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Abstract: Augmented reality medical training simulators can provide a realistic and immersive
experience by overlapping the virtual scene on to the real world. Latency in augmented reality (AR)
medical training simulators is an important issue as it can lead to motion sickness for users. This
paper proposes a framework that can achieve real-time rendering of the 3D scene aligned to the
real world using a head-mounted display (HMD). Model deformation in the 3D scene is categorised
into local deformation derived from user interaction and global deformation determined by the
simulation scenario. Target shapes are predefined by a simulation scenario, and control points are
placed to embed the predefined shapes. Free-form deformation (FFD) is applied to multiple shapes
to efficiently transfer the simulated model to the HMD. Global deformation is computed by blending
a mapping matrix of each FFD with an assigned weighting value. The local and global deformation
are then transferred through the control points updated from a deformed surface mesh and its
corresponding weighting value. The proposed framework is verified in terms of latency caused by
data transmission and the accuracy of a transmitted surface mesh in a vaginal examination (VE)
training simulation. The average latency is reduced to 7 ms, less than the latency causing motion
sickness in virtual reality simulations. The maximum relative error is less than 3%. Our framework
allows seamless rendering of a virtual scene to the real world with substantially reduced latency and
without the need for an external tracking system.

Keywords: augmented reality; latency; head-mounted display; medical simulation; free-form deformation

1. Introduction

Augmented reality (AR) has been increasingly used in medical applications [1–3] as
technological advances have resulted in head-mounted displays (HMD) offering higher
resolution, larger field-of-view, and increased onboard processing power [4]. AR-based
medical training simulation involving visual and haptic interfaces has recently gained
popularity and is expected to become a useful education tool in the future [5]. AR can
increase the visual realism of conventional virtual reality (VR)-based medical training and
reduce the cost and size of a medical simulator by replacing the physical exterior with an
augmented virtual scene. There are many challenging issues that need to be addressed
to successfully use AR in medical simulation. These include: registration error [6] of the
augmented virtual scene onto the real world, synchronisation [7] between visual and haptic
feedback, and distortion of haptic perception [8].

In medical training simulation, organ models are deformed by user interaction through
simulated instruments or simulated hands or as part of the training scenario (e.g., dilation
of the cervix over time during labour). User interaction is typically performed via a haptic
interface able to provide touch feedback to the user. The resulting deformation needs to be
displayed in real time on the HMD with synchronised haptic feedback. Existing AR HMDs
cannot afford to compute organ deformation in real time because of the computational
load. Therefore, the deformation must be computed on a separate computer, and the
deformed organ model and instrument/hand must then be displayed on the HMD in
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real time. However, it might be difficult to transfer and render the updated simulation
data on the HMD without latency. This will depend on the target medical simulation,
the performance of the HMD, and the bandwidth of the network. A streaming-based
method has been used to solve this problem for 3D visualisation on mobile devices [9]
and 360◦ VR [10], by streaming images instead of rendering 3D objects on low-powered
devices. A 3D scene taken by a specific virtual camera is converted to images and then
transferred to the HMD. This can reduce both the amount of data transmission and the
computational burden of rendering the 3D scene, but it is difficult to align the 3D object
to the real world on the HMD as 2D images are transferred without depth information.
Real-time tracking of a camera attached to the HMD can be used to generate images aligned
to the real world on a PC [9–12], but this results in a high computational burden and the
need for an external tracking system. As HMD technology advances, it becomes affordable
and feasible to render the 3D scene to the real world by using a software developer kit
(SDK) such as Vuforia on an HMD in real time. This paper proposes a framework that can
achieve real-time rendering of the 3D scene aligned to the real world on an off-the-shelf
AR HMD by reducing the amount of data transmitted whilst retaining all the necessary
information for accurate and high-resolution 3D rendering. The proposed framework
allows direct rendering of the transmitted mesh model on the HMD without having to
track and send its position and orientation to the PC. The proposed framework is applied
and verified on a medical training simulation of vaginal examination during labour.

