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Abstract: Ongoing climate change poses a major threat to the soil resources of many African countries
that mainly rely on an agricultural economy. While arid and semi-arid lands (ASALs) take up most
of Kenya’s land mass, approximately 64% of its total croplands lie within mountainous areas with
high rainfall, hence, areas highly vulnerable to water erosion. Flooding of the Great Lakes and
increasing desertification of the ASALs are illustrative cases of the implications of recent precipitation
dynamics in Kenya. This study applied the Revised Universal Soil Loss Equation (RUSLE) to estimate
future soil erosion rates at the national level based on four Coupled Model Intercomparison Project
v5 (CMIP5) models under two Representative Concentration Pathway (RCP) scenarios. Results
showed the current soil loss rate to be at 4.76 t ha−1 yr−1 and projected an increase in average rainfall
erosivity under the two scenarios, except for RCP-2.6 (2030s) and (2080s) for the MIROC-5 model.
Future projections revealed an incremental change in rainfall erosivity from the baseline climate by a
cumulative average of 39.9% and 61.1% for all scenarios by the 2030s and 2080s, respectively, while
soil loss is likely to increase concomitantly by 29% and 60%, respectively. The CCCMA_CANESM2
model under the RCP 8.5 (2080s) scenario projected the highest erosion rate of 15 t ha−1 yr−1 over
Kenya, which is a maximum increase of above 200%, with the Rift Valley region recording an increase
of up to 100% from 7.05 to 14.66 t ha−1 yr−1. As a first countrywide future soil erosion study,
this assessment provides a useful reference for preventing water erosion and improving ecosystem
service security.

Keywords: soil erosion; climate change; erosivity; R-factor; GCMs; RUSLE; Kenya

1. Introduction

The global soil erosion rate (36 billion metric tons of soil per annum) is projected to
increase by as much as 30–66% over the next half century due to climate change, with the
highest rise projected over Sub-Saharan Africa (SSA) [1,2]. Accelerating global warming
severity is expected to have adverse effects on crop production, adversely affecting food
security, especially in the drought prone SSA countries that mainly rely on rain-fed agri-
culture [3–8]. Future climate variability will most likely intensify rainfall runoff patterns,
leading to increased soil water erosion, thus negatively impacting agricultural production
in this region [9–13]. This endangers more than half of the human population in SSA
countries that are predominantly over-dependent on subsistence farming [14,15]. Within
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East Africa (EA), both climatic variability (temperature extremes, altered biomass cover and
precipitation concentration) and human-related activities (land use and control practices)
have been the core drivers of soil loss increments in recent years, currently approximated at
4.0 Bt yr−1 [9–11,14,16–19]. The Intergovernmental Panel on Climate Change (IPCC) 2014
report [20] and recent studies projected a high ‘likelihood of enhanced rainfall’ in EA due
to increases in the concentration of atmospheric greenhouse gases (GHG) [12,21,22]. Since
almost 75% of soil erosion variation is attributed to rainfall erosivity and the terrain’s slope
gradient [23], the projected precipitation over EA heightens the potential level of soil loss
in this tropical region [17,24]. It is thus increasingly necessary to quantify climate-driven
soil erosion rates in order to formulate appropriate adaptation and conservation measures.

The exacerbation of soil erosion due to climatic changes has profound implications on
the natural environment, including reduced soil nutrients and organic matter, land degra-
dation, ecosystems deterioration, polluting water quality and sedimentation [2,25–27]. In
Kenya, approximately 61.4% of the total land mass is under severe land degradation [28–30],
while the average annual soil loss rate for all croplands (mostly in highland areas with high
annual precipitation) was recently estimated at 26 t ha−1 yr−1 [14]. Thus, cropland areas are
incurring agricultural productivity and ecosystem services losses, as they have surpassed
the average annual soil loss threshold for tropical areas (11 t ha−1 yr−1), as indicated by
references [7,31]. Arid and Semi-Arid Lands (ASALs) that occupy about 84% [29,32] of the
total area are highly vulnerable to food insecurity due to high evapotranspiration rates,
prolonged droughts and highly erodible soils coupled with torrential rainstorms. These
ASALs form a vital ecosystem, as they support over 30% of Kenya’s population, 70% of the
total national livestock and over 65% of natural wildlife [6,33,34].

Kenya is highly vulnerable to the effects of climate variability [12,13,27]. In the recent
past, the country and the Greater Horn of Africa at large recorded extreme climatic events,
including the El-Niño–La-Niña phenomena that exposed it to drought, floods, landslides
and habitat destruction [27,35,36]. Recent rainfall pattern changes (reduction in March–May
‘long rains’ and wetter October–December ’short rains’) have partly resulted in flooding
of the lakes within the Kenya Great Rift Valley region, causing huge environmental and
socio-economic losses [18,37–39]. Otieno and Anyah [40] predicted an increase in the
March–May long rains over EA, although Rowell et al. [22] noted the ‘East African climate
parodox’, given the opposite trends between the observed and projected rainfall. With such
high rainfall uncertainty, it is of significance to quantify future trends of rainfall erosivity
and determine their implications on future soil erosion rates within the country.

Agriculture contributes the largest share of Kenya’s economy and provides em-
ployment to approximately 67% of the population [6,33]. This implies that in order to
achieve productivity that matches the demand of an ever-increasing human population (a
60–110% increase in food production [13,41–43]), it is imperative to devise eco-sustainable
production methods, as well as monitor soil erosion within the country from a climate
change perspective. Different studies have applied various approaches to highlight en-
vironmental issues related to soil erosion within the country, majorly on short temporal
scales [44,45]. Recent works by Kogo et al. [46] and Watene et al. [47] utilized the widely
applied Revised Universal Soil Loss Equation (RUSLE) model and noted incremental
changes in soil erosion rates by 66% and 14% in the Western and Rift Valley regions, re-
spectively, over the past two decades. Similarly, a study by Angima et al. [48] reported
an average annual soil loss rate of up to 549 t ha−1 yr−1 in the central highland areas,
while Yves et al. [49] presented a rate of 6–10 t ha−1 yr−1 in the coastal region. There are
very limited studies that have been conducted at the national scale while considering the
spatial-temporal risk of soil loss under the current climate conditions, as well as in context
of climate change [18].

Numerous studies have incorporated projected precipitation data from General Circula-
tion Models (GCMs) to predict rainfall erosivity climatic factor within RUSLE [25,41,50–52].
In Africa, Amanambu et al. [53] observed soil loss increases ranging between 12.2–20.6%
within the Niger basin, while in Asia, Doulabian et al. [54] reported a maximum erosion
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increase of >135% over Iran. Closer to Kenya, a recent study by Moges et al. [10] showed
an increase of 23% in soil loss vulnerability in Ethiopia by the year 2050. Nevertheless, only
a small number of researchers have estimated soil loss risk in SSA countries using future
GCMs [55]. The aim of this study has been to (i) assess the current soil erosion rates at the
national scale by physiographic regions and topography and (ii) evaluate the spatial and
temporal variability of future rainfall erosivity and soil loss based on GCMs of CMIP 5
under RCP 2.6 (optimistic) and 8.5 (pessimistic) scenarios.

