
applied
sciences

Article

A Local Adaptive Mesh Refinement for JFO Cavitation Model
on Cartesian Meshes

Wanjun Xu 1,* , Kang Li 1,2, Zhengyang Geng 1, Mingjie Zhang 3 and Jiangang Yang 3

����������
�������

Citation: Xu, W.; Li, K.; Geng, Z.;

Zhang, M.; Yang, J. A Local Adaptive

Mesh Refinement for JFO Cavitation

Model on Cartesian Meshes. Appl. Sci.

2021, 11, 9879. https://doi.org/

10.3390/app11219879

Academic Editors: Ramin Rahmani

and Alessandro Ruggiero

Received: 6 October 2021

Accepted: 18 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
kangli@ncepu.edu.cn (K.L.); x00207180913@njit.edu.cn (Z.G.)

2 School of Energy, Power and Mechanical Engineering, North China Electric Power University,
Baoding 071003, China

3 School of Energy and Environment, Southeast University, Nanjing 210096, China;
mjzhangseu@163.com (M.Z.); jgyang@seu.edu.cn (J.Y.)

* Correspondence: j00000003084@njit.edu.cn

Abstract: Nonuniform mesh is beneficial to reduce computational cost and improve the resolution of
the interest area. In the paper, a cell-based adaptive mesh refinement (AMR) method was developed
for bearing cavitation simulation. The bearing mesh can be optimized by local refinement and
coarsening, allowing for a reasonable solution with special purpose. The AMR algorithm was
constructed based on a quadtree data structure with a Z-order filling curve managing cells. The
hybrids of interpolation schemes on hanging nodes were applied. A cell matching method was used
to handle periodic boundary conditions. The difference schemes at the nonuniform mesh for the
universal Reynolds equation were derived. Ausas’ cavitation algorithm was integrated into the AMR
algorithm. The Richardson extrapolation method was employed as an a posteriori error estimation to
guide the areas where they need to be refined. The cases of a journal bearing and a thrust bearing
were studied. The results showed that the AMR method provided nearly the same accuracy results
compared with the uniform mesh, while the number of mesh was reduced to 50–60% of the number
of the uniform mesh. The computational efficiency was effectively improved. The AMR method is
suggested to be a potential tool for bearing cavitation simulation.

Keywords: cavitation; AMR; Elrod algorithm; Richardson extrapolation method

1. Introduction

Hydrodynamic bearings are widely used in machines, particularly in engines and
power plants. The bearing consists of a rotating journal inserting a bore or a sleeve [1]. To
ensure adequate lubrication, the journal wall driving velocity should be high enough to
force oil into a converging clearance so that the load can be supported by the increasing
hydrodynamic pressure [2]. The load-carrying capacity is one of the critical performance
parameters and is treated as the prime objective in journal bearing design [1].

Cavitation can occur at particular kinds of bearings where the variable-shaped di-
vergence clearance exists in the oil passage. Typically, cavitation occurs at the divergence
clearance region in full circle bearings. Finger-shaped voids that cover most of the di-
vergence clearance region can be observed [3]. Another specific case is textured thrust
bearings (such as dimple-enhanced seal-like thrust bearings), in which cavitation occurs at
the tail end of each dimple [4]. Although cavitation does not necessarily have a deleterious
effect upon the load-carrying capacity, the cavitation algorithm’s predicted load-carrying
capacity is significantly affected [5].

Cavitation is essentially characterized as the two-phase flow of liquid and gas [6].
The liquid phase is oil. The gas phase is the air which escapes from oil when the pressure
is below saturation pressure, or the oil vapor where the oil boils to form bubbles if the
pressure is lower than the vapor pressure [7]. No matter what kind of cavitation, the

Appl. Sci. 2021, 11, 9879. https://doi.org/10.3390/app11219879 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7465-3766
https://doi.org/10.3390/app11219879
https://doi.org/10.3390/app11219879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11219879
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11219879?type=check_update&version=1

Appl. Sci. 2021, 11, 9879 2 of 15

multiscale density exists throughout the bearing clearance region. The oil density ratio, for
example, changed from 1.0000 to 1.0002 (under the bulk of 1.72 × 109 N/m2), while the gas
density ratio changed from 1.0000 to 0.1754 [8–10]. Moreover, the stepwise nonlinearity
of the density appearing at the oil film reformation boundary essentially increases the
difficulty in the numerical solution.

As a pioneer, Elrod [11] proposed a novel universal partial differential equation
(PDE) which overcame the numerical difficulty in the implementation of the Jakobsson-
Floberg-Olsson (JFO) cavitation theory [12,13]. The algorithm was recognized as the
Elrod algorithm. The main issue that existed in the Elrod algorithm was the occasional
instability that occurs during the abrupt change of switch functions. It sometimes limited
the application in practical cavitation problems. Many pieces of research were devoted to
improving the stability of the algorithm [14,15]. An effective way to relieve the instability
of the Elrod algorithm was to employ a modified switch function algorithm proposed by
Fesanghary and Khonsari [16]. The algorithm allowed the presence of an intermediate
switch function between 0 and 1, and the stepwise nonlinearity was primarily reduced.
Similarly, a regularized cavitation algorithm developed by Nitzschke et al. [17] was also
applicative due to the same idea of employing smooth switch functions. Another way to
overcome the instability was to use the non-switch function algorithm proposed by Ausas
et al. [18,19]. In this algorithm, the pressure and density ratio were solved simultaneously
by an explicit iterative scheme without employing switching functions. It was found that
the algorithm was very stable for various microtextured bearings. Based on the concept of
complementarity, a novel comprehensive finite element method (FEM) derivation of the
Reynolds equation was developed by Giacopini et al. [20]. The algorithm can naturally
detect the rupture and reformation boundaries without the need for additional boundary
conditions. The algorithm was beneficial for studying two-dimensional textured bearings
and complex three-dimensional problems without nonconvergence or instability issues.

Another research topic on the cavitation algorithm is to improve its computational ef-
ficiency. Woloszynski et al. [21] developed an efficient algorithm, called Fischer-Burmeister-
Newton-Schur (FBNS), by reformulating the discretized cavitating flow. The algorithm
accounted for cavitation by introducing additional nonlinearity to the discretized Reynolds
equation in an unconstrained equation system. The FBNS algorithm was significantly
faster (two orders of magnitude) than the traditional algorithms, as compared in their work.
Qiu and Khonsari [22] employed the multigrid method in the Elrod algorithm. They found
that the multigrid method was almost 10 times faster than alternating direction implicit
(ADI) and 20–30 times faster than the Gauss–Seidel method. Miraskari et al. [23] proposed
an alternative solution scheme based on the finite volume method (FVM). The specially
designed algorithm accelerated convergence speed and eliminated the scheme dependency
on the choice of lubricant bulk modulus.

To further improve the computational efficiency, the paper employed the adaptive
mesh refinement (AMR) method in the bearing cavitation simulation. Although the AMR
method has been developed for nearly 40 years (the block-structured AMR was first
reported by Berger and Oliger [24] in 1984), few articles focused on this topic. AMR is the
method of numerical discretization that allows different numerical resolutions to exist in
the computational domain, i.e., nonuniform mesh. AMR allows local mesh refinements
and coarsening during the solution process, which heavily speeds up calculation and saves
computational cost. AMR is often essential for multiscale problems such as global mantle
convection simulation [25,26], time-dependent shock hydrodynamics [27,28], and sharp
interface capture between two phases [29,30].