2. Materials and Methods
2.1. Use Case-Simulation of Vaginal Examination During Labour

Vaginal examination (VE) is regularly performed during labour to determine its
progression. Training is traditionally performed in real clinical scenarios, which can lead to
an increase in the number of examinations performed and patient discomfort. Obstetricians
and midwives need to learn the necessary skills to determine the progression of labour
by using the sense of touch through their fingers as the vagina and cervix cannot be seen.
Therefore, haptic feedback is crucial for training how to perform a VE. Researchers have
used different simulation approaches to recreate real clinical scenarios [13,14]. The most
representative training method is the use of mannequins, but they have limited training
scenarios and durability issues due to their construction using silicon materials. AR-based
training simulation of VE can compute the deformation of the vulva, cervix, and baby’s
head based on a predefined scenario and user interaction, providing haptic and visual
feedback accordingly through a bespoke haptic interface and HMD. Moreover, AR-based
training simulation can visually overlap a pregnant woman onto a haptic interface to
increase the realism of the simulation. Trainees can benefit from the intuitive augmented
scene of the cervix and baby’s head (Figure 1, bottom) that are not visible in real scenarios.
This paper applies the proposed multi-shape free-form deformation framework to a training
simulator of VE during labour to demonstrate its use, verify the latency caused by data
transmission and measure the accuracy of the transmitted mesh.

2.2. Multi-Shape Free-Form Deformation (MSFFD)

This paper uses free-form deformation (FFD) [15,16] to transmit the deformation of
the vulva and cervix to the HMD. FFD has been widely used in the field of computer
graphics to manipulate high-resolution meshes with a small number of control points. The
target mesh is embedded in a lattice of control points, as shown in Figure 2. A mapping is
defined between the control points and the surface. Surface vertices S can be represented
by a mapping matrix M and a control points vector P as shown in Equation (1).

S = MP (1)
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Due to the compact nature of FFD, it is possible to substantially reduce the amount
of data transmission to the HMD by delivering control points of the surface mesh instead
of the surface mesh itself. The surface mesh is then reconstructed in the HMD from the
received control points and a mapping matrix. The deformation of the surface mesh and
corresponding haptic feedback are both computed in a server PC. Forces resulting from
the interaction between the virtual instrument and the mesh are sent to a haptic device for
producing haptic feedback. Control points are updated by an inverse mapping matrix and
the deformed surface mesh. The inverse mapping matrix can be obtained in advance by
the pseudo inverse, as shown in Equation (2).

P =
(

MT M
)−1

MTS (2)

The surface mesh can be updated and rendered on the HMD for visual feedback
by using the received control points and a prestored mapping matrix. In the case of
medical training simulators, organ models may be deformed by interaction with virtual
instruments or virtual hands or as part of the training scenario. We categorise deformations
into local deformation that occurs as the result of user interaction (Figure 3 bottom) and
global deformation that changes the complete shape according to the simulation scenario
(Figure 3 top). In the case of VE, the posture of the baby and the cervix change, with the
cervix opening dilating as labour proceeds. A simulation state is defined by the diameter
of the cervix and the posture of the cervix and baby’s head.
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(bottom).

Local deformation can be updated on the HMD by transmitting the position of the
control points computed from the deformed surface mesh. Global deformation, however,
is difficult to represent by updating the relatively small number of control points because
there are not enough degrees of freedom (DoF) to fully represent the deformation. Figure 4
shows the difference between the dilated cervix model and the model reconstructed from
the control points, which are computed by an inverse mapping matrix in the vaginal
examination training simulation. The red surface indicates the resulting deformed sur-
face mesh in the server PC. Blue points indicate surface vertices reconstructed in the
HMD using 32 control points computed from the deformed surface mesh and the inverse
mapping matrix.
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Figure 4. The difference (c) between the reconstructed surface (a) and the original surface (b).

The root mean square error between two surfaces is 4.70 mm. The error is higher at
the cervix entrance. The diameter of the cervix entrance (red) is 30 mm, but the diameter of
the reconstructed cervix is 10 mm. One of the essential skills of the vaginal examination is
assessing cervix dilation in cm by using two fingers. Incorrect visual feedback can confuse
trainees as a result of the discrepancy between the visual and haptic feedback, which in turn
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may lead to motion sickness and negatively impact the training. This effect is due to the
large deformation that cannot be fully reconstructed from the transmitted control points.

To address this issue, we create closed and dilated cervix models and define a sim-
ulation state as the diameter of the cervix. A cervix model is dilated by blending the
predefined shapes during a simulation. For example, if the simulation state is 25 mm, then
a weight value, 0.5 can be used to blend the closed and 50 mm diameter cervix model in
equal proportions. i.e., half and half. Control points are placed to embed the predetermined
global shapes, and a mapping from the control points to each shape is then computed
prior to the simulation. The mapping matrix of a blended shape is computed by blending
precomputed mapping matrices with a weighting value w as shown in Equation (3).