2. Materials and Methods
2.1. Description of the Study Area

Kenya is an equatorial country that geographically extends between latitudes 4◦63′ N
and 4◦68′ S and longitudes 33◦9′ E and 41◦9′ E (Figure 1). The country has a moderate
tropical climate with large regional variations influenced by multiple factors [13]. It has
a high undulating topography and heterogeneous landscape (Figures 2 and 3) covering
an area of approximately 582,646 km2, with a human population of 47.5 million [33,56].
The mountains and plateaus of the inland area (Figure 3b) have a temperate climate, while
the north-eastern region that forms part of the eastern-end of the Sahelian zone is mostly
hot and dry all year long. Kenya receives an average annual rainfall (bimodal) of about
680 mm (Figure 2d), with the dominant African savannah climate (Figure 2a) having a
mean annual precipitation of about 2000 mm. The ‘Very Arid’ zone occupies about 43.5%
of the total area (Figure 2c) followed by the ‘Arid’ zone which has 21.6% coverage. The
major soil types (Figure 2b) are Luvisoil (19.2%) and Yermosols (18.7%). According to the
2016 Climate Change Initiative Land Cover map of Africa (CCI-LULC) [57]) (Figure 3c),
the dominant land classes include grassland (37.2%) and shrubland (30.2%).
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Approximately 21.6% of the country experienced a browning trend as per the 2015 land
degradation-neutrality (LDN) national baseline [30]) due to climate change and increasing
human population pressure. This has endangered sustainable agriculture that forms
the country’s mainstay economy. In recent years, rainfall-related risks have plagued the
country, including floods, landslides and droughts. Currently, most of the Great Lakes have
drastically bulged (Figure 4) flooding large tracts on adjacent farmlands and settlements.
This has been attributed to a 50-year period of climatic phenomena [39], as well as the
recent enhanced OND East African short rains linked to the Indian Ocean Dipole (IOD) [37].
Rampant deforestation in the country’s water towers and adverse farming practices within
highland areas could also have altered surface water runoff patterns into these lakes [58–60].
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2.2. Observed Precipitation

Observed monthly precipitation data for 29 land-based meteorological stations span-
ning over a period of 30 years (1970—2000) were sourced from the Kenya Meteorological
Department (KMD).The stations covered all the Agroecological Zones and Agroclimatic
Zones, as well as low to high altitude regions of the investigated area. Figure 5 gives the
mean monthly rainfall (seasonal variability and intensities) over the study area.
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2.3. Genereal Circulation Models

Studies by Ongoma et al. [12,61] noted that CCCMA_CANESM2, CESM1-CAM5,
CSIRO_MK3.6.0 and MIROC-5 CMPI5 GCMs (Table 1) are among the top eight models
that well simulate rainfall patterns for the EA region. The projected precipitation data
of these four GCMs were downloaded from the CMPI5 archive of the Climate Change
Agriculture and Food Security (CCAFS) database (http://www.ccafs-climate.org/ accessed
on 3 January 2021) for the 020–2049 and 2060–2089 periods under two Representative
Concentration Pathways: RCP 2.6 (low scenario) and RCP 8.5 (high baseline emission
scenario). The RCP 2.6 and 8.5 represent radiactive forcing of 3.0 and 8.5 W/m2, respectively,
by 2100. The baseline climatic data, at 1 km2 spatial resouliton, was sourced from the
WorldClim database [62]. The WorldClima data form an intergral input in the formulation
of future GCMs; thus, they are seen as a good source of baseline climatic data [52]. In this
study, future climatic data were statistically bias corrected and downscaled to unify their
horizaontal resolution with that of the baseline data using the delta method [63]. Projected
rainfall erosivity for the 2030s and 2080s periods were then quantified based on the R factor
methods from the RUSLE model (Figure 6).

Table 1. Details of the four GCMs applied in this study.

Model Institute Country Resolution

CCCMA_CANESM2 Canadian Centre for Climate Modeling and Analysis Canada 2.8◦ × 2.8◦

CESM1-CAM5 Community Earth System Model Contributors USA 1.25◦ × 0.9◦

CSIRO_MK3.6.0 Commonwealth Scientific and Industrial Research Organization Australia 1.875◦ × 1.875◦

MIROC-5 Model for Interdisciplinary Research On Climate Japan 1.4◦ × 1.4◦
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2.4. Methodological Framework
2.4.1. RUSLE Model Application

Recent advancements in GIS and remote sensing technologies have made it relatively
easy to estimate and monitor soil loss, both at local and global scales (with varying climates),
using the empirical RUSLE soil erosion model. As an updated version of the Universal
Soil Loss Equation (USLE), the RUSLE equation forecasts soil erosion risk using five
environmental and anthropogenic variables: rainfall erosivity, topography, vegetation
cover and land support practices. The average annual soil loss (A) in the RUSLE model is
expressed by Equation (2) [64]

http://www.ccafs-climate.org/
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A = R ∗ K ∗ LS ∗ C ∗ P (1)

where:
A is expressed in MJ mm ha−1 h−1 yr−1, R is the rainfall erosivity factor (MJ mm ha−1

h−1 yr−1), K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), LS is the slope length
and steepness factor (dimensionless), C is the cover management factor (dimensionless,
ranges from zero to one) and P is the conservation practice factor (dimensionless)

The various geospatial datasets, with their respective sources used in this study, are
as summarized in Table 2. The RUSLE model was run to estimate the current soil erosion
rate based on baseline rainfall erosivity, while future soil losses were forecasted based on
respective projected rainfall erosivity scenarios.

Table 2. Data sources for the different datasets applied in this study.

Parameter Variables Resolution Sources

Elevation

DEM 30 m Shuttle Radar Topography Mission (SRTM) [65]
Slope 30 m Shuttle Radar Topography Mission (SRTM)

Flow Accumulation 30 m Shuttle Radar Topography Mission (SRTM)
Aspect 30 m Shuttle Radar Topography Mission (SRTM)

Climate
Baseline Precipitation 1 km WorldClim

Observed Precipitation Kenya Meteorological Department (KMD)
Predicted Precipitation CCAFS

Land Land use land cover 20 m CCI-LULC [57]

Soil

Sand 250 m AfSIS (http://www.isric.org/data/afsoilgrids250m) [66]
Silt 250 m AfSIS (http://www.isric.org/data/afsoilgrids250m)

Clay 250 m AfSIS (http://www.isric.org/data/afsoilgrids250m)
Organic carbon 250 m AfSIS (http://www.isric.org/data/afsoilgrids250m)

2.4.2. Rainfall Erosivity (R) Factor

Rainfall erosivity is the most significant factor in the RUSLE model ([23,67]); it influ-
ences approximately 80% of the total soil loss. The rainfall erosivity factor is the product of
raindrop kinetic energy (E) and the maximum 30 min rainfall intensity (I30) [64]. Acquiring
complete pluviographic data (with a minimum of 20 years in order to capture cyclical
rainfall dynamics) is a huge setback in African countries due to insufficient gauged meteo-
rological stations [49]. Different approaches have been used to derive the R factor within
Kenya. Maeda et al. [9] and Schürz et al. [44] utilized the Fourier index (Equations (2)–(4))
and Modified Fourier Index (Equations (5) and (6)), respectively, while Yves [49] applied
the model suggested by reference [64] (Equation (7)) to compute rainfall erosivity for
the entire coast of Kenya. With access to some rainfall intensity data, Angima [48] and
Akali [68] used (Equations (8)–(10)) to determine estimates for the western and central
regions, respectively. Various regression realizations have also been exploited, including
Renard and Freimund (Equations (11) and (12)) [44], Moore (Equations (13) and (14)) [44]
and Lo et al. (Equation (15)) [47].

FI =
P2i
P

(2)

ri =
125.92× FI0.603 + 111.173× FI0.691 + 68.73× FI0.841

3
(3)

R =
12

∑
i=1

ri (4)

http://www.isric.org/data/afsoilgrids250m
http://www.isric.org/data/afsoilgrids250m
http://www.isric.org/data/afsoilgrids250m
http://www.isric.org/data/afsoilgrids250m


Appl. Sci. 2021, 11, 9903 9 of 33

where Pi is the average monthly rainfall (mm) for month i, P is the mean annual precipita-
tion (mm) and ri is the average monthly erosivity (MJ mm ha−1 h−1 month−1).