The AMR method has different approaches for managing nonuniform meshes. There
are two main kinds of AMRs based on the Cartesian grid, which are suitable for a regular
shape-bearing simulation, as shown in Figure 1. (1) Block-based AMR refines a predefined
block when the cell within the block is mostly tagged to be refined. The advantages of
the block-based AMR include the nature of structured meshes in each block and relatively
simple data structures (permit reuse of uniform mesh code). However, it becomes chal-

Appl. Sci. 2021, 11, 9879 3 of 15

lenging to encode as grid hierarchy increases. (2) Cell-based AMR refines only those cells
that are supposed to be refined. The nature of structured meshes is lost due to indepen-
dent cell management. However, a tree-based data structure is often used to manage the
meshes, making the neighbor relation efficiently obtained [31]. The unstructured AMR also
provides geometric flexibility at the cost of explicitly storing all neighborhood relations [32].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15

simple data structures (permit reuse of uniform mesh code). However, it becomes
challenging to encode as grid hierarchy increases. (2) Cell-based AMR refines only those
cells that are supposed to be refined. The nature of structured meshes is lost due to
independent cell management. However, a tree-based data structure is often used to
manage the meshes, making the neighbor relation efficiently obtained [31]. The
unstructured AMR also provides geometric flexibility at the cost of explicitly storing all
neighborhood relations [32].

(a) (b)

Figure 1. Different types of adaptive mesh refinement: (a) block-based AMR method; (b) cell-based AMR method.

In the paper, a cell-based AMR algorithm was developed for bearing cavitation
simulation. The aim is twofold: (1) The AMR method is introduced into cavitation
problem. It provides another way to significantly improve the computational efficiency.
This method exhibits potential advantages in analysis of bearings with complex geometric
shapes. (2) Due to the complexity of the AMR method, the basic AMR algorithm was
explained in the paper. The algorithm may provide guidance for people interested in
AMR. The AMR algorithm was constructed based on a quadtree data structure with a Z-
order filling curve managing cells. The hybrids of interpolation schemes on hanging nodes
were applied. A cell matching method was used to handle periodic boundary condition.
The difference schemes at nonuniform mesh for the universal Reynolds equation were
derived. Ausas’ cavitation algorithm was integrated into the AMR algorithm for the
calculation of the bearing cavitation solution. The Richardson extrapolation method was
employed as an a posteriori error estimation to tag the areas where they need to be refined.
The AMR procedure was programmed in MATLAB. The details of the mesh management
method, main algorithmic logics, nonuniform difference schemes, and error estimation
were presented below.

2. AMR Algorithm
2.1. Mesh and Data Storage

The example of a cell-based mesh is shown in Figure 2. The mesh is based on a
quadtree data structure: each child cell owns a parent cell, and each parent cell possesses
four child cells. The mesh structure is managed and stored in a matrix table, as shown in
Table 1. With the matrix table, the operations on refining a leaf cell into four new leaf cells
and coarsening four leaf cells back into their parent cell are easily implemented. The leaf
cells mean the child cells without descendants and are the cells that actually participated
in numerical calculation. Additionally, query operations can be applied within the matrix
table to trace the ancestors and descendants for any cell according to need. More detailed
quadtree data structure can be seen in [33]. The Mesh refining () and Mesh coarsening ()
algorithms are shown in Algorithms 1 and 2, respectively

Figure 1. Different types of adaptive mesh refinement: (a) block-based AMR method; (b) cell-based AMR method.

In the paper, a cell-based AMR algorithm was developed for bearing cavitation
simulation. The aim is twofold: (1) The AMR method is introduced into cavitation problem.
It provides another way to significantly improve the computational efficiency. This method
exhibits potential advantages in analysis of bearings with complex geometric shapes. (2)
Due to the complexity of the AMR method, the basic AMR algorithm was explained
in the paper. The algorithm may provide guidance for people interested in AMR. The
AMR algorithm was constructed based on a quadtree data structure with a Z-order filling
curve managing cells. The hybrids of interpolation schemes on hanging nodes were
applied. A cell matching method was used to handle periodic boundary condition. The
difference schemes at nonuniform mesh for the universal Reynolds equation were derived.
Ausas’ cavitation algorithm was integrated into the AMR algorithm for the calculation
of the bearing cavitation solution. The Richardson extrapolation method was employed
as an a posteriori error estimation to tag the areas where they need to be refined. The
AMR procedure was programmed in MATLAB. The details of the mesh management
method, main algorithmic logics, nonuniform difference schemes, and error estimation
were presented below.

2. AMR Algorithm
2.1. Mesh and Data Storage

The example of a cell-based mesh is shown in Figure 2. The mesh is based on a
quadtree data structure: each child cell owns a parent cell, and each parent cell possesses
four child cells. The mesh structure is managed and stored in a matrix table, as shown in
Table 1. With the matrix table, the operations on refining a leaf cell into four new leaf cells
and coarsening four leaf cells back into their parent cell are easily implemented. The leaf
cells mean the child cells without descendants and are the cells that actually participated
in numerical calculation. Additionally, query operations can be applied within the matrix
table to trace the ancestors and descendants for any cell according to need. More detailed
quadtree data structure can be seen in [33]. The Mesh refining () and Mesh coarsening ()
algorithms are shown in Algorithms 1 and 2, respectively

Appl. Sci. 2021, 11, 9879 4 of 15

Algorithm 1 Mesh refining ()

for each cell
if a cell is a leaf cell and the refinement flag is 1

add four lines at the end of the matrix table;
fill mesh relation information (cell number, type, parent, level, xy coordinate, and so on);
interpolate initial flow variable using scatteredInterpolant() function (MATLAB function);

end
end

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15

Algorithm 1 Mesh refining ()
for each cell

if a cell is a leaf cell and the refinement flag is 1
add four lines at the end of the matrix table;
fill mesh relation information (cell number, type, parent, level, xy coordinate, and

so on);
interpolate initial flow variable using scatteredInterpolant() function (MATLAB

function);
end

end

Algorithm 2 Mesh coarsening ()
for each cell

if four leaf cells belong to a common parent cell and all coarse flags are 1
remove the lines of the four leaf cells;
modify the parent cell into leaf cell;
interpolate initial flow variable using the average mean of the four child cells;

end
end

Figure 2. General quadtree mesh structure.

Table 1. Matrix table of mesh storage.

Table
Index

Cell
Number

Cell
Type

NW Child
Cell

NE Child
Cell

SW Child
Cell

SE Child
Cell

Parent
Cell

Number
Level

Other
Parameters

1 1 0 2 3 4 5 0 1

xy coordinate;
refinement flag;
coarse flag, and

so on.

2 2 NW 1 6 7 8 9 1 2
3 3 NE 0 0 0 0 1 2
4 4 SW 0 0 0 0 1 2

…
10 10 NW 14 15 16 17 9 4

…
17 17 SE 0 0 0 0 10 5

1 NW, NE, SW, SE: northwest, northeast, southwest, southeast.

2.2. Neighbor Finding
In a numerical solution of PDE, the calculation on partial derivatives needs to use the

information of neighbor cells. It is necessary to find all the neighbor cell numbers for a
specified cell. The essential way to find the neighbors is to perform a mirror query

Figure 2. General quadtree mesh structure.

Table 1. Matrix table of mesh storage.

Table
Index

Cell
Number

Cell
Type

NW Child
Cell

NE Child
Cell

SW Child
Cell

SE Child
Cell

Parent Cell
Number Level Other

Parameters

1 1 0 2 3 4 5 0 1

xy coordinate;
refinement flag;
coarse flag, and

so on.

