15 patients with primary GBM (n = 7;
median age: 68 years, range: 54–84 years) or cMET (n = 8; median age: 66 years, range:
50–78 years) before resection, radiation or chemotherapy were prospectively included in
this study as a convenience sample. Ten patients were male, five were female. The cMETs,
as determined by histopathology, originated from four lung carcinomas, one esophageal
carcinoma and three cancers of unknown primary. Ethics committee approval was granted
before recruitment of patients (reference: 2017-666N-MA). Written informed consent was
obtained from every participant prior to MRI measurements and the acquired image data
was anonymized before further processing. The study was conducted in compliance with
the ethical standards of the Declaration of Helsinki of 2013.

2.2. Image Acquisition

All MRI scans were performed on a 3T MAGNETOM Trio system (Siemens Healthcare GmbH,
Erlangen, Germany) at the Department of Neuroradiology of the Medical Faculty Mannheim.
The perfusion data of the first two patients (one cMET, one GBM) were acquired with a 32-
channel head coil. Due to practical reasons in clinical day-to-day MRI scans, a 12-channel
head coil was used for all subsequent study participants. The MRI protocol included a 3D
multi-gradient echo, an unbalanced axial two-dimensional pseudocontinuous arterial spin
labeling (three-dimensional pseudocontinuous arterial spin labeling was employed for
the first two patients that were scanned with a 32-channel head coil) and a magnetization
prepared rapid gradient echo (MP-RAGE) sequence. The gadolinium-based contrast
agent Dotarem® (Guerbet, Villepinte, France) was administered as bolus injection for the
T1-weighted sequence at a dosage of 0.1 mL/kg body weight. The labeling plane for the
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arterial spin labeling sequence was placed circa 85 mm inferior to the anterior commissure-
posterior commissure line, approximately perpendicular to the feeding arteries, in line
with the consensus recommendation for arterial spin labeling imaging [30]. The sequences
and specific parameters used in this study have all been described in detail in a previously
published study [29].

2.3. Image Processing

The MRI images were registered using the statistical parametric mapping software
SPM12 (Wellcome Centre for Human Neuroimaging, UCL, London, UK) using default
values. Correct registration was verified with the open-source medical image viewer
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php, accessed on 13 October 2021).
Post-processing was performed with MATLAB (Mathworks, Natick, MA, USA). Three
regions of interest (ROI) were outlined manually (H.B.) for calculation of oxygenation
and perfusion parameters: CET and central necrosis on all slices of the acquired images
where the respective region was present, as well as NET2 (Figure 2). The propensity
of the central necrotic region to hemorrhage and its very low to non-existent perfusion
can lead to an unphysiological spike in OEF (cf. Figure 3) [5]. Therefore, the necrotic
region was subtracted from CET to exclude non-vital parts of the tumor in metabolic
assessment. For the peritumoral edematous area, a 15–20 mm wide ROI was defined in
NET2 on three consecutive FLAIR images with the largest peritumoral hyperintensity,
leaving an approximately 3 mm wide margin to avoid partial volume effects [31]. All ROIs
were adapted to the tumor border, subtracting a cerebrospinal fluid mask of ventricles
and sulci generated automatically in SPM12. The ROIs were audited by an experienced
neuroradiologist (H.W.).
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Figure 2. Examples of the different regions of interest (ROIs) assessed in this study. (a) Axial T1-
weighted contrast-enhanced image of a 71-year-old male patient with glioblastoma in the frontal
lobe of the left hemisphere. The outer ROI marks contrast-enhancing tumor while the ROI inside
the tumor indicates the central necrosis. (b) Axial FLAIR image of a 66-year-old male patient with a
left hemispheric metastasis in the perirolandic region from unknown primary. The ROI marks the
proximal edema bordering the solid-appearing tumor.

http://www.itksnap.org/pmwiki/pmwiki.php
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Figure 3. Oxygen extraction fraction (OEF) map of a 54-year-old female patient with left occipito-
temporal glioblastoma. Axes are in mm. The scale to the right of the image indicates OEF
(e.g., 0.5 = 50%).