Ra = αMFI + β (5)

MFI =
1
P

12

∑
i=1

Pi
2 (6)

where α and β are regression coefficients (taken as 50.7 and −1405, respectively, for the
African continent [69]), Pi is the average monthly rainfall (mm) for month i and P is the
mean annual precipitation (mm).

R =
12

∑
i=1

1.735× 10(1.5 log 10( Pi
2

P )−0.08188) (7)

where Pi is the average monthly rainfall (mm) for month i, P is the mean annual precipita-
tion (mm) and R is the rainfall erosivity (MJ mm ha−1 h−1 y−1).

R =
1
n

(
∑n

j=1 ∑
mj
k=1(EI30)k

)
(8)

EI30 = I30

(
m

∑
i=1

ervr

)
(9)

er = 0.29[1− 0.072 exp(−0.05ir)] (10)

where R is the mean annual rainfall erosivity (MJ mm ha−1 h−1 y−1), n is the number of
years of data, mj is the number of erosive events in the j year, EI30 is the rainfall erosivity
index of a storm k, er is the unit rainfall energy (MJ h−1), vr is the rainfall depth (mm)
during a time period r, I30 is the maximum rainfall intensity during a 30 min period of the
rainfall event (mm h−1) and ir is the rainfall intensity during the period (mm h−1).

R = 0.04830× P1.61, where P ≤ 850 mm (11)

R = 587.8− 1.219P + 0.004105P2, where P ≥ 850 mm (12)

where P is the average mean annual rainfall (mm) and R is the rainfall erosivity
(MJ mm ha−1 h−1 y−1).

KE = 11.46× P− 2226 (13)

R = (0.029× KE− 26.0)× 17.02 (14)

where KE is the kinetic energy, R is the rainfall erosivity (MJ mm ha−1 h−1 y−1) and value
17.02 is a conversion factor from imperial to International (SI) units.

R = 38.46 + 3.48× P, (15)

where P is the average mean annual rainfall (mm) and R is the rainfall erosivity
(MJ mm ha−1 h−1 y−1).

In this study, the rainfall erosivity factor was derived using (Equations (11) and (12)),
since it has been widely applied in previous similar studies.

2.4.3. Erosivity Density Ratio

The erosivity density (ED) value is the ratio of rainfall runoff erosivity to precipitation
and is given by the expression (Equation (16)):

ED =
R
P

(16)
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where ED (MJ ha−1 h−1) [52] is the erosivity density, P annual rainfall (mm) and R is the
rainfall erosivity.

2.4.4. Rainfall Erosivity (R) Parameter Evaluation

Monthly precipitation data observed from 29 meteorological synoptic stations were
used to evaluate the validity of R factor values derived from the baseline data. Three statisti-
cal techniques were used to assess the performance of the R factor of the observation data with
that of the baseline data: the coefficient of determination (R2), root mean squared error (RMSE)
and Nash–Sutcliff Efficiency (NSE) [70], as shown in Equations (17), (18) and (19), respectively;

R2 = 1−

 ∑n
i=1

(
Ymodel

i −Yobs
i

)2

∑n
i=1
(
Ymodel

i −Yobs
i
)2

+ ∑n
i=1
(
Ymodel

i −Ymean
i

)2

 (17)

RMSE =

√√√√[∑n
i=1
(
Yobs

i −Ymodel
i

)2

n

]
(18)

NSE = 1−

∑n
i=1

(
Yobs

i −Ymodel
i

)2

∑n
i=1
(
Yobs

i −Ymean
i

)2

 (19)

where Ymodel
i is the baseline rainfall erosivity, Yobs

i is the observed rainfall erosivity and
Ymean

i is the mean of observed and baseline rainfall erosivity.

2.4.5. Soil Erodibility Factor

The soil erodibility (K) factor takes into account the inherent soil properties (including
soil texture, organic matter content and the permeability) to quantify soil erodibility or sus-
ceptibility to disintegration due to surface water runoff action. This present study utilized
the EPIC (erosion-productivity impact calculator) model, as contended by Williams [71],
to derive the K factor using the sand, organic, silt and sand soil fractions of the area,
as compiled by the Africa Soil Information Service (AfSIS) [66].

K = Fcsand × Fsi−cl × Forgc × Fhisand × 0.1317 (20)

Fcsand =

[
0.2 + 0.3 exp

(
−0.0256SAN

(
1− SIL

100

))]
(21)

Fsi−cl =

[
SIL

CLA + SIL

]0.3
(22)

Forgc =

[
1.0− 0.0256C

C + exp(3.72− 2.95C)

]
(23)

Fhisand =

[
1.0− 0.70 SN1

SN1 + exp(−5.51 + 22.9 SN1)

]
(24)

where SAN, SIL and CLA are the percentage of sand, silt and clay content, respectively;
C is the organic carbon content and SN1 is the sand content subtracted from 1 and divided
by 100. Fcsand (Equation (4)) gives a low soil erodibility factor for soil with coarse sand
and a high value for soil with little sand content. Fsi-cl (Equation (5)) gives a low soil
erodibility factor with a high clay to silt ratio; Forgc (Equation (6)) is the factor that reduces
soil erodibility for soil with high organic contents. Fhisand (Equation (7)) is the factor that
reduces soil erodibility for soil with extremely high sand content. Multiplication by the
constant value 0.1317 converts the values to International (SI) units.
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2.4.6. Slope Length and Slope Steepness (LS) Factor

The dimensionless LS geophysical factor is a product of two terrain derivatives (slope
length (L) and slope steepness factor (S)) that expresses the influence of the landscape
on soil loss. Kim [72] defined slope length as the distance between the point of origin of
overland flow to the point where the surface runoff waters flow into a well defined channel.
High slope lengths along steep slopes result in increased surface runoff and, thus, high
erosion rates. A 30 m void-filled SRTM DEM was first pre-processed to correct for sink
errors before estimating slope length and steepness attributes using the Spatial Analyst
extension of ArcMap 10.2 (Environment Systems Research Institute (ESRI) Inc., Redlands,
CA, USA). Equation (25) was used to compute the slope length factor, while the S factor
was generated using the McCool et al. [73] (1987) method (Equation (28)).

Li.j =

(
Ai.j−in + D2)m+1 − Am+1

i.j−in

Dm+2·xm
i.j·(22.13)m (25)

m =
β

1 + β
(26)

β =
sinθ/0.0896

3(sinθ)0.8 + 0.56
(27)

Si.j =

{
10.8sin θi.j + 0.03, tanθi.j < 9%
16.8sin θi.j − 0.50, tanθi.j ≥ 9%

(28)

where Li.j = slope length factor for the grid cell with coordinates (i.j); D = the grid cell
size (m); Xi.j = sinai + cosai.j; ai.j = aspect direction for the grid cell with coordinates (i.j);
Ai.j-in = flow accumulation or contributing area at the inlet of a grid cell with coordinates
(i.j) (m2), β = the ratio of inter-rill erosion and θ = the slope in degrees

2.4.7. Cover Management Factor (C) Factor

The C factor varies from 0 to 1 and models the conservative property of ground
vegetation cover against surface water runoff. This implies that holding other parameters
constant, thick canopies, e.g., forests, are more likely to prevent soil erosion better than
bare or sparse cover; thus, they are assigned a low C factor value [74]. Phinzi et al. [75]
evaluated the use of the Durigon algorithm [76] in deriving C factor values based on NDVI
for tropical areas, while Watene [47] recommended the use of LULC maps to assign C
parameters in Kenya. Similar to other regional studies in other parts of the world focusing
on future rainfall erosivity [3,24,50,77], the nationwide 2016 LULC map was used to obtain
C coefficients to compute the present soil erosion status, as well as for the 2030s and 2080s
periods. Table 3 shows C factor values used in this research, as sourced from past literature
within the East Africa region.