2 2 NW 1 6 7 8 9 1 2
3 3 NE 0 0 0 0 1 2
4 4 SW 0 0 0 0 1 2

. . .
10 10 NW 14 15 16 17 9 4

. . .
17 17 SE 0 0 0 0 10 5

1 NW, NE, SW, SE: northwest, northeast, southwest, southeast.

Algorithm 2 Mesh coarsening ()

for each cell
if four leaf cells belong to a common parent cell and all coarse flags are 1

remove the lines of the four leaf cells;
modify the parent cell into leaf cell;
interpolate initial flow variable using the average mean of the four child cells;

end
end

2.2. Neighbor Finding

In a numerical solution of PDE, the calculation on partial derivatives needs to use
the information of neighbor cells. It is necessary to find all the neighbor cell numbers
for a specified cell. The essential way to find the neighbors is to perform a mirror query
operation, as shown in Figure 3. The algorithm can be divided into two steps: find neighbor
of same size and find neighbor of smaller size. A more detailed explanation is illustrated
in [34,35]. The Neighbor finding () algorithm is shown in Algorithm 3.

Appl. Sci. 2021, 11, 9879 5 of 15

Algorithm 3 Neighbor finding ()

find neighbor of same size using ADJ function [34] according to a given direction;
store query path simultaneously;
find neighbor smaller size according to mirror query path using REFLECT function [34];

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 15

operation, as shown in Figure 3. The algorithm can be divided into two steps: find
neighbor of same size and find neighbor of smaller size. A more detailed explanation is
illustrated in [34,35]. The Neighbor finding () algorithm is shown in Algorithm 3.

Algorithm 3 Neighbor finding ()
find neighbor of same size using ADJ function [34] according to a given direction;
store query path simultaneously;
find neighbor smaller size according to mirror query path using REFLECT function

[34];

Figure 3. Neighbor finding () algorithm.

2.3. Neighbor Fixing
AMR procedure usually requires the mesh satisfying 2:1 condition between

neighbors, meaning the number of neighboring cells to a specified cell is not allowed to
exceed three. In other words, the level difference between adjacent cells should be limited
to 0, 1, and −1. The 2:1 condition should be checked by the Neighbor finding () algorithm
after mesh refinement and coarse operations. If the condition is not satisfied, the cells with
more than three neighbor cells are divided into four cells by Mesh refining () algorithm
operation.

The 2:1 condition in the diagonal direction is also mandatory in the present AMR
procedure. If the condition is not implemented, the interpolation scheme on hanging
nodes becomes much complex, which is not what we want. Figure 4 shows the mesh
satisfying 2:1 condition after the Neighbor fixing () algorithm operation. The mesh was
fixed from the mesh of Figure 2. The 24 cells indicated by red lines are newly added. The
Neighbor fixing () algorithm is shown in Algorithm 4.

Algorithm 4 Neighbor fixing ()
while 1

if 2:1 condition is satisfied (checked by Neighbor finding () algorithm)
break;

end
for each direction (N S W E)

if the number of neighboring cells exceed three
set refinement flag to 1;

end
end
for each diagonal (NW NE SW SE)

Figure 3. Neighbor finding () algorithm.

2.3. Neighbor Fixing

AMR procedure usually requires the mesh satisfying 2:1 condition between neighbors,
meaning the number of neighboring cells to a specified cell is not allowed to exceed three.
In other words, the level difference between adjacent cells should be limited to 0, 1, and
−1. The 2:1 condition should be checked by the Neighbor finding () algorithm after mesh
refinement and coarse operations. If the condition is not satisfied, the cells with more than
three neighbor cells are divided into four cells by Mesh refining () algorithm operation.

The 2:1 condition in the diagonal direction is also mandatory in the present AMR
procedure. If the condition is not implemented, the interpolation scheme on hanging nodes
becomes much complex, which is not what we want. Figure 4 shows the mesh satisfying
2:1 condition after the Neighbor fixing () algorithm operation. The mesh was fixed from
the mesh of Figure 2. The 24 cells indicated by red lines are newly added. The Neighbor
fixing () algorithm is shown in Algorithm 4.

Algorithm 4 Neighbor fixing ()

while 1
if 2:1 condition is satisfied (checked by Neighbor finding () algorithm)
break;

end
for each direction (N S W E)

if the number of neighboring cells exceed three
set refinement flag to 1;

end
end
for each diagonal (NW NE SW SE)
if the absolute mesh level difference between central cell and diagonal cell exceeds 1

set refinement flag to 1;
end

end
perform Mesh refining () algorithm;

end

Appl. Sci. 2021, 11, 9879 6 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15

if the absolute mesh level difference between central cell and diagonal cell
exceeds 1

set refinement flag to 1;
end

end
perform Mesh refining () algorithm;

end

Figure 4. The mesh satisfying 2:1 condition.

2.4. Handingnode Interpolating
Hanging nodes are created at the interfaces between different level cells (see in Figure

2) [36]. Two cases need to be considered: (1) the calculation upon the coarse grids needs
the interpolation of fine grids and (2) the calculation upon the fine grids needs the
interpolation of coarse grids, as shown in Figure 5. In the case of (1), the value of the ghost
node is simply calculated by the average value as

2 3() / 2gϕ ϕ ϕ= + , (1)

where φ is the flow variable. In the case of (2), the value of the ghost node is calculated by
quadratic interpolation as

2
g i iax bx cϕ = + + , (2)

where a, b, c are the coefficients determined by φ2, φ3, φ4, and xi is the x coordinate of φ1.
The quadratic interpolation is implemented by MATLAB function [37]. If a boundary or
fine grid is encountered, case (2) is considered a particular case. The values of φ2 and φ4
are, respectively, taken as the value of the boundary condition and the average value of
the fine grid, as follows

2

4 5 6() / 2
bϕ ϕ

ϕ ϕ ϕ
=
= +

, (3)

where φb is the value of the boundary condition. The present interpolation hybridizes
linear and quadratic rules. Although all quadratic interpolations are feasible, more effort
in programming is required. Other methods such as prolongation and restriction methods
to handle interpolation can be seen in [38]. The Handingnode interpolating () algorithm is
shown in Algorithm 5.

Algorithm 5 Handingnode interpolating ()
if the neighbor cell is a boundary (Neighbor finding () algorithm returns zero)

return the value of boundary condition;
else

Figure 4. The mesh satisfying 2:1 condition.

2.4. Handingnode Interpolating

Hanging nodes are created at the interfaces between different level cells (see in
Figure 2) [36]. Two cases need to be considered: (1) the calculation upon the coarse grids
needs the interpolation of fine grids and (2) the calculation upon the fine grids needs the
interpolation of coarse grids, as shown in Figure 5. In the case of (1), the value of the ghost
node is simply calculated by the average value as

ϕg = (ϕ2 + ϕ3)/2, (1)

where ϕ is the flow variable. In the case of (2), the value of the ghost node is calculated by
quadratic interpolation as

ϕg = axi
2 + bxi + c, (2)

where a, b, c are the coefficients determined by ϕ2, ϕ3, ϕ4, and xi is the x coordinate of ϕ1.
The quadratic interpolation is implemented by MATLAB function [37]. If a boundary or
fine grid is encountered, case (2) is considered a particular case. The values of ϕ2 and ϕ4
are, respectively, taken as the value of the boundary condition and the average value of the
fine grid, as follows

ϕ2 = ϕb
ϕ4 = (ϕ5 + ϕ6)/2

(3)

where ϕb is the value of the boundary condition. The present interpolation hybridizes
linear and quadratic rules. Although all quadratic interpolations are feasible, more effort
in programming is required. Other methods such as prolongation and restriction methods
to handle interpolation can be seen in [38]. The Handingnode interpolating () algorithm is
shown in Algorithm 5.