2.4. Calculation of Perfusion and Oxygenation Parameters

In order to estimate cerebral perfusion, a quantitative perfusion map was created
from the arterial spin labeling data using SPM12. Both the control and tag images from
the pCASL sequence were averaged and used together with the proton density weighted
image to calculate CBF in mL/100 g/min, using the consensus recommendation for im-
plementation of arterial spin labeling perfusion MRI in clinical applications from Alsop
et al. [30]. Time correction for multi-slice imaging was implemented to account for the
different transit time of the labeled bolus depending on the time of slice acquisition [30].

CMRO2 in µmol/100 g/min was calculated as follows:

CMRO2 = CBF·Ya· OEF ·[H], (1)

where Υa is the arterial oxygen saturation, assumed to be 98%, and [H] = 7.53 µmol/mL
is the heme molar concentration in tissue blood assuming a hematocrit of Hct = 0.357 in
arterioles [27,32].

An artificial neural network was employed for combined QSM + qBOLD analysis of
the mGRE data to estimate Υ and calculate OEF [33]:

OEF = 1 − Y
Ya

, (2)

where Υ and Υa are venous and arterial blood oxygenation, the latter again assumed to be
98% [27].

2.5. Artificial Neural Network

The feed-forward artificial neural network used for estimation of Υ was designed in
the Neural Network Toolbox in MATLAB (Mathworks, Natick, MA, USA), consisting of
one input layer, one hidden layer with 10 nodes and one output layer. The normalized
mGRE magnitude signal and the magnetic susceptibility from QSM were used as inputs.
The artificial neural network has been described in detail in a previous study [26], where
it was trained and used to emulate the solution of the qBOLD model for free induction
decay [27], yielding an estimate of venous oxygen saturation Υ, transverse relaxation rate
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R2, deoxygenated blood volume ν and non-blood susceptibility χnb [29]. After doing this
for every voxel, OEF maps were created with Equation (2). In order to make the qBOLD
model more robust, QSM was added by calculating magnetic susceptibility [27], using
the MEDI toolbox (Cornell MRI Research Lab, Cornell University, New York, NY, USA).
The resulting parameters were used for a last fitting step by giving starting values for a
quasi-Newton optimization that was stopped once the relative change was smaller than
0.001 or a maximum of 50 iterations was reached (this was mostly the case after approx.
10 iterations) [34].

2.6. Statistical Analysis

The statistical analyses were descriptive and performed in MATLAB R2020b (Mathworks,
Natick, MA, USA). Variables were summarized using their median, minimum–maximum
and interquartile range. Outliers were included in the statistical tests. For all patients,
means and standard deviations of OEF, CBF and CMRO2 were calculated in the ROIs set
out in Figure 2. In patients with multiple cMETs, perfusion and oxygenation parameters
were not assessed on a metastasis-by-metastasis basis but averaged across all metastases
present in the respective patient’s brain. GBM patients were not stratified according to IDH
or MGMT promoter methylation status.

Non-parametric Mann–Whitney–Wilcoxon tests for two populations were applied
to properly compare the distributions of explanatory variables between the two groups.
Two-tailed Wilcoxon signed-rank tests were used for intra-individual comparisons between
CET and NET2. p-values < 0.05 were considered significant. Due to the explorative nature
of this study, p-values were not adjusted for multiple comparisons and power analysis for
determination of required sample size was not performed [35].

The primary learning objective was the binary classification of GBM vs. cMET. For this,
a well-established maximum margin classifier, a linear kernel support-vector machine [36],
was fitted to the following features: OEF, CBF and CMRO2 in CET and NET2. Additional
secondary measures, i.e., the ratios of said features in CET divided by NET2, were also cal-
culated and used for fitting [17]. We performed five-fold cross-validation with 10 repeats to
assess the robustness of these explanatory variables [37]. Receiver operating characteristic
analysis was performed to calculate the area under the receiver operating characteristic
curve (AUC) accuracy metrics and derivatives of the confusion matrix, averaged over
the five folds [37]. In an effort to compare the classification performance of the linear
kernel support-vector machine with other common binary classifiers, ROC analysis was
performed for naïve Bayes, weighted k-nearest neighbor, decision trees and for quadratic
as well as Gaussian kernel support-vector machines.