Table 3. C factor values for different land uses in Kenya compiled from published literature.

LULC C Factor Coefficient Source

Forest 0.01 [16,78]
Shrubland 0.08 [44,79]
Grassland 0.05 [78]
Cropland 0.15 [16,78]
Bareland 0.50 [44]

Aquatic vegetation 0.03 [44]
Sparse vegetation 0.03 [44]

Urban areas 0.01 [16]
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2.4.8. Support Practice (P) Factor

The P factor reflects the effects of man-made soil conservation measures with reference
to how they impact the intensity and flow of surface runoff. Renard [23] expressed it as a
ratio of the amount of soil erosion in a given area with a unique conservation measure to
the corresponding erosion following upward and downward tillage. Various approaches
have been employed to determine the P factor, e.g., applying DEM, high resolution imagery
and using LULC maps in combination with field inspections. However, only a little has
been done to determine support practices across the EA region [80]. A P factor value of one
(1), indicating no major support practice in place, was thus adopted for the entire study
area [14,49].

3. Results
3.1. Estimated Baseline Soil Erosion Rates in Kenya

The baseline and observed precipitation were statistically compared to evaluate the
quality of the simulation produced by the WorldClim data (Figure 7). A correlation
coefficient of approximately 0.91 was observed, indicating the strong relationship between
these two variables. The mean annual R factor generated by observed rainfall data varied
from 267–31,667 MJ mm ha−1 h−1 yr−1, with an average of 1714.31 MJ mm ha−1 h−1 yr−1.
In comparison, the WorldClim data presented an R factor (baseline) with an average of
1665.9 MJ mm ha−1 h−1 yr−1 (Figure 8a). The observed and baseline R factors showed 0.93,
273 MJ mm ha−1 h−1 yr−1 and 0.74 for R2, RMSE and NSE, respectively, demonstrating
a satisfactory model performance. Highland regions with high mean annual rainfall
presented R factor values >5000 MJ mm ha−1 h−1 yr−1.

The Soil erodibility Factor (K) had a mean value of 0.019 t ha h ha−1 MJ−1 mm−1

and ranged from 0.014 to 0.028 t ha h ha−1 MJ−1 mm−1 (Figure 8b), while the cover
management Factor (C) had a mean value of 0.089 (Figure 8d). The northern parts of Kenya
with bare and arid surfaces recorded the highest C values. Almost 78% of the country had
an LS factor between 0 and 10, while 4% had values of more than 10 (even though steep
gradients may not necessarily show high erosion susceptibility [50]). The mean baseline
soil erosion rate was observed to be 4.76 t ha−1 yr−1 which had a spatial distribution that
varied equally with that of the annual precipitation of the country (Figure 9). The baseline
erosivity density ED had an average value of 2.77 MJ ha−1 h−1 and a standard deviation
1.06 MJ ha−1 h−1 (Figure 9b).
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3.2. Classification of Baseline Soil Erosion by Severity

Similar to the study by reference [81], the mean annual soil erosion rate was grouped
into six levels of severity: slight, moderate, high, very high, severe and very severe (Table 4)
Most of the investigated area had a slight severity erosion rate, while approximately 3.7%
of the total area fell within the severe and very severe categories.

Table 4. Baseline soil erosion rates per severity classes in Kenya.

Erosion Class
(t ha−1 yr−1) Severity Class Area

(104 ha)

Mean Annual Rainfall Erosivity
(MARE) (Baseline)

(MJ mm ha−1 h−1 yr−1)

Mean Annual Soil Loss
Rate (MASLR) (Baseline)

(t ha−1 yr−1)

0–5 Slight 4689.2 1263.7 0.98
5–10 Moderate 431.4 3427.2 7.06
10–20 High 301.9 4690.9 14.08
20–40 Very High 194.6 6120.1 27.97
40–80 Severe 130.1 7171.9 55.83
>80 Very Severe 79.3 8850.0 127.44

3.3. Baseline Soil Erosion by Land Use and Land Cover

From the study, croplands which mostly occupy areas with a high mean annual pre-
cipitation (central highlands and Lake Victoria parts of the country), had the highest mean
erosion rates of 17.86 t ha−1 yr−1 (Table 5). This was followed by Barelands and sparsely
vegetated lands in the northern ASALs, which had mean erosion rates of 3.39 t ha−1 yr−1

and 2.62 t ha−1 yr−1, respectively.



Appl. Sci. 2021, 11, 9903 15 of 33

Table 5. Baseline soil erosion rates per LULC in Kenya.

LULC Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Forest 453.0 3155.5 2.41
Shrubland 1757.7 1246.0 1.84
Grassland 2169.7 1115.3 1.39
Cropland 1045.4 4069.7 17.86

Aquatic vegetation 5.0 1660.5 1.62
Sparse vegetation 105.1 512.5 2.62

Bareland 156.6 450.0 3.39
Urban areas 13.3 4256.2 2.24

3.4. Baseline Soil Erosion by ACZ and Climate Zones

Humid areas with an average annual rainfall erosivity of 9100.7 MJ mm ha−1 h−1 yr−1

had the highest mean erosion rate, followed by sub-humid and semi-humid areas, as
represented in Table 6. Regions under the tropical rainforest climate around Lake Victoria
recorded the highest soil erosion rate (27.84 t ha−1 yr−1), while the arid desert climate
zones had the lowest mean annual soil loss rate (0.38 t ha−1 yr−1) (Table 7).

Table 6. Baseline soil erosion rates in different Agro-Climatic Zones in Kenya.

ACZ Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Humid 266.5 9100.7 36.18
Sub-Humid 281.4 5265.1 19.25
Semi-Humid 271.5 3829.6 13.34

Semi-Humid to semi-arid 347.8 2818.7 7.25
Semi-arid 868.4 1856.9 3.60

Arid 1257.5 1327.4 1.50
Very arid 2533.3 643.5 0.60

Table 7. The estimated baseline soil erosion rates per the Climatic Zones of Kenya.

Climate Zones Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Tropical rainforest (Af) 218.8 7620.3 27.84
Tropical monsoon (Am) 121.2 7085.8 23.90
Tropical savannah (Aw) 2062.4 2129.7 5.49
Arid steppe (hot) (Bsh) 1919.4 880.7 1.37
Arid desert (hot) (Bwh) 1098.9 621.8 0.38

Temperate without dry season (hot summer) (Cfa) 4.14 1329.0 2.33
Temperate without dry season (warm summer) (Cfb) 105.4 4859.0 20.10
Temperate with dry summer (warm summer) (Csb) 162.5 2951.5 10.19

Temperate with dry winter (hot summer) (Cwa) 8.8 1170.8 2.69
Temperate with dry winter (warm summer) (Cwb) 124.6 1475.8 3.62

3.5. Baseline Soil Erosion by Kenya Regions and Basins

The Coastal and Rift Valley regions had mean annual erosion rates below 10 t ha−1 yr−1

as demonstrated by the recent regional works by Yves et al. [49] and Watene et al. [47]
(Table 8). The Lake Victoria region, which is characterized by a high mean annual precipi-
tation (tropical rainforest climate zone) and mostly under croplands, recorded the highest
soil loss rate of 25.25 t ha−1 yr−1 (Table 9). Out of the five basins that form the drainage
landscape of Kenya, the Lake Victoria basin was shown to have the highest soil erosion
rate, followed by the Great Rift Valley and Tana River basins, respectively.
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Table 8. Baseline soil erosion rates in Kenya regions.