Algorithm 5 Handingnode interpolating ()

if the neighbor cell is a boundary (Neighbor finding () algorithm returns zero)
return the value of boundary condition;

else
if the number of neighbor cells is two (case (1))

return the average value using Equation (1);
end

if the number of neighbor cells is one and the level of neighbor cells is small than the level of
the central cell (case (2))

return the quadratic interpolation value using Equation (2);
end
if the neighbor cell is the particular case (2)

return the quadratic interpolation value using Equation (3);
end

end

Appl. Sci. 2021, 11, 9879 7 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15

if the number of neighbor cells is two (case (1))
return the average value using Equation (1);

end
if the number of neighbor cells is one and the level of neighbor cells is small than

the level of the central cell (case (2))
return the quadratic interpolation value using Equation (2);

end
if the neighbor cell is the particular case (2)

return the quadratic interpolation value using Equation (3);
end

end

Figure 5. Two kinds of cases for hanging nodes (blank circle indicates ghost nodes).

2.5. Periodic Matching
The west boundary and east boundary of the computational domain are paired into

a periodic boundary condition. A periodic boundary condition is defined for the two
boundaries where their values are linked in some defined way, such as interpolation or
matching method. A matching method is applied to realize the periodic boundary
condition. There are two steps to achieve the aim: (1) store the cell numbers of the west
boundary and east boundary, respectively, and (2) conduct a pair matching operation
according to the size of a cell.

The matching method is illustrated in Figure 6 and Table 2. In the first step, the cells
of the west boundary and east boundary are detected by the Neighbor finding () algorithm
according to the returned number of neighbor cells be zero or not. Owing to the Z-order
filling curve (see below), the cell number is naturally in descending order along the y
coordinate. Otherwise, a sort of operation needs to be performed by comparing y
coordinate. Secondly, a pair number is added at each cell starting from the first two cells.
The pair number is self-added when the size of the west boundary cell is equal to the size
of the east boundary cell. For example, the cell of 28,95,97 matches the cell of 86 with the
pair number of 2. Moreover, due to the number of neighbor cells of 86 exceeding three,
dissatisfying the 2:1 condition, a mesh refinement operation should be conducted to the
cell of 86 in the next step. The Periodic matching () algorithm is shown in Algorithm 6.

Algorithm 6 Periodic matching ()
detect the cells of west boundary and east boundary by Neighbor finding ()

algorithm;
create periodic pair number table simultaneously;
match the pair number according to the size of a cell;
if 2:1 condition is not satisfying (checked by Neighbor finding () algorithm)

preform Neighbor fixing () algorithm;
end

Figure 5. Two kinds of cases for hanging nodes (blank circle indicates ghost nodes).

2.5. Periodic Matching

The west boundary and east boundary of the computational domain are paired into
a periodic boundary condition. A periodic boundary condition is defined for the two
boundaries where their values are linked in some defined way, such as interpolation
or matching method. A matching method is applied to realize the periodic boundary
condition. There are two steps to achieve the aim: (1) store the cell numbers of the west
boundary and east boundary, respectively, and (2) conduct a pair matching operation
according to the size of a cell.

The matching method is illustrated in Figure 6 and Table 2. In the first step, the
cells of the west boundary and east boundary are detected by the Neighbor finding ()
algorithm according to the returned number of neighbor cells be zero or not. Owing to the
Z-order filling curve (see below), the cell number is naturally in descending order along
the y coordinate. Otherwise, a sort of operation needs to be performed by comparing y
coordinate. Secondly, a pair number is added at each cell starting from the first two cells.
The pair number is self-added when the size of the west boundary cell is equal to the size
of the east boundary cell. For example, the cell of 28,95,97 matches the cell of 86 with the
pair number of 2. Moreover, due to the number of neighbor cells of 86 exceeding three,
dissatisfying the 2:1 condition, a mesh refinement operation should be conducted to the
cell of 86 in the next step. The Periodic matching () algorithm is shown in Algorithm 6.

Algorithm 6 Periodic matching ()

detect the cells of west boundary and east boundary by Neighbor finding () algorithm;
create periodic pair number table simultaneously;
match the pair number according to the size of a cell;
if 2:1 condition is not satisfying (checked by Neighbor finding () algorithm)

preform Neighbor fixing () algorithm;
end

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

Figure 6. An example of periodic boundary condition.

Table 2. Periodic pair number table.

Cell Number of the West Boundary Pair Number Cell Number of the East Boundary Pair Number
22 1 24 1
28 2 86 2
95 2 15 3
97 2

120 3
142 3

2.6. Z-Order Filling Curve
Z-order filling curve [39] is used to manage the solution order of the nonuniform

mesh. A vector storing the ordered cell numbers is generated by the Z-ordering ()
algorithm, where the sequence of the cell numbers obeys the rule of the Z-order filling
curve, as shown in Figure 7. The basic idea of the Z-ordering () algorithm is to travel the
quadtree transversely under the sequence of NW→NE→SW→SE layer by layer. The Z-
ordering () algorithm is shown in Algorithm 7.

Algorithm 7 Z-ordering ()
travel to the bottom NE cells as a start point;
store the travel path layer by layer simultaneously;
while the number of tagged cells is not equal to the total number of leaf cells

travel the leaf cells on the same layer under the sequence of NW→NE→SW→SE;
store the travel path layer by layer simultaneously;
go back to ancestor cell once the SE leaf cell is reached;

end

Figure 7. Z-order filling curve.

Figure 6. An example of periodic boundary condition.

Appl. Sci. 2021, 11, 9879 8 of 15

Table 2. Periodic pair number table.

Cell Number of the
West Boundary Pair Number Cell Number of the

East Boundary Pair Number

22 1 24 1
28 2 86 2
95 2 15 3
97 2

120 3
142 3

2.6. Z-Order Filling Curve

Z-order filling curve [39] is used to manage the solution order of the nonuniform mesh.
A vector storing the ordered cell numbers is generated by the Z-ordering () algorithm,
where the sequence of the cell numbers obeys the rule of the Z-order filling curve, as
shown in Figure 7. The basic idea of the Z-ordering () algorithm is to travel the quadtree
transversely under the sequence of NW→NE→SW→SE layer by layer. The Z-ordering ()
algorithm is shown in Algorithm 7.

Algorithm 7 Z-ordering ()

travel to the bottom NE cells as a start point;
store the travel path layer by layer simultaneously;
while the number of tagged cells is not equal to the total number of leaf cells

travel the leaf cells on the same layer under the sequence of NW→NE→SW→SE;
store the travel path layer by layer simultaneously;
go back to ancestor cell once the SE leaf cell is reached;

end

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

Figure 6. An example of periodic boundary condition.

Table 2. Periodic pair number table.

Cell Number of the West Boundary Pair Number Cell Number of the East Boundary Pair Number
22 1 24 1
28 2 86 2
95 2 15 3
97 2

120 3
142 3

2.6. Z-Order Filling Curve
Z-order filling curve [39] is used to manage the solution order of the nonuniform

mesh. A vector storing the ordered cell numbers is generated by the Z-ordering ()
algorithm, where the sequence of the cell numbers obeys the rule of the Z-order filling
curve, as shown in Figure 7. The basic idea of the Z-ordering () algorithm is to travel the
quadtree transversely under the sequence of NW→NE→SW→SE layer by layer. The Z-
ordering () algorithm is shown in Algorithm 7.