3. Results

Analysis of oxygenation and perfusion maps in both groups revealed OEF to be
lower and CBF to be generally higher than in normal-appearing brain, leading to a net
positive effect on CMRO2, meaning a higher oxygen metabolism in tumor tissue than
in an unaffected contralateral brain, both in GBM and in cMET patients. The OEF map
of a 54-year-old female patient with left occipito-temporal GBM supplied in Figure 3
gives an illustrative example of the oxygenation values emulated by the artificial neural
network. The patient’s brain shows largely uniform OEF values across “healthy” brain
matter. The solid-appearing region of the tumor displays a strong OEF signal compared to
the surrounding tissue and the rest of the brain while OEF in the peritumoral edematous
area appears to be lower than in contralateral white matter.

When comparing oxygenation and perfusion parameters between GBM and cMET,
OEF in CET was found to be significantly (p = 0.03) lower in GBM than in cMET. No signif-
icant differences were found between CET of GBM and cMET in terms of CBF (p = 0.33)
and CMRO2 (p = 0.15). For cMET patients, all parameters, i.e., OEF, CBF and CMRO2, were
significantly (p = 0.01) higher in the CET region than in the NET2 region. Meanwhile, for
the GBM group, neither the difference between CET and NET2 in OEF (p = 0.11), nor CBF
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(p = 0.15), nor CMRO2 (p = 0.08) was significant. A visual representation of this can be
found in the boxplots supplied in Figure 4a. For an overview of oxygenation and perfusion
parameters on a patient-by-patient basis, please consult Table S1 (supplement).

The ratio of CET divided by NET2 was demonstrated to be another useful metric for
differentiation of GBM and cMET. While OEF for CET/NET2 was not significantly different
between GBM and cMET patients (p = 0.12), the ratio for CBF was significantly higher for
cMET (p = 0.04), as was the ratio for CMRO2 (p = 0.01). Boxplots depicting these quotients
are displayed in Figure 4b.
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Figure 4. Boxplots (a) comparing OEF, CBF and CMRO2 between CET and NET2 for GBM and cMET and (b) displaying the
ratios of OEF, CBF and CMRO2 in CET divided by NET2 for GBM and cMET patients. Box: first to third quartile; whiskers:
1.5 times the interquartile distance or the maximum/minimum value, if contained therein; red line: median. Outliers are
displayed as red crosses. Significant differences (p < 0.05) are marked with an asterisk, the highly significant difference
(p = 0.01) is marked with two asterisks. OEF: oxygen extraction fraction; CBF: cerebral blood flow; CMRO2: cerebral
metabolic rate of oxygen; CET: contrast-enhancing tumor; NET2: peritumoral non-enhancing T2 FLAIR hyperintensity.

After fitting a classifier support-vector machine to the oxygenation and perfusion features,
different metrics for binary classification of GBM and cMET were assessed. The receiver
operating characteristic curves of the ratios of OEF, CBF and CMRO2 in CET divided by
NET2 as well as the best overall feature combination in terms of AUC (OEF in CET and
CMRO2 in CET/NET2) are exhibited in Figure 5.
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Figure 5. Five-fold cross-validated ROC curves for the support-vector machine classifier predict-
ing binary outcome (GBM or cMET). Curves are shown for the ratios of oxygen extraction frac-
tion (OEFCET/NET2), cerebral blood flow (CBFCET/NET2) and cerebral metabolic rate of oxygen
(CMRO2 CET/NET2) in contrast-enhancing tumor (CET) divided by peritumoral non-enhancing T2
FLAIR hyperintensity (NET2) as well as for the multivariable fit to OEFCET and CMRO2 CET/NET2.
OEFCET: OEF in contrast-enhancing tumor.

For each parameter, values for accuracy, optimal sensitivity and specificity and AUC
are listed in Table 1. CMRO2 CET/NET2 emerged as the best single feature for differentiation
of GBM from cMET. The resulting model had an AUC of 0.85 with an accuracy of 83% at
an optimal sensitivity and specificity of 85% and 82%, respectively. The next best single
classification features in terms of AUC were the ratio CBFCET/NET2 (0.80) and OEF in CET
(0.79). The highest discriminative power with the best diagnostic accuracy was achieved by
combining OEFCET and CMRO2 CET/NET2 for fitting a support-vector machine (AUC = 0.94).
This allowed for an accurate classification of the tumors in 93% of cases, with a sensitivity
of 99% and a specificity of 88%. Averaged over all iterations, out of 15 tumor patients
included in this study, 14 were correctly diagnosed and only one case was misclassified.