Kenya Regions Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Lake Victoria 248.5 7430.0 25.25
Rift Valley 1762.6 2077.6 6.86

Central & Eastern 1717.5 1562.3 4.97
North Eastern 1262.7 644.8 0.34

Coastal 838.2 1983.0 1.75

Table 9. Baseline soil erosion rates by river basins in Kenya.

Kenya Basins Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Lake Victoria 510.0 6480.8 21.90
Great Rift Valley 1285.2 1335.0 4.80

Ewaso Nyiro 2092.9 769.8 1.12
Tana River 1265.7 1955.6 4.22
Athi River 672.7 2303.2 4.87

3.6. Baseline Soil Erosion by Slope and Elevation

Lands with slope (>26.8%) had the highest mean erosion rates of about 21.41 t ha−1 yr−1,
while flatter regions (0–7%) recorded the lowest rates of 1.88 t ha−1 yr−1 (Table 10). High-
land areas, which are the wettest among all the five elevation classes of the country, also
represented the highest mean annual erosion rates (Table 11).

Table 10. Baseline soil erosion rates in different slope zones of Kenya.

Slope (%) Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

0–7 4444.5 1438.7 1.88
7–11.3 593.7 2673.8 7.57

11.3–17.6 310.8 3438.9 14.36
17.6–26.8 205.2 3670.4 19.91

>26.8 272.3 3146.5 21.45

Table 11. Baseline soil erosion rates by elevation in Kenya.

Elevation (m.a.s.l) Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

<500 2427.4 1060.5 0.74
500–1000 1703.9 887.2 1.49
1000–1500 776.6 3111.0 8.63
1500–2000 580.7 4268.1 16.46

>2000 337.9 4987.7 19.21

3.7. Baseline Soil Erosion by Soil and Landform Types

Soils in areas with a mean annual rainfall erosivity greater than 4500 presented high
mean annual soil loss rates above 10 t ha−1 yr−1 (Table 12). Nitosols had the highest
erosion rate of 22.69 t ha−1 yr−1, followed by Andosols and Planosols. Yermosols, which
are predominant in the north-eastern parts of the country, recorded the lowest mean soil
loss rates. The steep escarpment landforms of the Great Rift Valley presented the highest
annual erosion rates, followed by mountainous landforms (Table 13).
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Table 12. Baseline soil erosion rates under different soil types in Kenya.

Soil Type Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Acrisols 5.8 4150.6 7.84
Andosols 108.9 5363.7 17.67
Arenosols 258.7 1994.6 1.63
Cambisols 225.7 2718.9 9.62
Ferrasols 312.7 4838.6 12.38
Fluvisols 21.5 576.0 1.08
Gleysols 68.2 1487.3 1.80
Lithosols 756.9 1616.5 5.44
Luvisols 1110.2 1649.4 1.73
Nitosols 379.4 5223.6 22.69

Planosols 22.2 4226.2 13.14
Regosols 620.7 957.0 2.85

Solonchaks 371.2 604.1 0.77
Vertisols 178.3 2296.7 4.43
Xerosols 252.6 969.9 1.59

Yermosols 1082.8 594.6 0.50

Table 13. Baseline soil erosion rates per landform types in Kenya.

Landform Type Area
(104 ha)

MARE (Baseline)
(MJ mm ha−1 h−1 yr−1)

MASLR (Baseline)
(t ha−1 yr−1)

Alluvial plain 526.9 802.3 0.59
Badland 38.9 576.8 0.35

Coastal plain 84.1 3013.8 1.59
Complex 117.7 398.7 1.63

Depression 132.1 1627.3 3.42
Escarpments 24.2 4428.5 26.51

Foot slope 211.6 1611.9 4.08
Mount. Foot ridges 441.7 3133.3 17.71

Mountains 259.4 5202.6 19.01
Plain 3010.2 1315.4 1.62

Plateaus 795.0 2904.6 7.61
Valley 35.0 780.7 1.94

Volcanic craters 98.9 1911.8 9.63

3.8. Projected Rainfall Erosivity and Soil Erosion Rates in Kenya

Tables 14 and 15 give the statistical details and comparisons of the baseline rainfall
erosivity, with projected future values computed from the CMIP5 models under the two
RCPs. For the 2080s period, all the GCMs, except MIROC-5 RCP 2.6, revealed an increase in
precipitation, with CCCMA_CANESM2 RCP 8.5 recording the highest rise of 85.2% for the
entire country. Similarly, only MIROC-5 RCP 2.6, MIROC-5 RCP 8.5 and CSIRO_MK3.6.0
RCP 2.6 GCMs resulted in a precipitation decrease in all of the 2030s projections. Nation-
wide, there was a general upward trend in rainfall erosivity in all the GCMs in both periods,
except for MIROC-5 RCP 2.6 (2030s) and MIROC-5 RCP 8.5 (2080s), which showed −3.9%
and −8.2% decreases, respectively (Figures 10 and 11).
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Table 14. Percent change in average rainfall erosivity, soil erosion rates and erosion density under climate change across Kenya.

Scenarios GCMs Precipitation
(mm)

Change
(%)

Rainfall Erosivity
(MJ mm ha−1 h−1 y−1)

Change
(%)

Average Erosion
(t ha−1 yr−1)

Change
(%)

Erosion Density
(MJ ha−1 h−1)

Change
(%)

Baseline 601.1 0.00 1665.9 0.00 4.76 0.00 2.77 0.00

RCP-2.6 (2030s)

CCCMA_CANESM2-2.6 869.7 44.7 3486.1 109.3 9.48 99.16 4.01 44.77
CESM1-CAM5-2.6 665.9 10.8 2136.3 28.2 5.51 15.76 3.21 15.88

CSIRO_MK3.6.0-2.6 581.0 −3.3 1733.9 4.1 4.63 −1.68 2.98 7.58
MIROC-5-2.6 560.3 -6.8 1600.4 −3.9 4.08 −14.29 2.86 3.25

RCP-2.6 (2030s) Average 669.2 11.3 2239.2 34.4 5..93 24.58 3.27 18.05

RCP-8.5 (2030s)

CCCMA_CANESM2-8.5 851.1 41.6 3344.8 100.8 9.12 91.60 3.93 41.88
CESM1-CAM5-8.5 735.1 22.3 2437.2 46.3 6.01 26.26 3.32 19.86

CSIRO_MK3.6.0-8.5 657.0 9.3 2128.1 27.7 5.70 19.75 3.24 16.97
MIROC-5-8.5 588.2 -2.1 1774.8 6.5 4.55 -4.41 3.02 9.03

RCP-8.5 (2030s) Average 707.9 17.8 2421.2 44.8 6.34 33.19 3.38 22.02
(2030s) Overall Average 688.6 14.6 2330.0 39.9 6.14 29.0 3.33 20.22

RCP-2.6 (2080s)

CCCMA_CANESM2-2.6 882.0 46.7 3632.1 118.0 10.02 110.50 4.12 48.74
CESM1-CAM5-2.6 730.6 21.5 2470.6 48.3 6.26 31.51 3.31 19.49

CSIRO_MK3.6.0-2.6 643.4 7.0 2020.1 21.3 5.35 12.39 3.14 13.36
MIROC-5-2.6 546.6 −9.1 1529.6 −8.2 3.95 −17.02 2.80 1.08

RCP-2.6 (2080s) Average 700.7 16.6 2413.1 44.9 6.40 34.45 3.34 20.58

RCP-8.5 (2080s)

