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Abstract: This work investigates an analysis method for the stability of a three-dimensional (3D)
slope with weak zones considering spatial variability on the basis of two-phase random media and
the finite element method. By controlling the volume fractions of rock and weak zones, two-phase
random media are incorporated into the 3D slope model to simulate the random distribution of
rock and weak zones. Then, a rotation of a Gaussian random field is performed to account for the
inclination of the weak zones. The validity of the proposed model for use in the analysis of the
stability of 3D slopes with weak zones was verified by comparing it to existing results and analytical
solutions. The failure mechanism of the slope is considered by examining the plastic failure zone
at incipient slope failure. The safety factor is sensitive to the inclination of the weak zones, but it is
predictable. Parametric studies on the inclination of the layer of weak zones demonstrate that when
the rotation angle of the weak zones is approximately parallel to the slope inclination, the slope is
prone to slippage along the weak zones, resulting in a significant reduction in the safety factor. The
findings of this research can serve as the foundation for further research on the stability of slopes
with weak zones.

Keywords: slope stability; two-phase random media; slope with weak zones; finite element analysis;
random field

1. Introduction

The prediction and control of landslides caused by the instability of slopes with weak
zones is of great practical significance in the risk assessment of earth disasters. Slope
stability is closely related to the inclination, position and shape of the weak zones inside
the slopes. Due to the strong degree of randomness in the spatial distribution of the weak
zones within the slope, these factors are, to a certain extent, uncertain, so it is difficult to
quantitatively evaluate the stability and failure consequences of the slope [1]. Stability
analysis of slopes with weak zones is an essential element of safety design in practice.

The stability of a slope will be strongly affected by the distribution of its internal
weak zones. For a slope composed of multiple zones, the damage is usually dominated by
the spatial distribution of the weak zones [2]. To date, numerous approaches have been
proposed to analyze the stability of slopes with weak zones, such as the rigid body limit
equilibrium method, the model test method, and the finite element method [3–11].

However, natural rock and weak zones exhibit obvious spatial variability [12–15]. In
some geotechnical engineering practices, due to long-term physical, chemical or geological
effects, investigations that do not consider the spatial variability of rock and weak zones
can lead to unconservative results [16]. The spatial variability of rock and weak zones
can cause randomness and uncertainty in the distribution of weak zones inside the slope.
Since the rock and weak zones of slopes are the products of a shared sedimentary history,
structure and experience of human activities, the spatial distribution of the weak zones at a
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given site and the spatial distribution of the mechanical characteristics of the slope should
have similar characteristics [17]. Therefore, random fields can be applied to simulate the
non-homogeneity of the spatial distribution of weak zones.

Various investigations have been carried out on the effect of spatial randomness in
rock and weak zones using the random field method [18–26]. However, most of these were
limited to two-dimensional (2D) models. Li et al. [18] used representative slip surfaces
together with Monte-Carlo simulation to conduct slope stability analysis. Li and Chu [20]
developed a multiple response surface approach to perform slope reliability analysis. Qi
and Li [23] explored the influence of the spatial variability of the strength parameter
of weak zones on the critical slip surface of slopes using a 2D model. By comparison,
research on three-dimensional (3D) slope stability remains less well documented [27,28].
Generally, compared with 2D models, 3D models have more degrees of freedom, and
more computational effort is needed. Despite possessing the advantages of simplicity
and computational efficiency, 2D models obviously deviate from reality. Furthermore,
2D analysis is likely to obtain conservative results compared with 3D analysis when
performing deterministic slope stability analysis, but it cannot be ensured that the results
of 2D analysis will be more conservative than 3D analysis when the spatial variability of
weak zones parameters is considered [29,30]. These findings further illustrate that it is
necessary to undertake 3D slope stability analysis in random weak zones and rock.

When investigating slopes with weak zones, the two-phase random media characteri-
zation method can be applied to soil–rock mixtures, since the overall material properties
of the slope are dependent on the spatial distribution and volume fraction of the rock
and weak zones. Griffiths et al. [31] simulated two-phase random media through the
nonlinear translation of the Gaussian field, and combined the finite element method to
characterize the spatial variability of rock and soil materials; Feng et al. [32] proposed a
nonlinear transformation based on the Gaussian random field to realize the simulation
of composite materials using two-phase random media. This was achieved by Fourier
transform, improving the calculation efficiency. This method has high applicability for
large-scale soil–rock mixture models and the characterizations of large numbers of model
samples; Liu et al. [33] used two-phase random media to simulate the slope of soil–rock
mixtures, and characterized the spatial variability of the soil [34] and rock layers of the
weak zones, analyzing the failure mechanism of the soil–rock mixture slope with weak
zones. A comparison of the slope stability analysis methods in the literature in presented
in Table 1, including not only slope stability analysis, but also the analysis of the influence
of weak zones on slope stability.