Mblended = (1 − w)Mw1 + wMw2 (3)

The proposed method can also be applied to simulations with multiple predefined
shapes. The mapping matrix of two target shapes, Mw1 and Mw2, and the corresponding
weight value can be determined by a simulation state. If the diameter of a cervix model
is 25 mm, the closed and 50 mm diameter models are used as the target shapes, and
0.5 is used as a weight value. The update rate of visual feedback must be higher than
30 Hz [17]. Mapping matrices of predetermined shapes are computed and stored in the
HMD to minimise computational load and data transmission during a simulation. The
changes between two shapes can be divided into finite steps. The inverse matrix of each
step can be computed by Equation (4) and stored in advance if computer memory allows.
Otherwise, the inverse computation can also be computed during the simulation, as long
as this does not affect real-time updates. For example, the deformation from rest to dilated
cervix was divided into 50 steps, and 50 inverse matrices were precomputed and stored in
the VE training simulation.

M−1
blended =

(
MT

blended Mblended

)−1
MT

blended (4)

2.3. Framework Using MSFFD

The overall process involving local and global deformation transmission is shown in
Figure 5. We use a server-client model that represents a PC (Server) where most compu-
tations are performed and the HMD (Client) that renders the virtual scene onto the real
world. The surface mesh is deformed in the server by the physics model, together with
user input. Control points are then updated from the updated surface mesh, together with
the corresponding inverse mapping matrix. Indexes for the two target shapes and weight
values are transmitted to the client for global deformation updates. Control points are
transmitted to the client for local deformation updates. A mapping matrix of the blended
shape is constructed in the client from prestored matrices. The surface mesh in the client is
then updated from the received control points and a blended mapping matrix.
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3. Results
3.1. Round-Trip Time and Processing Time

The proposed framework was verified in terms of the time taken to deliver the
deformed mesh and the accuracy of the transmitted mesh in a vaginal examination training
simulation. The analysis and verification were carried out using a server PC with Intel®

Core™ i7-6700K CPU, NVIDIA GeForce GTX 1080, 5G Wi-Fi by NetGear, and a HoloLens
1st Generation. The Mixed Reality Toolkit (MRTK) was used to establish the network
communication between the PC and the HMD. Latency occurs when data are transmitted
to the HMD through the network, and the HMD processes these current data to receive
the next data, as shown in Figure 6. Even if data transmission can be performed without
latency, if the processing takes time, latency between visual feedback and user input can
increase. We used the round-trip time (RTT) and processing time, tprocess, as shown in
Figure 6 to analyse the tendency of latency against the number of vectors in a server-client
model. RTT has been used as a metric to indirectly measure latency in the network [18]. It
is defined as the time taken to send data from a server and receive a confirmation signal
from the HMD. Three-dimensional vectors, such as surface vertices and normals required
for visual feedback, are transmitted to the HMD.
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Figure 7 shows the average RTT when the data were sent five times as a function of
the number of vectors transmitted. The number of vectors increases by 100 from 0 to 10,000.
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RTT is around 225 ms, even if the number of vectors is zero. This is because RTT includes
the latency of the update loop at the server, and there is an inherent latency in the network
communication established on Web Real-Time Communication (WebRTC) [19]. As the
number of vectors increases, the latency fluctuates around 200 ms up to 5000 vectors, when
the latency begins to increase consistently.
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From Figure 7, we can conclude that the number of three-dimensional vectors must
be smaller than 5000 to avoid additional latency in data transmission. This is in addition to
the inevitable latency present in the communication network. RTT involves not only data
transmission time but also processing time, which is analysed separately from RTT. The
time difference between when the data are received in the HMD and when a confirmation
signal is sent to the PC is measured as shown in Figure 6. The number of vectors increases
by 50 from 0 to 1000, and the average processing time of 10 times data communication is
computed for each number of vectors. Figure 8 shows how the processing time increases
proportionally to the number of vectors. The processing time is less than 1 ms up to
1000 vectors, which means that data transmission is dominant in the latency. The processing
time, however, must be small enough as a virtual scene needs to be rendered at a refresh
rate of at least 30 Hz for smooth visual feedback. Accordingly, all the computations on the
HMD, such as processing data to obtain control points, computing surface meshes from the
control points, and rendering a scene, must be performed at at least a 30 Hz update rate.
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A pair of surface vertex and normal is required to render a 3D object in the virtual
world. The total number of vectors must be as small as possible to provide more com-
putational margin in the HMD, where computational power is lower than the PC. The
number of vertices in our cervix model and vulva model used in the simulation are 2160
and 2400, respectively. Therefore, a total of 9120 vectors would need to be transmitted in
real time without latency to render the 3D scene on the HMD directly. Our framework can
reduce this total number of vectors by only transmitting the control points of the cervix
and vulva model.