CCCMA_CANESM2-8.5 1113.2 85.2 3912.6 134.9 15.10 217.23 3.51 26.71
CESM1-CAM5-8.5 845.1 40.6 3118.8 87.2 7.78 63.45 3.69 33.21

CSIRO_MK3.6.0-8.5 768.3 27.8 2778.4 66.8 7.43 56.09 3.62 30.69
MIROC-5-8.5 636.9 6.0 2001.4 20.1 4.98 4.62 3.14 13.36

RCP-8.5 (2080s) Average 840.9 39.9 2952.8 77.2 8.82 85.3 3.49 26.0
(2080s) Overall Average 770.8 28.2 2683.0 61.1 7.61 59.87 3.42 23.47

RCP-2.6 (2030s)
CCCMA_CANESM2-2.6 869.7 44.7 3486.1 109.3 9.48 99.16 4.01 44.77

CESM1-CAM5-2.6 665.9 10.8 2136.3 28.2 5.51 15.76 3.21 15.88
CSIRO_MK3.6.0-2.6 581.0 −3.3 1733.9 4.1 4.63 −1.68 2.98 7.58
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Table 15. Projected change to mean baseline rainfall erosivity (%) across the regions of Kenya.

LVR CER CR NER RVR

Baseline Rainfall Erosivity (MJ mm ha−1 h−1 yr−1) 7430.0 1562.3 1983.0 644.8 2077.6

RCP-2.6 (2030s)

CCCMA_CANESM2 11,620.6 3489.0 2504.0 851.0 4698.8
Change (%) 56.4 123.3 26.3 32.0 126.2

CESM1-CAM5 7979.0 2059.8 2321.5 780.5 2272.0
Change (%) 7.4 31.8 17.1 21.0 9.4

CSIRO_MK3.6.0 7218.8 1702.7 1661.6 539.6 1884.5
Change (%) −2.8 9.0 −16.2 −16.3 −9.3
MIROC-5 6836.4 1478.3 1777.3 610.7 1607.3

Change (%) −8.0 −5.4 −10.4 −5.3 −22.6

RCP-2.6 (2080s)

CCCMA_CANESM2 12,691.5 3544.9 2263.0 831.9 5106.3
Change (%) 70.8 126.9 14.1 29.0 145.8

CESM1-CAM5 8888.9 2333.9 2698.3 982.4 2658.2
Change (%) 19.6 49.4 36.1 52.4 27.9

CSIRO_MK3.6.0 7542.9 2032.6 1921.7 680.4 2239.5
Change (%) 1.5 30.1 −3.1 5.5 7.8
MIROC-5 6216.3 1492.0 1613.4 568.9 1555.2

Change (%) −16.3 −4.5 −18.6 −11.8 −25.1

RCP-8.5 (2030s)

CCCMA_CANESM2 11,197.6 3323.9 2270.9 812.4 4590.6
Change (%) 50.7 112.8 14.5 26.0 121.0

CESM1-CAM5 7730.3 2447.8 2846.2 1081.5 2458.5
Change (%) 4.0 56.7 43.5 67.7 18.3

CSIRO_MK3.6.0 8436.7 2096.4 1905.2 645.0 2442.8
Change (%) 13.6 34.2 −3.9 0.03 17.6
MIROC-5 8172.1 1620.7 1983.0 624.1 1750.4

Change (%) 10.0 3.7 0.00 −3.2 −15.7

RCP-8.5 (2080s)

CCCMA_CANESM2 14,714.5 5759.4 3040.2 1168.8 8376.5
Change (%) 98.0 268.6 53.3 81.3 303.2

CESM1-CAM5 10,581.6 2932.8 3292.2 1272.5 3491.1
Change (%) 42.4 87.7 66.0 97.3 68.0

CSIRO_MK3.6.0 10,629.4 2750.8 2171.6 879.6 3353.8
Change (%) 43.1 76.1 9.5 36.4 61.4
MIROC-5 9324.0 1735.6 2237.6 806.5 1974.1

Change (%) 25.5 11.1 12.8 25.1 −5.0

CCCMA_CANESM2 RCP 2.6 (2080s) produced the largest percentage change of
erosivity density, followed by CCCMA_CANESM2 RCP 8.5 (2030s) (Figure 12). The
projected mean annual erosion rates for the CCCMA_CANESM2 GCMs were notably
high amongst all the other GCMs under all scenarios, with CCCMA_CANESM2 RCP 2.6
recording an increment of 99.16% in the 2030s and a 217.23% increase in the 2080s under
RCP 8.5, respectively (Figure 13). The overall average soil erosion rate of all the GCMs
ensembles in the 2030s time-slice demonstrated a 29% increase compared to the baseline
period, while for the 2080s period, a +59.87% change was noted (Figure 14). All the GCMs
revealed increments in future erosivity values across all Kenyan regions in the years 2030s
and 2080s under RCP 8.5, except CSIRO_MK3.6.0 RCP 8.5 (2030s) (−3.9% for the coastal
region), MIROC-5 RCP 8.5 (2030s) (–3.2% and –15.7% for the northern and Rift Valley
regions, respectively) and MIROC-5 RCP 8.5 (2080s) (–5% for rift valley region) (Table 15).
The MIROC-5 GCM produced the most varied changes, including the lowest change of
−25.1% for the Rift Valley Region in the 2080s under RCP 2.6. The North Eastern Region
(NER) had the lowest rainfall erosivity among all the Kenya regions, with a mean rainfall
erosivity of 644.8 MJ mm ha−1 h−1 yr−1 in the baseline period. The CSIRO_MK3.6.0 RCP-
2.6 (2030s) forecasted the lowest change of −16.3% in this region, followed by MIROC-5,
which predicted a decrease ranging from −3.2% to −11.8% during the two time periods for
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the two emission scenarios. In contrast, the CESM1-CAM5 RCP-8.5 (2080s) predicted the
highest increase in rainfall erosivity of approximately 97.3%. The baseline average rainfall
erosivity of the Lake Victoria region that falls within the tropical rainforest climate had
the highest rise (98.0%) under the CCCMA_CANESM2 RCP-8.5 (2080s) projection. Most
of the GCMs produced positive changes in the mean annual erosion rates, with the rift
valley region indicating the highest change (107.94% under the CCCMA_CANESM2 RCP
8.5 (2080s)) (Table 16).
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Table 16. Projected change to the mean baseline soil loss rate (%) across the regions of Kenya.

LVR CER CR NER RVR

Baseline Soil Loss rate (t ha−1 yr−1) 15.82 4.82 2.11 0.70 7.05

RCP-2.6 (2030s)

CCCMA_CANESM2 19.60 7.58 2.47 0.85 10.97
Change (%) 23.89 57.26 17.06 21.43 55.60

CESM1-CAM5 16.49 5.63 2.32 0.79 7.43
Change (%) 4.24 16.80 9.95 12.86 5.39

CSIRO_MK3.6.0 15.66 5.07 1.93 0.63 6.71
Change (%) −1.01 5.19 −8.53 −10.0 −4.82
MIROC-5 15.33 4.67 1.96 0.68 6.10

Change (%) −3.10 −3.11 −7.11 −2.86 −13.48
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Table 16. Cont.