Table 1. Summary of typical investigations on the analysis of slope stability.

Reference Method Investigation
Approach Remarks

Liang et al.,
1999 [35]

Limit equilibrium
method Analytical Simple calculation method, only suitable for regular slopes

Griffiths & Lane,
1999 [36]

Strength reduction
method Numerical Calculate more complex models, but need to predict the slip

surface in advance
Ling & Wu,

2009 [4] Centrifuge modeling Physical model Show the plastic failure but cannot reflect the complex
engineering geological conditions

Liu et al.,
2013 [37]

Finite element strength
reduction method Numerical

Reflect the influence of the weak zones on the stability of
the slope, but cannot reflect the spatial heterogeneity of the

weak zones

Liu et al.,
2018 [33]

Two-phase random
media Numerical

Reflect the characteristics of the rock-soil slope, but limited
to a two-dimensional model, and cannot reflect the spatial

variability of the slope shape
Huang et al.,

2020 [38] Discrete element method Numerical Simulate the nonlinear large deformation characteristics,
but have low solution efficiency for complex models

Wang et al.,
2021 [28]

Random finite element
method Numerical Characterize the stratification of the soil inside the slope,

but cannot reflect the slope of the soil–rock mixture.
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This research aims to estimate the stability of a 3D corner slope with weak zones,
introducing a two-phase random media model to invert the spatial distribution of rock
and weak zones. Based on the basic theory of random fields, a mathematical theoretical
model for characterizing rock weak zones using two-phase random media and a simulation
method for the spatial inclination of weak zones are proposed. In this study, using the
USDFILD platform in ABAQUS software, a Fortran program corresponding to the proposed
model is developed, and 3D finite element modeling of slopes with weak zones is realized.
The two-phase random media model and the finite element method are combined to
quantitatively evaluate the safety factor of the slope, offering technical support for stability
studies of slopes with weak zones.

2. Methodology
2.1. Method for Generating 3D Random Fields

The 3D random field is generated using the modified linear estimation method. The
basic principle of this method is to generate a stationary Gaussian random field, where the
mean is zero, and the unit variance and the spatial correlation length are

√
π [12]. Spatially

correlated variables can be expressed by a linear equation combining fixed effects and
random effects as follows:

t = µ + e (1)

where t represents the spatial variation of rock material properties at different locations,
and fixed effects and random effects are represented by the mean value µ and the residual
e, respectively. e is often assumed to be a constant, with deviations from this having a mean
value u. The covariance matrix V of the residual e can be descirbed as follows:

V = σ2C (2)

where σ is the standard deviation of the random variable at each node, and C is the spatial
autocorrelation matrix. To avoid generating negative values for the strength parameters of
rock and weak zones, the strength parameters of some rock and weak zones usually adopt
log-normal distribution. In this case, the random field can be modeled by the following
method conversion:

t = exp(µ ln z+σln z ε) (3)

where ε is the vector of correlated random variables; µln z is the mean of the logarithm of
the material parameters; and σln z is the standard deviation of the logarithm of the rock
property.

The modified linear estimation method needs to generate an n-dimensional m-vector
attribute field with spatial cross-correlation matrix C. Then, vector attribute field stretch
modeling is used to generate a random field with any specified spatial correlation length.
The specific steps are as follows:

First, the n-dimensional space containing position vector s is discretized into n-
dimensional grids with unit grid spacing. In addition, the grid nodes are filled using
a random vector r with m random numbers following the standard Gaussian distribution.

Second, Cholesky decomposition is performed on the spatial cross-correlation matrix
C according to Equation (4).

C = L× LT (4)

where L is the lower triangular matrix.
Third, calculate the position of y in s according to Equation (5).

s = J × y + ε (5)

where y is the attribute field containing the position vector; s is the random field containing
the position vector; J is the direction vector and ε is a translation vector with n components.
J and s are independent random variables, and they have specific values. In this study,
the components of J and ε are uniformly distributed in the range of [0, π/2] and [0,1],
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respectively. According to Equation (2), the attribute field y will be rotated and translated
to obtain the random field s.