Algorithm 7 Z-ordering ()
travel to the bottom NE cells as a start point;
store the travel path layer by layer simultaneously;
while the number of tagged cells is not equal to the total number of leaf cells

travel the leaf cells on the same layer under the sequence of NW→NE→SW→SE;
store the travel path layer by layer simultaneously;
go back to ancestor cell once the SE leaf cell is reached;

end

Figure 7. Z-order filling curve. Figure 7. Z-order filling curve.

3. Difference Schemes on Nonuniform Mesh

The universal Reynolds equation [18] governing both liquid and cavitation regions is
expressed as

∂

∂x

(
h3 ∂p

∂x

)
+

∂

∂y

(
h3 ∂p

∂y

)
= 6µU

∂(hθ)

∂x
, (4)

where h is the film thickness, p is the liquid pressure, µ is the dynamic viscosity, U is
the sliding speed, and θ is the density ratio. As mentioned above, AMR allows different
numerical resolutions to exist in the computational domain; therefore, the regions have
different sizes. As a result, the difference scheme for nonuniform mesh is different from
that for uniform mesh. Figure 8 shows the parameter definition for the nonuniform
difference scheme.

Appl. Sci. 2021, 11, 9879 9 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

3. Difference Schemes on Nonuniform Mesh
The universal Reynolds equation [18] governing both liquid and cavitation regions

is expressed as

3 3 ()6p p hh h U
x x y y x

θμ ∂ ∂ ∂ ∂ ∂  + =  ∂ ∂ ∂ ∂ ∂   
, (4)

where h is the film thickness, p is the liquid pressure, μ is the dynamic viscosity, U is the
sliding speed, and θ is the density ratio. As mentioned above, AMR allows different
numerical resolutions to exist in the computational domain; therefore, the regions have
different sizes. As a result, the difference scheme for nonuniform mesh is different from
that for uniform mesh. Figure 8 shows the parameter definition for the nonuniform
difference scheme.

Figure 8. Parameter definition for the nonuniform difference scheme.

The difference scheme of the pressure flow term is derived as
3 3 3 33 3 3 3

2 13

1 1 2 1 2 1 2 2 1 2

3 3 3 33 3 3 3
4 33

3 3 4 3 4 3 4 4 3 4

() ()() ()
() () ()

() ()() ()
() () ()

C C E C WE C E W C W

C C N C SN C N S C S

p d h h d h hp h h p h hph
x x d d d d d d d d d d

p d h h d h hp h h p h hph
y y d d d d d d d d d d

 + + ++ +∂ ∂   = − + ∂ ∂ + + + 

 + + ++ + ∂ ∂  = − + ∂ ∂ + + + 

. (5)

The difference scheme of the shear flow term is derived as

2

()6 6 C C W Wh hhU U
x d

θ θθμ μ −∂ =
∂

. (6)

Then, the explicit iterative schemes of p and θ can be written in the forms:
1 1

1, 1, , 1 , 11
,

1 1
1, 1, , 1 , 11

,

k k k k
i j i j i j i jk

i j

k k k k
i j i j i j i jk

i j

Ap Bp Cp Dp F
p

E
A B C D F

E
θ θ θ θ

θ

+ +
− + − ++

+ +
− + − ++

+ + + −
=

′ ′ ′ ′ ′+ + + −
=

′

 (7)

where k is the number of iterations. The successive over-relaxation (SOR) method is
applied to accelerate convergence. The SOR factors for p and θ are both taken as 1.2. The
detailed solution strategy for Ausas’ algorithm can be seen in [18,19].

4. Error Estimation
Discretization error is defined as the difference between the exact solution of the

discrete equation and the exact solution of the PDE. It is the primary source of numerical

Figure 8. Parameter definition for the nonuniform difference scheme.

The difference scheme of the pressure flow term is derived as

∂
∂x

(
h3 ∂p

∂x

)
=

pE(h3
C+h3

E)

d1(d1+d2)
− pC[d2(h3

C+h3
E)+d1(h3

C+h3
W)]

d1d2(d1+d2)
+

pW (h3
C+h3

W)

d2(d1+d2)

∂
∂y

(
h3 ∂p

∂y

)
=

pN(h3
C+h3

N)

d3(d3+d4)
− pC[d4(h3

C+h3
N)+d3(h3

C+h3
S)]

d3d4(d3+d4)
+

pS(h3
C+h3

S)

d4(d3+d4)

(5)

The difference scheme of the shear flow term is derived as

6µU
∂(hθ)

∂x
= 6µU

hCθC − hWθW
d2

. (6)

Then, the explicit iterative schemes of p and θ can be written in the forms:

pk+1
i,j =

Apk+1
i−1,j+Bpk

i+1,j+Cpk+1
i,j−1+Dpk

i,j+1−F
E

θk+1
i,j =

A′θk+1
i−1,j+B′θk

i+1,j+C′θk+1
i,j−1+D′θk

i,j+1−F′

E′

(7)

where k is the number of iterations. The successive over-relaxation (SOR) method is applied
to accelerate convergence. The SOR factors for p and θ are both taken as 1.2. The detailed
solution strategy for Ausas’ algorithm can be seen in [18,19].

4. Error Estimation

Discretization error is defined as the difference between the exact solution of the
discrete equation and the exact solution of the PDE. It is the primary source of numerical
errors compared with round-off error and iterative error [40]. The Richardson extrapolation
method is a recovery method and can be used to estimate discretization error [41].

The Richardson extrapolation method can obtain a more accurate solution than the
available solution of the finest mesh. Assuming two numerical solutions have been calcu-
lated [42]: a fine grid with grid size h1 and computed solution fc1; and a coarse grid with
grid size h2 and computed solution fc2, the extrapolated solution is evaluated as

fextr = fc1 +
fc1 − fc2

rp − 1
, (8)

where r is the grid refinement ratio r = h2/h1 and p is the order of accuracy. In other words,
the more accurate solution is obtained by fine grid solution fc1 and coarse grid solution fc2
with weight coefficients of rp/(rp − 1) and -1/(rp − 1). The discretization error for the fine
grid solution fc1 could be estimated as follows

err = fc1 − fextr =
fc2 − fc1

rp − 1
. (9)

Appl. Sci. 2021, 11, 9879 10 of 15

In the AMR method, the present existing mesh is treated as the fine mesh. The coarse
mesh is generated by coarsening the whole mesh: all leaf cells are replaced by their parent
cells. The value of r is therefore ensured to be constant 2. The order of accuracy p is
also treated as constant. Thus, the denominator of Equation (9) is unchanged. The error
estimation is taken as

err ∝ | fc2 − fc1|. (10)

Equation (10) indicates that the difference between the solutions obtained on the two
meshes at each point is proportional to the local discretization error at that point [27].

When the error estimation operation is finished, the next step is to decide the value
of the unacceptably large error. A practical way is to sort these errors from large to small,
and to refine the top cells with large errors. The number of the cells need to be refined is
determined according to need. The mesh refinement operation can be repeated until the
solution is satisfactory.

5. Results and Discussion

The implementation steps of the AMR method are to (1) obtain a preliminary solution
on initial coarse mesh, (2) obtain a more accurate solution by a refined mesh operation, and
(3) repeat step (2) until a sufficiently accurate solution satisfying the need. The refinement
strategy has a significant effect on the final mesh. It affects not only the accuracy of the
solution but also the computational cost. An appropriate refinement strategy can realize a
more efficient solution.

Although the use of variable gradient as a refinement indicator is more natural, the
paper adopted a posteriori error estimation to refine the areas where the discretization
error was large. As mentioned above, the Richardson extrapolation method is a simple
way to find the area where it needs to be refined.