We also assessed other machine learning classifiers that showed a lower discrimi-
nation performance including weighted k-nearest neighbor (AUC: 0.93, accuracy: 87%),
naïve Bayes (AUC: 0.88, accuracy: 93%), and decision trees (AUC: 0.66, accuracy: 73%).
Additionally, we investigated different variants of support-vector machines with quadratic
(AUC: 0.89, accuracy: 87%) and Gaussian kernels (AUC: 0.86, accuracy: 87%). All of
these achieved a smaller AUC with k-nearest neighbor coming closest to the linear kernel
support-vector machine.
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Table 1. Receiver operating characteristic analysis results of a linear kernel support-vector machine
trained on oxygenation and perfusion parameters.

Region Feature Accuracy Sensitivity Specificity AUC (Range)

OEF 81% 87% 75% 0.79 (0.76–0.84)
CET CBF 71% 70% 71% 0.67 (0.55–0.73)

CMRO2 63% 27% 95% 0.52 (0.41–0.68)

OEF 68% 70% 66% 0.65 (0.46–0.82)
NET2 CBF 73% 54% 89% 0.69 (0.64–0.75)

CMRO2 73% 44% 99% 0.66 (0.61–0.71)

OEF 69% 60% 78% 0.66 (0.55–0.77)
CET/NET2 CBF 75% 63% 86% 0.80 (0.77–0.82)

CMRO2 83% 85% 82% 0.85 (0.73–0.93)

Best
combined

OEFCET +
CMRO2 CET/NET2

93% 99% 88% 0.94 (0.88–0.96)

Values are shown for contrast-enhancing tumor (CET), peritumoral non-enhancing T2 FLAIR hyperintensity
(NET2) and their ratio (CET/NET2). AUC range indicates the lowest and highest values over 10 iterations. OEF:
oxygen extraction fraction; CBF: cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen; AUC: area under
the receiver operating characteristic curve.

4. Discussion

In this feasibility study, we applied for the first time the MRI-based QSM + qBOLD
approach for OEF and CMRO2 estimation to a prospectively recruited collective of GBM
and cMET patients in order to distinguish the two entities based on their respective cerebral
oxygenation and perfusion. Since the MRI protocol employed in this study for estimat-
ing cerebral tissue oxygenation and perfusion does not require the administration of an
intravenous contrast agent per se, it offers the potential to facilitate metabolic imaging
of cerebral tumors as well as non-invasive differential diagnosis of GBM and cMET. We
demonstrated for the two patient groups that (i) OEF in the enhancing tumor was sig-
nificantly lower in GBM than in cMET, (ii) the differences in perfusion and oxygenation
between CET and NET2 were only significant for the cMET group, and (iii) the ratios of
CBF and CMRO2 in CET divided by NET2 were significantly higher for cMET patients
than for GBM patients.

In order to differentiate the two entities, a support-vector machine classifier was
trained on oxygenation and perfusion parameters in CET and NET2. A support-vector
machine was chosen since it emerged as the best classifier with the highest accuracy, in line
with previous investigations that compared it to different approaches such as naïve Bayes,
weighted k-nearest neighbor and decision trees for binary classification of glioblastoma
and cerebral metastasis [4,23,38]. The described procedure could identify OEF in CET and
the ratio of CMRO2 in CET versus NET2 as the most promising features for distinguishing
GBM from cMET, achieving the highest discriminative power. With an accuracy of 93%
and an AUC of 0.94, the two entities could be successfully differentiated.