Finally, the continuous attribute field of any coordinates can be calculated by Equation (6),
as shown below.

f j(y) =
2n

∑
i=1

√
Ni(y)· f

j
i,k, j = 1, 2 . . . m. (6)

where f j(y) and f j
i,k are the jth component of the attribute field containing the position

vector y and the ith node of element k, respectively; Ni(y) is a form function with 2n nodal
elements, which is taken from the library of form functions established by the finite element
method.

2.2. Method of Generating 3D Random Field

The stabilities of slope projects are strongly affected by the distribution of its internal
weak zones. In the destruction of a slope composed of multiple zones, landslides are
usually dominated by the spatial distribution of the weak zones. However, due to the
constraints of project budget and construction schedules, it is almost impossible to obtain a
complete distribution of zones within the slope through on-site surveys. In typical slope
projects, only limited survey work is carried out. Therefore, the distribution characteristics
of weak zones are only known in the survey operation area, and such information cannot
be obtained at other locations.

The spatial distribution of weak zones at the same site and the spatial distribution of
the mechanical characteristics of the rock and weak zones should have similar characteris-
tics. In the random field, the spatial correlation of the layer of weak zones in the layer of
weak zones between the two-slope rock and weak zones elements can be expressed using
the square exponential autocorrelation function R(x, y, z), as shown below:

R(x, y, z)= exp

{
−π

(
∆x
θx

)2
−π

(
∆y
θy

)2
−π

(
∆z
θz

)2
}

(7)

where R (x, y, z) represents the spatial correlation of the material unit; θx, θy and θz are the
correlation lengths along x, y and z directions, respectively.

In this study, the anisotropic random field is used to characterize the inhomogeneity
of the spatial distribution of the weak zones. When the spatial correlation of each unit
in the simulated weak zone is relatively high, it can be regarded as the same weak zone.
In addition, since the weak zones are usually continuously layered inside the slope, the
simulation results obtained using this method are closer to the ground truth.

For a 3D stationary Gaussian random field, a two-phase random media can be recon-
structed for the rock and weak zones using the following formula:

B(x, y, z) =
{

rock Φ[G(x, y, z)] ≥ p0
weak zones Φ[G(x, y, z)]<p0

(8)

where B(x, y, z) is the random media of weak zones and rock; and p0 is the volume fraction
of weak zones. Reconstructions of typical weak zones and rock random media are shown
in Figure 1, where 0 represents the volume fraction of weak zones, and 1 represents the
volume fraction of rock [33].
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Figure 1. Reconstructions of two-phase random media on the basis of the volume fraction of weak zones and rock.

The two-phase random media simulation method based on Gaussian random field
is adopted in this research. This method can flexibly control the shape and orientation
of the weak zone of the slope according to the actual geological survey situation, and
can truly reflect the random distribution characteristics of the layer of weak zones in the
slope. On the basis of the reconstruction of the typical two-phase random media shown
in Figure 1, two typical samples of the two-phase random media are generated according
to Equation (8), as shown in Figure 2, where the volume fraction of the weak zones is as
assumed to be 20%.
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Figure 2. Schematic diagram of the distribution of weak zones (red represents rocks, blue represents
weak zones). (a) Typical sample of slope with homogenous weak zones (correlation length along all
directions is 5 m); (b) typical sample of slope with layered weak zones (correlation length along x
directions is 20 m; correlation length along y direction is 5 m; correlation length along z direction is
1000 m).

2.3. Method for Characterization of Anisotropic Correlation Structure

To make the simulation more similar to the actual slope, a 3D model was established,
taking into account rotational anisotropy. The coordinates of the Gaussian random field
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were rotated around the X-axis in accordance with the given inclination angle. The rotation
process can be expressed as in Equation (9). x′

y′

z′

 =

 1 0 0
0 cos α sin α
0 − sin α cos α

  x
y
z

 (9)

where x’, y’ and z’ are the corresponding coordinates of x, y and z after rotation of the α angle
about the X-axis. The distance after rotation can be obtained using Equations (10)–(12), as
shown below.

∆x′ = ∆x (10)

∆y′ = ∆y cos α+∆z sin α (11)

∆z′ = ∆z cos α−∆y sin α (12)

The expression of the squared exponential autocorrelation function of rotational
anisotropy can be obtained as:

R′x
(

x′, y′, z
)
= exp

{
−π

(
∆x
θx

)2
−π

(
∆y cos α+∆z sin α

θy

)2
−π

(
∆z cos α− ∆y sin α

θz

)2
}

(13)

Figure 3 illustrates the rotationally anisotropic after rotation of the α angle about the
X-axis, the transversely anisotropic weak zone structure, and the correlation lengths. It can
be clearly found from the figure that transverse anisotropy is a special case of rotational
anisotropy. In addition, the autocorrelation function can well characterize the weak zones
inside the slope.
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For rotated anisotropy around the Y-axis, the correlation distance after rotation can be
obtained using Equations (14)–(16), as shown below.