Pressure and density ratio are the main flow variables of a bearing film. If an individual
parameter (pressure or density ratio) is used as error estimation, this is inappropriate in
Ausas’ cavitation algorithm since the pressure is always constant cavitation pressure
in the cavitation region, and the density ratio is always constant 1 in the liquid region.
The refinement on the whole bearing film is impossible. Significant discretization error
always exists in the cavitation region or liquid region. Thus, pressure and density ratio are
both taken as the variables to estimate error. Two cases were studied below to show the
AMR results.

The first case is the cavitated journal bearing studied by Cupillard et al. [8,9] and
Brewe [10]. The bearing is a finite type, with L/D = 4/3 (D = 100 mm), operating in the
condition of ε = 0.60, n = 459 r/min, pc = 28 kPa (a), and µ = 0.0127 Pa·s. The solution of
the three-time refined mesh is compared with the solution of the corresponding uniform
mesh and the experimental data. The initial mesh is taken as a very coarse mesh with
16 × 16 cells. This mesh is generated by recursively refining the whole mesh four times.
In the first refinement, 30 cells in the liquid region and 40 cells in the cavitation region
were tagged to be refined. The tagged cells were the cells of the coarsen mesh with 8 × 8
cells in the implementation of the Richardson extrapolation method. After the refinement
operation, the number of the cells refined was 240. It was lower than the expected number
of grids, 280, as calculated by 70 × 4. This is because some of the tagged cells with large
errors were common in the cavitation and liquid regions. In the subsequent refinements,
90 and 300 cells in the liquid region and 40 and 180 cells in the cavitation region were
tagged to be refined for the second and third refinements, respectively. It is noted that the
number of cells tagged was empirically determined according to the initial numerical tests.
Although the refinement strategy is empirical, it still shows the law that the ratio of the
tagged number to the total number reduces with the increase in total cell numbers. As
shown in Table 3, the refinement ratios are 91%, 65%, and 41% in descending order. The
refinement strategy indicates that the discretization error of the coarse mesh should be
reduced sufficiently. This is because the coarse mesh has the largest discretization error,
where the discretization error is proportional to the power p of the grid spacing h.

Appl. Sci. 2021, 11, 9879 11 of 15

Table 3. Refinement strategy for the two cases.

Bearings Refinement
Level

Number of
Tagged Cells
for Pressure

Number of
Tagged Cells for

Density Ratio

Number of
Cells Actually

Refined (A)

Total Number
of Cells before
Refinement (B)

Refinement
Ratio (A/B)

Case 1: journal
bearing

1 30 40 240 265 91%
2 90 40 672 1024 65%
3 300 180 1664 4096 41%

Case 2: thrust
bearing

1 30 40 252 265 95%
2 150 60 776 1024 76%
3 350 180 1960 4096 48%

Figure 9 shows the pressure and density ratio for the final refined mesh. It can be
seen that the refined meshes tagged by the pressure-based error estimation were basically
distributed in the region with large pressure gradients, and the refined meshes tagged by
density ratio-based error estimation were basically distributed in the region of cavitation
interfaces where the density ratio gradients were also large. This behavior indicated
that the discretization error was concentrated in the area with large variable gradients.
Figure 10 compares the pressure distribution for the AMR results, uniform mesh results,
and experimental results provided by Jakobsson and Floberg [12] and Olsson [13]. The
pressure obtained by the AMR method is nearly consistent with that obtained by the
uniform mesh (128 × 128 cells), and there is a slight difference in the experimental results.
The number of the final refined mesh is 7984, while the number of the uniform mesh is
16,384. The AMR method provides almost the same accuracy results while the number of
cells is reduced to around 50% of the uniform mesh. The computational efficiency is shown
to be effectively improved.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

(a) (b)

Figure 9. Final refined mesh for journal bearing: (a) pressure distribution; (b) density ratio distribution.

Figure 10. Comparison of pressure distribution between different results for y = 50 mm.

The second case is the dimple-enhanced seal-like thrust bearing investigated by Qiu
and Khonsari [22]. The bearing surface was textured with duplicated micro circular holes.
The variation of the hole height results in a divergence and convergence clearance region.
Hence, oil film rupture and reformation simultaneously occur around the hole. The
bearing was operated in the condition of r0= 750 μm, hg = 10 μm, L = 3 mm, h0 = 4 μm, μ =
0.0035 Pa·s, U = 1.45 m/s, pc = 0.9 × 105 Pa (a), pa = 1.0 × 105 Pa (a). The refinement strategy
for the bearing is listed in Table 3. The refinement ratios were 91%, 76%, and 48% for the
three-time refinements. They are higher than those of case 1. A more computational cost
was indicated to be paid. The solution of the three-times refined mesh is compared with
the solution of the corresponding uniform mesh and the solution provided by Qiu and
Khonsari [22], as shown in Figures 11 and 12. It can be seen that the AMR solution is close
to the solution of the uniform mesh (128 × 128 cells) with a small difference compared with
the solution provided by Qiu and Khonsari [22]. The difference is mainly reflected by the
value of maximum pressure. Ausas’ algorithm is sensitive to the number of grids.
Insufficient number of grids often leads to high maximum pressure. The difference is
acceptable under the current refinement strategy. The number of the final refined mesh is
9220, which is 56% of the uniform mesh. The AMR method provides almost the same
accuracy solution while the computational cost is saved.

Figure 9. Final refined mesh for journal bearing: (a) pressure distribution; (b) density ratio distribution.

Appl. Sci. 2021, 11, 9879 12 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

(a) (b)

Figure 9. Final refined mesh for journal bearing: (a) pressure distribution; (b) density ratio distribution.

Figure 10. Comparison of pressure distribution between different results for y = 50 mm.

The second case is the dimple-enhanced seal-like thrust bearing investigated by Qiu
and Khonsari [22]. The bearing surface was textured with duplicated micro circular holes.
The variation of the hole height results in a divergence and convergence clearance region.
Hence, oil film rupture and reformation simultaneously occur around the hole. The
bearing was operated in the condition of r0= 750 μm, hg = 10 μm, L = 3 mm, h0 = 4 μm, μ =
0.0035 Pa·s, U = 1.45 m/s, pc = 0.9 × 105 Pa (a), pa = 1.0 × 105 Pa (a). The refinement strategy
for the bearing is listed in Table 3. The refinement ratios were 91%, 76%, and 48% for the
three-time refinements. They are higher than those of case 1. A more computational cost
was indicated to be paid. The solution of the three-times refined mesh is compared with
the solution of the corresponding uniform mesh and the solution provided by Qiu and
Khonsari [22], as shown in Figures 11 and 12. It can be seen that the AMR solution is close
to the solution of the uniform mesh (128 × 128 cells) with a small difference compared with
the solution provided by Qiu and Khonsari [22]. The difference is mainly reflected by the
value of maximum pressure. Ausas’ algorithm is sensitive to the number of grids.
Insufficient number of grids often leads to high maximum pressure. The difference is
acceptable under the current refinement strategy. The number of the final refined mesh is
9220, which is 56% of the uniform mesh. The AMR method provides almost the same
accuracy solution while the computational cost is saved.

Figure 10. Comparison of pressure distribution between different results for y = 50 mm.