3.2. Verification on Stanford Bunny Simulation

The proposed framework was verified in terms of latency caused by data transmission
and the accuracy of transmitted surface meshes in the simulation. We have applied the
proposed framework to a simulation involving interaction with a deformable Stanford
Bunny model and the VE training simulation. Position-based dynamics [20] were used to
compute the deformation of an object in both simulations. The latencies were compared in
both cases when surface vertices and normals are sent and control points are sent instead
of surface meshes. The accuracy was measured by root mean square (RMS) position
error between the original mesh and a reconstructed mesh from received control points.
Measuring end-to-end latency from user input to visual response in AR requires external
sophisticated devices [21]. Instead of end-to-end latency, we recorded the time when data
were sent to the HMD on the PC and the time when data were received on the HMD to
measure latency caused by data transmission. We assumed that a constant communication
lag between the PC and HMD was zero to analyse latency caused by data transmission
separately from any inherent delay in the network. This means that if a signal is sent to
the HMD without data, then the transmission time is assumed to be zero. The initial time
difference, t0 caused by unsynchronised clocks between the PC and HMD, and an inherent
delay of the network was measured. Empty data were sent to the HMD 100 times. The
time when the data were sent from the PC and the time when a signal was received at the
HMD were measured on the PC and HMD, respectively as shown in Figure 9. The average
difference was calculated and used as the initial time difference, t0. Time differences were
measured for n steps: (t1, t2, t3, . . . , tn) and then the latency was calculated by subtracting
the initial time difference t0 from all measured times: (t1 − t0, t2 − t0, t3 − t0, . . . , tn − t0).
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In the simulation of the Stanford Bunny model, we grabbed and moved some points
of the model that comprised 524 vertices and 950 triangular surface meshes, as shown in
Figure 10. A total of 48 control points (4 × 4 × 3) were placed to embed the model.
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In the proposed framework, 48 control points were transmitted to the HMD, and
a surface mesh was reconstructed from the received control points. Global deformation
was not transmitted in this simulation because no specific scenario was defined. A total
of 524 pairs of vertices and normals are needed to directly render the Stanford Bunny
model on the HMD without the proposed framework, which will result in 1048 vectors
sent to the HMD for 400 steps. The average and maximum latency caused by sending
1048 vectors are 281 and 315 ms, respectively. In the case of the proposed framework,
only 48 control points are needed to render a virtual scene. The average and maximum
latency over 400 simulation time steps caused by sending 48 control points are 6 and 51
ms, respectively. The average and maximum latency are summarised in Table 1.

Table 1. Average and maximum latency comparison and reduction rate in the Stanford Bunny
simulation.

Required
Information

The Number of
Vectors

Average
Latency

Maximum
Latency

w/o the proposed
framework

524 surface
vertices

524 normals
1048 281 ms 315 ms

w/the proposed framework 48 control points 48 6 ms 51 ms

Reduction rate 95.4% 97.9% 83.8%

The accuracy of the proposed method was verified by the RMS position error between
the original mesh in the server and the reconstructed mesh in the client. RMS error was
measured for 400 simulation steps. Figure 11 shows the RMS error over time and the
snapshots of the simulation. The initial RMS error of 4 mm was caused by an error in
the inverse mapping matrix. The error was 4% compared to the longest length of the
model, 100 mm. The error increased by up to 7.5 and 29 mm when the head was pressed
down, and the ear was pulled to the right, respectively. The relative errors compared to the
longest length are 7.5% and 29%, respectively. The error increases as the shape of the model
changes from the initial shape. This is because the global deformation was not transmitted
as target shapes were not predetermined in this simulation.
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3.3. Verification on Vaginal Examination Simulation

We have also applied the proposed framework to our VE training simulation, as shown
in Figure 1, and measured the latency and accuracy. The cervix model and vulva model
are composed of 2160 and 2400 vertices, respectively, with a total of 32 (4 × 4 × 2) and
72 (6 × 6 × 2) control points (Figure 1). In the simulation, as the training progresses, the
position and orientation of the baby’s head, as well as the cervix model, change and result
in the entrance of the cervix model being dilated. Therefore, simulation states are defined
as the cervix diameter, position of the cervix and baby’s head, and orientation of the baby’s
head. However, to simplify the latency and accuracy measurements, we used only the cervix
diameter as a simulation state. Two shapes were predefined to simulate the dilation of the
cervix model: At Rest and Dilated. The global deformation was computed by blending the
two shapes. The deformation from At Rest to Dilated was divided into 50 steps. The inverse
matrices of 50 blended matrices were precomputed and stored in the server beforehand to
reduce the computational burden during a simulation. Mapping matrices of the At Rest
and Dilated shapes were stored in the client, and a blended matrix was computed based on
Equation (3) when a weighting value was received. The diameter of the cervix was determined
from the simulation state. Control points were computed by the corresponding precomputed
inverse matrix and then transmitted to the client, together with the corresponding weighting
value. A total of 4560 pairs of vertices and normals were needed to directly render a virtual
scene on the client. A total of 9120 vectors were sent to the client for 500 steps. The average and
maximum latency caused by sending 9120 vectors were 18,969 and 40,092 ms, respectively.
In the case of the proposed framework, 104 control points were needed to render the virtual
scene. The average and maximum latency over 500 simulation time steps caused by sending
104 control points were 7 and 34 ms, respectively. The average and maximum latency are
summarised in Table 2.