Our results suggest that differentiation of GBM and cMET based solely on OEF in CET
is good but not sufficient for reliably distinguishing the two groups. AUC and accuracy
were higher than for any other individual parameter in CET or NET2 but lower than
those obtained from using the ratios of CBF or CMRO2 in CET versus NET2. This may be
explained by the tumor microenvironment, in particular angiogenesis, that is similar in
the contrast-enhancing part of GBM and many hematogenous cMETs [17]. In both entities,
a disruption of the blood-brain barrier is caused by tumor growth and angiogenesis:
the hypoxic state of the tumor and its surroundings lead to hypoxia-inducible factors
being activated and their gene product VEGF being expressed [39,40]. The improved
classification performance with the ratios of CET versus NET2 is likely attributable to the
dissimilarities in NET2 tissue structure between GBM and cMET. Higher vascularization
and neoplastic cell growth are hallmarks of the region surrounding contrast-enhancing
GBM [5,6,41], while the peritumoral edema around cMET is caused purely by vasogenic
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edema and does not show extensive tumor cell infiltration [42]. This may explain why OEF,
CBF and CMRO2 were significantly higher in CET than in NET2 for cMET patients only.

We observed OEF in CET of GBM patients to be in line with the results of previous
studies [26,27,43], reproducing the findings of low OEF, which is possibly a marker of less
efficient oxygen extraction due to a physiologically inferior capillary configuration [27],
coupled with high CBF. This gives plausibility to the parameter maps calculated with the
QSM + qBOLD model that have in the past shown higher, more uniform OEF across the
whole brain and more robust CMRO2 estimates than QSM or qBOLD alone [27]. It was
surprising, however, to find discrepancies between the OEF values computed in NET2 of
GBM patients: While we found lower OEF in NET2 than in CET, reproducing the results of
a previous study [43], two other studies found higher OEF in the edema surrounding the
tumor [5,6]. This might either be a cause of incongruent definitions of the ROIs “edema”
and “NET2” or another underlying phenomenon. A PET/MR study with a sufficiently
large number of patients might be useful to shed light on true OEF in the peritumoral
region of GBM.

In addition to the good classification accuracy, the CMRO2 yielded by QSM + qBOLD
serves as an important physiological parameter that has been shown to predict tumor
response to antiangiogenic therapy as well as progression-free survival and overall survival
in GBM patients [44] through association with intratumoral angiogenesis and oxygenation
status [45]. Other possible applications of CMRO2 that warrant further investigation
consist of monitoring tumor response after initial radiation or chemotherapy and early
detection of recurrence. With regard to preoperative imaging, CMRO2 may also serve as a
parameter to improve assessment of the surgical margins necessary for a more complete
resection of glioblastomas, possibly adding complementary information to conventional
MRI sequences for a “supratotal resection” [46].

This work is subject to a number of limitations. The QSM + qBOLD model requires
a set of assumptions about physiologic parameters that were not measured for each pa-
tient individually. Among these assumptions are a constant tissue hematocrit and arterial
oxygen saturation. Furthermore, the OEF values from QSM + qBOLD are prone to suscep-
tibility artifacts from disturbances close to air-tissue bounds, e.g., the sinus frontalis, iron
accumulations in deep grey matter or from blood degradation metabolites from hemor-
rhage, a phenomenon common in the necrotic centers of GBMs and cMETs, hence their
exclusion from the assessment. Additional variance was introduced by changing the head
coil after the first two patients. However, the perfusion values of these patients remained
within a plausible range. Segmentation of ROIs was performed manually, adding a degree
of intra- and inter-observer variability. Moreover, cMETs originating from various primary
tumors may cause different oxygen metabolism characteristics. Subgroup analysis was not
performed because of the relatively small sample size due to the explorative nature of this
feasibility study. Thus, further research with larger patient populations is recommended
before implementation of QSM + qBOLD into the clinical routine.

5. Conclusions

This study demonstrated that QSM + qBOLD allows for non-invasive differential
diagnosis of GBM and cMET. In future studies, this differentiation could also be made
without the use of an intravenous contrast agent. Going forward, our MRI approach for
assessment of tissue oxygen metabolism might be helpful as a diagnostic tool that comple-
ments or replaces invasive stereotactic biopsies while yielding metabolic information about
the tumor microenvironment and its surroundings, e.g., for predicting tumor response
to therapy.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/app11219928/s1, Table S1: Oxygenation and perfusion parameters in CET and NET2 by
individual patient.
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