The second case is the dimple-enhanced seal-like thrust bearing investigated by Qiu
and Khonsari [22]. The bearing surface was textured with duplicated micro circular holes.
The variation of the hole height results in a divergence and convergence clearance region.
Hence, oil film rupture and reformation simultaneously occur around the hole. The
bearing was operated in the condition of r0= 750 µm, hg = 10 µm, L = 3 mm, h0 = 4 µm,
µ = 0.0035 Pa·s, U = 1.45 m/s, pc = 0.9 × 105 Pa (a), pa = 1.0 × 105 Pa (a). The refinement
strategy for the bearing is listed in Table 3. The refinement ratios were 91%, 76%, and 48%
for the three-time refinements. They are higher than those of case 1. A more computational
cost was indicated to be paid. The solution of the three-times refined mesh is compared
with the solution of the corresponding uniform mesh and the solution provided by Qiu and
Khonsari [22], as shown in Figures 11 and 12. It can be seen that the AMR solution is close
to the solution of the uniform mesh (128 × 128 cells) with a small difference compared
with the solution provided by Qiu and Khonsari [22]. The difference is mainly reflected
by the value of maximum pressure. Ausas’ algorithm is sensitive to the number of grids.
Insufficient number of grids often leads to high maximum pressure. The difference is
acceptable under the current refinement strategy. The number of the final refined mesh
is 9220, which is 56% of the uniform mesh. The AMR method provides almost the same
accuracy solution while the computational cost is saved.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15

(a) (b)

Figure 11. Final refined mesh for thrust bearing: (a) pressure distribution; (b) density ratio distribution.

Figure 12. Comparison of pressure distribution between different results for y = 1.5 mm.

6. Conclusions
A quadtree-based AMR procedure was developed for bearing cavitation simulation.

The universal Reynolds equation was numerically solved on the nonuniform mesh by
Ausas’ cavitation algorithm. The pressure and density ratio were both taken as the
indicators of the error estimation with the Richardson extrapolation method. The
investigated cases showed that the AMR method provided nearly the same accuracy
results compared with the uniform mesh, while the number of mesh was reduced to 50–
60% of the number of the uniform mesh. The computational efficiency was effectively
improved. The AMR method is suggested to be a potential tool for bearing cavitation
simulation.

Author Contributions: Conceptualization, W.X.; investigation, K.L. and Z.G.; software, M.Z. and
J.Y.; writing—original draft preparation, W.X. writing—review and editing, W.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the project YKJ201814 supported by Science Foundation of
Nanjing Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 11. Final refined mesh for thrust bearing: (a) pressure distribution; (b) density ratio distribution.

Appl. Sci. 2021, 11, 9879 13 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15

(a) (b)

Figure 11. Final refined mesh for thrust bearing: (a) pressure distribution; (b) density ratio distribution.

Figure 12. Comparison of pressure distribution between different results for y = 1.5 mm.

6. Conclusions
A quadtree-based AMR procedure was developed for bearing cavitation simulation.

The universal Reynolds equation was numerically solved on the nonuniform mesh by
Ausas’ cavitation algorithm. The pressure and density ratio were both taken as the
indicators of the error estimation with the Richardson extrapolation method. The
investigated cases showed that the AMR method provided nearly the same accuracy
results compared with the uniform mesh, while the number of mesh was reduced to 50–
60% of the number of the uniform mesh. The computational efficiency was effectively
improved. The AMR method is suggested to be a potential tool for bearing cavitation
simulation.

Author Contributions: Conceptualization, W.X.; investigation, K.L. and Z.G.; software, M.Z. and
J.Y.; writing—original draft preparation, W.X. writing—review and editing, W.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the project YKJ201814 supported by Science Foundation of
Nanjing Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 12. Comparison of pressure distribution between different results for y = 1.5 mm.

6. Conclusions

A quadtree-based AMR procedure was developed for bearing cavitation simulation.
The universal Reynolds equation was numerically solved on the nonuniform mesh by
Ausas’ cavitation algorithm. The pressure and density ratio were both taken as the indica-
tors of the error estimation with the Richardson extrapolation method. The investigated
cases showed that the AMR method provided nearly the same accuracy results compared
with the uniform mesh, while the number of mesh was reduced to 50–60% of the number
of the uniform mesh. The computational efficiency was effectively improved. The AMR
method is suggested to be a potential tool for bearing cavitation simulation.

Author Contributions: Conceptualization, W.X.; investigation, K.L. and Z.G.; software, M.Z. and
J.Y.; writing—original draft preparation, W.X. writing—review and editing, W.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the project YKJ201814 supported by Science Foundation of
Nanjing Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors are grateful for the project YKJ201814 supported by Science Foun-
dation of Nanjing Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mishra, P.C.; Rahnejat, H. 20-Tribology of big-end bearings. In Tribology and Dynamics of Engine and Powertrain; Rahnejat, H., Ed.;

Woodhead Publishing: Sawston, UK, 2010; pp. 635–659.
2. Manser, B.; Belaidi, I.; Hamrani, A.; Khelladi, S.; Bakir, F. Performance of hydrodynamic journal bearing under the combined

influence of textured surface and journal misalignment: A numerical survey. C. R. Méc. 2019, 347, 141–165. [CrossRef]
3. Tauviqirrahman, M.; Afif, M.F.; Paryanto, P.; Jamari, J.; Caesarendra, W. Investigation of the Tribological Performance of

Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects. Fluids 2021, 6, 48. [CrossRef]
4. Miwa, R.; Miyanaga, N.; Tomioka, J. Appearance of Hysteresis Phenomena on Hydrodynamic Lubrication in a Seal-Type Thrust

Bearing with Dimples. Materials 2021, 14, 5222. [CrossRef] [PubMed]
5. Dowson, D.; Taylor, C.M. Cavitation in Bearings. Annu. Rev. Fluid Mech. 1979, 11, 35–65. [CrossRef]
6. Sun, D.; Li, S.; Fei, C.; Ai, Y.; Liem, R.P. Investigation of the effect of cavitation and journal whirl on static and dynamic

characteristics of journal bearing. J. Mech. Sci. Technol. 2019, 33, 77–86. [CrossRef]
7. Shen, C.; Khonsari, M.M. On the Magnitude of Cavitation Pressure of Steady-State Lubrication. Tribol. Lett. 2013, 51, 153–160.

[CrossRef]

http://doi.org/10.1016/j.crme.2018.11.002
http://doi.org/10.3390/fluids6020048
http://doi.org/10.3390/ma14185222
http://www.ncbi.nlm.nih.gov/pubmed/34576446
http://doi.org/10.1146/annurev.fl.11.010179.000343
http://doi.org/10.1007/s12206-018-1208-3
http://doi.org/10.1007/s11249-013-0158-2

Appl. Sci. 2021, 11, 9879 14 of 15

8. Cupillard, S.; Cervantes, M.; Glavatskih, S. A CFD study of a finite textured journal bearing. In Proceedings of the IAHR
Symposium on Hydraulic Machinery and Systems, Foz do Iguaçu, Brazil, 27–31 October 2008.

9. Cupillard, S.; Glavatskih, S.; Cervantes, M.J. Computational Fluid Dynamics Analysis of a Journal Bearing with Surface Texturing.
Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol. 2008, 222, 97–107. [CrossRef]

10. Brewe, D.E. Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings. J. Tribol. 1986, 108, 628–637.
[CrossRef]

11. Elrod, H.G. A Cavitation Algorithm. J. Lubr. Technol. 1981, 103, 350–354. [CrossRef]
12. Jakobsson, B.; Floberg, L. The Finite Journal Bearing, Considering Vaporization. Trans. Chalmers Univ. Technol. 1957, 190. Available

online: https://www.worldcat.org/title/finite-journal-bearing-considering-vaporization/oclc/718857301 (accessed on 5 August
2021).

13. Olsson, K. Cavitation in Dynamically Loaded Bearings. Trans. Chalmers Univ. Technol. 1965, 308, 155–162.
14. Gropper, D.; Wang, L.; Harvey, T.J. Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key

Findings. Tribol. Int. 2016, 94, 509–529. [CrossRef]
15. Braun, M.J.; Hannon, W.M. Cavitation formation and modelling for fluid film bearings: A review. Proc. Inst. Mech. Eng. Part. J. J.