Table 2. Average and maximum latency comparison and reduction rate in the VE training simulation.

Required
Information

The
Number of

Vectors

Average
Latency

Maximum
Latency

w/o the proposed
framework

4560 surface vertices
4560 normals 9160 18,969 ms 40,092 ms

w/the proposed
framework

104 control points
weight value 104 7 ms 33 ms

Reduction rate 93.0% 99.9% 99.9%
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The cervix model with large deformation was used for the accuracy analysis. Figure 12
shows the RMS position error as a function of the simulation time steps. The error increases
by up to about 0.5 mm when the cervix model dilates and contracts. The error increases by
up to 2 and 2.8 mm when the user grabs and manipulates some points of the dilated and
initial cervix model, respectively. The error is proportional to the amount of manipulation
by the user. However, the error is relatively small when the cervix model dilates and
contracts since the global deformation is transferred by a blended mapping matrix. The
diameter of the cervix model is 100 mm; therefore, the maximum relative error is less
than 3%.
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Figure 12. Root mean square position error of the cervix model over simulation time steps: (a) the cervix model is closed;
(b) a user is pulling the cervix model to the right; (c) the cervix model is dilated; (d) a user is pulling the dilated cervix
model to the left.

4. Discussion

The proposed framework has been verified on both an interactive simulation of the
Stanford Bunny model and a training simulation of vaginal examination during labour.
The number of vectors required to render a virtual scene was reduced from 1048 to 48 in
the Stanford Bunny simulation and from 9160 to 104 in the VE training simulation. The
number of control points is higher in the VE training simulation, but the maximum latency
is higher in the Stanford Bunny simulation. This is because the latency varies depending
on the network state. In the Stanford Bunny and VE training simulation, the average
latency is reduced to 6 and 7 ms, respectively, which is less than 15 ms, the maximum
allowable latency to avoid motion sickness in VR simulation [22]. In AR simulations,
the user can still see the real environment through the HMD, unlike in VR simulations.
Therefore, the latency only causes a visual discrepancy between real-world and overlaid
virtual content. For this reason, the latency condition for avoiding motion sickness can be
further alleviated in AR simulations. The maximum relative error was 29% and 2.8% in the
Stanford Bunny and VE simulation, respectively. In the Stanford Bunny simulation, the
model was deformed by a user interaction without a predefined scenario; therefore, the
error increases proportionally to the magnitude of deformation. If the global deformation
cannot be predefined and the deformation induced by the interaction is large, the error
could increase in the proposed framework. In the VE training simulation, however, the
relative error was less than 3% because deformed shapes were predefined as part of the
training scenario, using the closed and dilated cervix shapes as the target shapes, and the
global deformation was transmitted by a weighted value. The number of control points can
be further reduced whilst maintaining or improving the accuracy of the transmitted mesh
by using advanced free-form deformation techniques [23,24] in the proposed framework.
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5. Conclusions

This paper proposes a framework that can achieve real-time rendering of the 3D scene
aligned to the real world on an off-the-shelf AR HMD by reducing the amount of data
transmitted whilst retaining all the necessary information for accurate and high-resolution
3D rendering. We have categorised deformation in a medical training simulation into local
deformation by user interaction and global deformation as a result of the simulation sce-
nario. Local and global deformation is transmitted in a different way to reduce the position
error between a transmitted mesh and the original mesh. Control points embedding a
target mesh are transmitted, and a surface mesh is constructed from the received control
points for local interaction. Our framework can be applied to other medical simulations
since the deformation of an organ model is often the result of both user interaction and
the specific training scenario, as is the case for the VE simulation, or the deformation
range can be restricted. The proposed framework can achieve efficient and accurate mesh
transmission in the case of large deformations of the complete shape as a result of a given
scenario, but it can also be used without global transmission in simulations with small
deformation. This enables direct and seamless rendering of a virtual scene onto the real
world on an HMD without the need for additional external real-time tracking, which is an
important step in the further development and adoption of AR-based medical simulators.
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