LVR CER CR NER RVR

RCP-2.6 (2080s)

CCCMA_CANESM2 20.39 7.65 2.35 0.85 11.47
Change (%) 28.89 58.71 11.37 21.43 62.70

CESM1-CAM5 17.32 6.01 2.51 0.92 8.12
Change (%) 9.48 24.69 18.96 31.43 15.18

CSIRO_MK3.6.0 16.03 5.60 2.10 0.74 7.41
Change (%) 1.33 16.18 −0.47 5.71 5.11
MIROC-5 14.63 4.73 1.87 0.66 5.98

Change (%) −7.52 −1.87 −11.37 −5.71 −15.18

RCP-8.5 (2030s)

CCCMA_CANESM2 19.28 7.40 2.35 0.83 10.91
Change (%) 21.87 53.53 11.37 18.57 54.75

CESM1-CAM5 16.25 6.14 2.60 0.97 7.82
Change (%) 2.72 27.39 23.22 38.57 10.92

CSIRO_MK3.6.0 16.87 5.71 2.10 0.71 7.74
Change (%) 6.64 15.59 −0.47 1.43 9.79
MIROC-5 16.63 4.90 2.10 0.69 6.33

Change (%) 5.12 1.66 −0.47 −1.43 −10.21

RCP-8.5 (2080s)

CCCMA_CANESM2 21.96 9.81 2.74 1.04 14.66
Change (%) 38.81 103.53 29.86 48.57 107.94

CESM1-CAM5 18.80 6.78 2.82 1.08 9.45
Change (%) 18.84 40.66 33.65 54.29 34.04

CSIRO_MK3.6.0 18.77 6.60 2.28 0.87 9.16
Change (%) 18.65 36.93 8.06 24.29 29.93
MIROC-5 17.64 5.06 2.25 0.81 6.74

Change (%) 11.20 4.98 6.634 15.71 −4.40

The exception here was the MIROC-5 model, which indicated negative soil erosion
rate changes in all the projections under the RCP-2.6 scenario. It was notable that only the
MIROC-5 model for the Rift Valley Region gave a reduction in soil erosion rates in all of
the future RCP-8.5 (2080s) scenarios (Table 16).

4. Discussion

The current study emphasized the merits of the well-tested RUSLE model for monitor-
ing soil erosion rates, which include fast analyses of the impacts of future climate variability
on soil erosion (climatic factor), easy adaptability in many GIS platforms (which allows sim-
ple computation, even for nationwide erosion risk assessments) and applicability of easily
accessible data (both at global and local scales) [82]. The baseline results of the present study
were in agreement with other similar works performed within Kenya and around the EA
region. The baseline mean annual soil erosion rate was within the range of erosion rates for
the EA region, as assessed by references [14,44,83], as well as for the African continent [84].
The baseline soil erosion rate results concurred with the results reported previously in
the multiple regional studies [14,16,44,46,49]. The current soil loss rate estimation also
corroborated the range of mean erosion rate values for Kenya (5.67 t ha−1 yr−1) reported
in the Global Soil Erosion Modelling (GloSEM) [1] However, our baseline mean rainfall
erosivity was lower than the value derived from the Global Rainfall Erosivity Dataset (Glo-
REDa) [85] for Kenya (2588.1 MJ mm ha−1 h−1 yr−1). Schürz et al. [44] also noted such a
discrepancy in the RUSLE model ensemble for Kenya and Uganda. Such visible differences
were also noted after making comparisons between the high-resolution rainfall erosivity
(GloREDa) and other similar studies. For instance, reference [41] computed a mean rainfall
erosivity (8470 MJ mm ha−1 h−1 yr−1) that was higher than the GloREDa value for Brazil
(7560.8 MJ mm ha−1 h−1 yr−1). Similarly, Duulatov et al. [52] observed an erosivity of
1447.7 MJ mm ha−1 h−1 yr−1 against a GloREDa value of 772.7 MJ mm ha−1 h−1 yr−1 over
Tajikistan. Table 17 presents a comparison of rainfall erosivity results of this study with
past literature R factor values based on multi-years EI30 calculations. The baseline results
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of the present study were also compared to previous soil erosion plot studies in Kenya
for validation purposes (Table 18). The entire croplands in the country were estimated to
have the highest baseline average annual soil loss rate (17.86 t ha−1 yr−1), which is compa-
rable to the results reported by Fenta et al. [14]. Most of the croplands are found within
areas of steep terrain and highly erodible soils. Okoba and Sterk [86] further attributed
these high rates to poor farming practices, where farmers leave the soil bare for extended
periods, thus enhancing soil erosion, especially during extreme weather conditions. The
total baseline soil erosion rate estimated in Kenya (4.76 t ha−1 yr−1) was slightly less than
in most regions of the globe: 39.2 t ha−1 yr−1 for Rwanda [87], 0.7–17.9 t ha−1 yr−1 for
Europe, 10.8–146 t ha−1 yr−1 for Africa [84] and 0–273 t ha−1 yr−1 for Nepal [81]. In ad-
dition, Kenya’s erosion rate estimates were below the tolerable limit of 25 t ha−1 yr−1

for environments with young mountains topography, as suggested by Stocking [84]. The
spatial pattern of the mean annual rainfall figure had a high degree of similarity with
other rainfall distribution maps reported at both the continental and regional scales [88].
Nicholson (2017) [89] largely attributed the aridity of the northeastern parts of Kenya to
the divergence of the Somali Jet that drives the Indian Monsoon.

Table 17. Past literature R factor values (MJ mm ha−1 h−1 y−1) based on multiple years EI30

calculations in Kenya.

Location Climate R Factor References This Study

Kianjuki catchment Aw 8527 [48] 8784.5
Katumani Aw 1644 [67] 1621.1

Eldoret Aw 3795 [67] 4467.0
Taita Taveta Voi Bsh 2774 [67] 2058.2

Narok Csb 2621 [67] 3067.2

Table 18. Mean soil erosion rates (t ha−1 yr−1) from previous plot studies within Kenya.

Location Climate Observed MASLR References

Lake Baringo sub-basin Aw 16–96 [90]
Upper Ewaso Ng’iro sub-basin Aw 0–51.3 [45]

Machakos, Kenya Aw 16–36 [91]
Athi basin area Bsh 15 [92]

Embu Am 11 [93]
Machakos Am 2–60 [94]

Embu Am 16–118 [86]
Tharaka Nithi Am 1–2 [95]

Kabete Cfb 2–6 [96]

Both global and regional phenomena contribute to the heterogeneous nature of
Kenya’s rainfall pattern. These include the seasonal migration of the ITCZ that accounts
for the EA’s seasonal rainfall variability [97], solar flux fluctuations and global sea surface
temperatures (SST) in the Atlantic Ocean, as well as the Indian and Pacific Ocean anomalies
that are linked to the Indian Ocean Dipole (IOD) and the El Niño Southern Oscillation
(ENSO), respectively [98]. Other factors, including proximity to large inland lakes and
orographic effects, greatly influence moisture exchanges, thus contributing to variable
local rainfall patterns [89]. Similar to our results, reference [99] also reported rainfall ero-
sivity values greater than 5000 MJ mm ha−1 h−1 yr−1 in the highland areas of Kenya as
well as over the Lake Victoria region [18]. Furthermore, the rainfall erosivity distribution
map showed a consistent pattern when compared to previous erosivity maps reported
for Kenya.