Eng. Tribol. 2010, 224, 839–863. [CrossRef]
16. Fesanghary, M.; Khonsari, M.M. A Modification of the Switch Function in the Elrod Cavitation Algorithm. J. Tribol. 2011, 133,

024501. [CrossRef]
17. Nitzschke, S.; Woschke, E.; Schmicker, D.; Strackeljan, J. Regularised cavitation algorithm for use in transient rotordynamic

analysis. Int. J. Mech. Sci. 2016, 113, 175–183. [CrossRef]
18. Ausas, R.; Ragot, P.; Leiva, J.; Jai, M.; Bayada, G.; Buscaglia, G.C. The Impact of the Cavitation Model in the Analysis of

Microtextured Lubricated Journal Bearings. J. Tribol. 2007, 129, 868–875. [CrossRef]
19. Ausas, R.F.; Jai, M.; Buscaglia, G.C. A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation. J. Tribol.

2009, 131, 031702. [CrossRef]
20. Giacopini, M.; Fowell, M.T.; Dini, D.; Strozzi, A. A Mass-Conserving Complementarity Formulation to Study Lubricant Films in

the Presence of Cavitation. J. Tribol. 2010, 132, 041702. [CrossRef]
21. Woloszynski, T.; Podsiadlo, P.; Stachowiak, G.W. Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication.

Tribol. Lett. 2015, 58, 18. [CrossRef]
22. Qiu, Y.; Khonsari, M.M. On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm. ASME J. Tribol. 2009,

131, 041702. [CrossRef]
23. Miraskari, M.; Hemmati, F.; Jalali, A.; Alqaradawi, M.Y.; Gadala, M.S. A Robust Modification to the Universal Cavitation

Algorithm in Journal Bearings. J. Tribol. 2016, 139, 031703. [CrossRef]
24. Berger, M.J.; Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 1984, 53, 484–512.

[CrossRef]
25. Stadler, G.; Gurnis, M.; Burstedde, C.; Wilcox, L.C.; Alisic, L.; Ghattas, O. The Dynamics of Plate Tectonics and Mantle Flow:

From Local to Global Scales. Science 2010, 329, 1033–1038. [CrossRef] [PubMed]
26. Liu, S.; King, S.D. A benchmark study of incompressible Stokes flow in a 3-D spherical shell using ASPECT. Geophys. J. Int. 2019,

217, 650–667. [CrossRef]
27. Berger, M.J.; Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 1989, 82, 64–84. [CrossRef]
28. Waltz, J.; Bakosi, J. A coupled ALE–AMR method for shock hydrodynamics. Comput. Fluids 2018, 167, 359–371. [CrossRef]
29. Mirzadeh, M.; Guittet, A.; Burstedde, C.; Gibou, F. Parallel level-set methods on adaptive tree-based grids. J. Comput. Phys. 2016,

322, 345–364. [CrossRef]
30. Zhang, C.; Fakhari, A.; Li, J.; Luo, L.-S.; Qian, T. A comparative study of interface-conforming ALE-FE scheme and diffuse

interface AMR-LB scheme for interfacial dynamics. J. Comput. Phys. 2019, 395, 602–619. [CrossRef]
31. Dai, W.W. Issues in adaptive mesh refinement. In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–8.
32. Burstedde, C.; Wilcox, L.C.; Ghattas, O. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees.

SIAM J. Sci. Comput. 2011, 33, 1103–1133. [CrossRef]
33. Angelo, A. A Brief Introduction to Quadtrees and Their Applications. In Proceedings of the Style file from the 28th Canadian

Conference on Computational Geometry, Vancouver, BC, Canada, 3–5 August 2016.
34. Samet, H. Neighbor finding techniques for images represented by quadtrees. Comput. Graph. Image Process. 1982, 18, 37–57.

[CrossRef]
35. David. Advanced Octrees 4: Finding neighbor nodes. Available online: https://geidav.wordpress.com/2017/12/02/advanced-

octrees-4-finding-neighbor-nodes/ (accessed on 20 March 2021).
36. Martin, D.F. Solving Poisson’s Equation Using Adaptive Mesh Refinement; Citeseer: University Park, PA, USA, 1996.
37. Omran, S. Quadratic Equation Interpolation, MATLAB Central File Exchange. Retrieved. 2021. Available online: https:

//www.mathworks.com/matlabcentral/fileexchange/41298-quadratic-equation-interpolation (accessed on 14 April 2021).
38. Popinet, S. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 2015, 302, 336–358.

[CrossRef]

http://doi.org/10.1243/13506501JET319
http://doi.org/10.1115/1.3261288
http://doi.org/10.1115/1.3251669
https://www.worldcat.org/title/finite-journal-bearing-considering-vaporization/oclc/718857301
http://doi.org/10.1016/j.triboint.2015.10.009
http://doi.org/10.1243/13506501JET772
http://doi.org/10.1115/1.4003484
http://doi.org/10.1016/j.ijmecsci.2016.04.021
http://doi.org/10.1115/1.2768088
http://doi.org/10.1115/1.3142903
http://doi.org/10.1115/1.4002215
http://doi.org/10.1007/s11249-015-0487-4
http://doi.org/10.1115/1.3176994
http://doi.org/10.1115/1.4034244
http://doi.org/10.1016/0021-9991(84)90073-1
http://doi.org/10.1126/science.1191223
http://www.ncbi.nlm.nih.gov/pubmed/20798311
http://doi.org/10.1093/gji/ggz036
http://doi.org/10.1016/0021-9991(89)90035-1
http://doi.org/10.1016/j.compfluid.2018.03.021
http://doi.org/10.1016/j.jcp.2016.06.017
http://doi.org/10.1016/j.jcp.2019.06.048
http://doi.org/10.1137/100791634
http://doi.org/10.1016/0146-664X(82)90098-3
https://geidav.wordpress.com/2017/12/02/advanced-octrees-4-finding-neighbor-nodes/
https://geidav.wordpress.com/2017/12/02/advanced-octrees-4-finding-neighbor-nodes/
https://www.mathworks.com/matlabcentral/fileexchange/41298-quadratic-equation-interpolation
https://www.mathworks.com/matlabcentral/fileexchange/41298-quadratic-equation-interpolation
http://doi.org/10.1016/j.jcp.2015.09.009

Appl. Sci. 2021, 11, 9879 15 of 15

39. Kilimci, P.; Kalipsiz, O. Indexing of spatiotemporal Data: A comparison between sweep and z-order space filling curves. In
Proceedings of the International Conference on Information Society (i-Society 2011), London, UK, 27–29 June 2011; pp. 450–456.

40. Phillips, T.S.; Roy, C.J. A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics. J. Verif. Valid.
Uncertain. Quantif. 2017, 1, 041006. [CrossRef]

41. Phillips, T. Extrapolation-Based Discretization Error and Uncertainty Estimation in Computational Fluid Dynamics. Master’s
Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2012.

42. Wahba, E.M. Non-systematic grid refinement procedures for computational fluid dynamics. Appl. Math. Comput. 2013, 225,
829–842. [CrossRef]

http://doi.org/10.1115/1.4035666
http://doi.org/10.1016/j.amc.2013.10.022

	Introduction
	AMR Algorithm
	Mesh and Data Storage
	Neighbor Finding
	Neighbor Fixing
	Handingnode Interpolating
	Periodic Matching
	Z-Order Filling Curve

	Difference Schemes on Nonuniform Mesh
	Error Estimation
	Results and Discussion
	Conclusions
	References