As presented in other previous regional research [50], this study predicted the soil
erosion in Kenya with respect to changes in the climatic factor (rainfall erosivity) within
the RUSLE model, while holding the other factors constant. Our results indicate that the
overall future soil loss rate is projected to increase significantly for both time slices, due
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to the increased erosive power of precipitation. There was an overall dramatic positive
change in rainfall erosivity in the investigated area across all the models, except for model
MIROC-5 under the RCP 2.6 scenario for the 2030s and MIROC-5 under RCP 8.5 for the
2080s. The projected future erosion rates were within the range of estimates given other
works in EA [10,24,55], as with the continental predictions [1] (Table 19). For instance,
references [25,100,101] observed increases of the mean soil loss rate ranging between
+17.8%–28.3% in China, Europe and Uzbekistan (Table 19). Similar to observations made
by Panagos et al. [100] across Europe, Kenya having a lower erosion rate than Ethiopia
(16.9 t ha−1 yr−1) [14] is expected to record larger increments due climate change. High
amounts of rainfall can increase the erosive power of runoff and significantly magnify
soil loss rates, especially in steep terrains. It is also possible that increases in precipitation
can promote vegetation growth and, in turn, enhance plant canopy protection against soil
erosion [99]. The highest change in rainfall erosivity was noted in the rift valley, Lake
Victoria and central and eastern regions, which consequently resulted in high soil erosion
rates. This may lead to other hazardous off-site effects, including sedimentation in water
bodies, landslides and flooding in these regions. For most cases, the highest variations in
soil loss occurred in the central highlands and western regions of Kenya, which represent
areas of intensive agricultural production including the Kenya’s grain basket region [43].
Agricultural output in these regions will most likely be negatively affected by climate
variability, due to possible increases in soil erosion rates and soil degradation.

Table 19. Predicted mean soil erosion rates (t ha−1 yr−1) and percentage change from the respective baseline soil erosion
rates for different countries around the world.

Countries
Predicted MASLR (Aggregate) &

(% Change) No. of GCMs
Used

With Predicted C
& P factors (LULC) References

2030s 2050s 2080s

Greece - 3.42 (+0.6%) 3.7 (+9%) 1 No [51]
Ethiopia 26.13 (+4.5%) 26.78 (+7.1%) 27.44 (+9.8%) 20 No [24]
Ethiopia - 78 (+23%) - 1 Yes [10]
Nigeria 1428.3 (+12.2%) 1517.9 (19.3%) 1534.8 (20.6%) 4 No [53]
Europe - 3.61 (+17.8%) - 19 Yes [100]

Iran 12.9 (+21.7%) - - 1 Yes [82]
China - 3.54 (+28.3%) - 6 Yes [25]

Uzbekistan 574.6 (+17.1%) 608.2 (+20.5%) 636.6 (+23.3%) 5 No [101]

It is important for the country to adapt to these expected changes and devise soil
and water conservation policies that will enhance agricultural resilience (ensure a balance
between food security and acceptable soil loss rates). Effective soil conservation methods,
as eco-sustainable agricultural technologies, should be continuously implemented in such
areas. On the other hand, public policies should encourage more agricultural expansions
in regions projected to have reductions in average rainfall erosivity [41] (and consequent
low soil loss rates), e.g., the North Eastern region, Coastal region and northern parts of the
Rift Valley. The recently launched Galana Kalalu irrigation scheme within the NER and CR
can be seen as a profitable shift from the country’s overdependence on rain-fed agriculture
aimed at improving food security [6,8]. Nevertheless, caution should be taken when
converting such natural landscapes into croplands via irrigation, as increased farming in
arid lands with no accompanying conservation practices can greatly enhance soil loss rates.

The inability to reflect major rainfall erosivity variability arising from extreme rainfall
phenomena is a major setback of the RUSLE empirical method applied. The monthly
precipitation data used in the study would not be sufficient to account for the size of rain-
drops and rainfall duration, which bear a direct correlation to surface erosion. In addition,
uncertainties inherent to GCMs, including bias correction methods (Delta method), spatial
resolution (resampling to 1 km resolution) and other model assumptions, also pose a major
limitation to the present study [53]. Different researchers across the globe have applied
multiple climate models with variable future scenarios with an aim to mitigate such un-
certainties. Likewise, four GCMs that address differences or inconsistencies arising from
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climate change signals, e.g., MIROC-5 and CCCMA_CANESM2, were employed based on
previous climatology research in Kenya and other similar tropical regions. Different studies
have utilized multiple GCMs in soil erosion predictions in order to reduce the uncertainties
inherent to climate models. In this study, we selected four models among the top eight
models (out of 22 CMPI5 models), which Ongoma et al. [61] demonstrated to well produce
rainfall estimations over East Africa. The present research only focused on the impact of the
climatic factor (K) and overlooked both anthropogenic (P) and vegetation factors (C), which
have been shown to have great significance on soil erosion rates. Holding such pertinent
factors at a constant certainly raises questions about the reliability of the future RUSLE
predictions [74]. Colman et al. [31] utilized LULC projections based on the contribution
of various land uses to greenhouse gas emissions to study future soil erosion rates within
the tropical Brazilian Pantanal region and revealed an increasing trend ranging between
40–100%. It is thus important to integrate projected vegetation cover coefficients (based
on projections of LULC) in order to improve on the integrity of the results or simulations.
The ESRI very recently released a high-resolution Global Land Cover map (10 m) using
state-of-the-art artificial intelligence (https://livingatlas.arcgis.com/landcover/ accessed
on 3 August 2021), as part of its contribution to climate change action, and it plans to
continue this initiative on a yearly basis. This database will be of great importance to
environmental modeling studies, e.g., climate change and food security, that require large-
scale vegetation cover information (especially for developing countries). Xiong et al. [80]
noted that there is limited knowledge of EA’s current support practices; thus P estimations
are often neglected in large-scale research or set to a value of “1”, which represents no
soil conservation measures as being the worst case scenario. Moreover, Taye et al. [102]
reported that the impact of soil conservation measures rapidly decline over time, especially
in EA’s ASAL regions.

5. Conclusions

Soil conservation is an integral environmental goal in Kenya as it embarks on its ambi-
tious Kenya Vision 2030 of attaining food security and increasing agricultural production.
Kenya also strives to align itself with the United Nations Sustainable Development Goals
(SDGs) by enhancing soil protection in order to attain land degradation neutrality by 2030.
Recent IPCC reports projected increases in the frequency and/or the intensity of heavy
precipitation and pluvial flooding over EA. This increases the risk of soil loss by water in
the next century. The present study examined the magnitude of current soil erosion rates
(baseline climate) for Kenya, as well as the potential impacts of climate change on rainfall
erosivity using multiple GCMs (CCCMA_CANESM2, CESM1-CAM5, CSIRO_MK3.6.0 &
MIROC-5) under two greenhouse emissions (RCP2.6 and RCP8.5) for the 2030s and 2080s
periods. The baseline soil loss rate was estimated at 4.76 t ha−1 yr−1, with agricultural land
being the most susceptible to erosion. There was a steady increase in mean soil erosion
rates across most of the model ensembles from the 2030s to 2080s, with only four of all the
16 future scenarios recording a decline in erosion rates. All of the GCMs showed a positive
change in average annual rainfall erosivity under all scenarios, except for MIROC-5-RCP2.6
in both the 2030s and 2080s time slices. The cumulative average of rainfall erosivity and
soil erosion rates for all of the GCMs in the 2030s (both RCP2.6 and RCP8.5 combined)
showed an increase of 39.9% and 29%, respectively, compared with the baseline climate.
Similarly, the aggregate average of rainfall erosivity and the soil loss rate for all the GCMs
projected increases of 61.1% and 59.87% respectively, in the 2080s. The highest positive
change (217.23%) of the soil loss rate over Kenya belonged to CCCMA_CANESM2 RCP 8.5
in the 2080s, while the minimum (−14.29%) was projected under the MIROC-5 RCP 2.6
in the 2030s period. Future climatic projections indicate that major expected increases in
rainfall erosivity and soil loss rates are concentrated in the CER and RVR, which represent
the main crop production regions of Kenya. In the Rift Valley Region, the relative variation
of the mean soil loss rate rose up to 107.94% (CCCMA_CANESM2 RCP 8.5 (2080s). This
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study provides a good reference to policy makers to enable them devise adaptive soil
erosion conservation measures.
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