∆x′ = ∆x cos α+∆z sin α (14)

∆y′ = ∆y (15)

∆z′ = ∆z cos α− ∆x sin α (16)

The expression of the squared exponential autocorrelation function of rotational
anisotropy can be obtained as:

R′y
(

x′, y′, z
)
= exp

{
−π

(
∆x cos α+∆z sin α

θx

)2
−π

(
∆y
θy

)2
−π

(
∆z cos α− ∆x sin α

θz

)2
}

(17)

Figure 4 illustrates the rotationally anisotropic after rotation of α angle about the
Y-axis, the transversely anisotropic weak zone structure, and the corresponding correlation
lengths.
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For rotated anisotropy around the Z-axis, the correlation distance after rotation can be
obtained by Equations (18)–(20), as shown below.

∆x′ = ∆x cos α+∆y sin α (18)

∆y′ = ∆y cos α−∆x sin α (19)

∆z′ = ∆z (20)

The expression of the squared exponential autocorrelation function of rotational
anisotropy can be obtained as:

R′z
(

x′, y′, z
)
= exp

{
−π

(
∆x cos α+∆y sin α

θx

)2
−π

(
∆y cos α−∆x sin α

θy

)2
−π

(
∆z
θz

)2
}

(21)

Figure 5 illustrates the rotationally anisotropic after rotation of α angle about the
Z-axis, the transversely anisotropic weak zone structure, and the corresponding correlation
lengths.
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On the basis of the above method, it is possible to characterize the slope where the
weak zones are rotated by 0–60◦ around the X, Y, and Z-axes, respectively. Taking the soil
volume fraction of the weak zones as 20%, the two-phase random media B (x, y, z) of the
slope were generated, and the soil layer of the weak zones with different inclination angles
was inverted. Some simulated samples of the slope are shown in Figure 6.
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2.4. Simulation and Model Verification of Weak Zones in Slopes

Taking into account the high degree of randomness the parameters such as shape,
inclination angle, and the position of the weak zones, in order to perform verification, we
used the Monte-Carlo simulation method to statistically analyze the results, generating
a large number of random field samples through the modified linear estimation method.
The airport was mapped to a finite element grid in order to construct a 3D model of a slope
with weak zones. The stability of each slope in 100 examples of Monte-Carlo simulation
was calculated. The safety factor was evaluated and compared with the content of the
previous research [33] (Liu et al., 2018) for purposes of verification. As shown in Figure 7,
the specific steps of combining USDFLD subroutine random field with the software Abaqus
were as follows:

(1) Use Abaqus to build a 3D finite element slope model, including defining the material
parameters of the rocks and weak zones, and setting the grid and boundary conditions
of the model in the analysis step. Then output an inp file (a file executed by the Abaqus
software).

(2) Associate the yield strength in the material parameters of the slope with the user-
defined field variable User Defined Field, and set the state variable Depvar at the
same time.
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(3) Call the random field generated by the USDFLD subroutine to replace the yield
strength in the original slope model.

(4) Carry out the stability calculation of the slope model with weak zones constructed in
(3), and obtain the safety factor of the slope model.

(5) According to the above steps, perform 100 Monte-Carlo simulations on the established
model, and perform statistical analysis on the calculation results.
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To verify the rationality of the two-phase random media characterization method,
a typical 3D slope was established as shown in Figure 8. The model contains 213,240
C3D8 elements, and two-phase random media was used to characterize the weak zone
and rock mass (using the ideal elastoplastic model); the two-dimensional slope model
corresponding to the 3D model was in agreement with the content found in the literature,
and the boundary conditions of the 3D model were consistent with the two-dimensional
slope model found in the literature [33]. The material parameters used in this section are
shown in Table 2.
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Figure 8. A typical realization of two-phase random media for a slope with a weak zone fraction
equal to 0.5 (the black area represents weak zones, and the gray area represents rock). (a) Schematic
diagram of a typical 3D slope with weak zones (3D model used in this research); (b) schematic
diagram of a typical two-dimensional slope with weak zones.

Table 2. Material mechanical parameters of the validation slope model.

Parameter Unit Value

(a) Deterministic parameter
Yield strength of weak zones kPa 10

Yield strength of rocks kPa 50
Young’s modulu of weak zones kPa 105

Young’s modulu of rocks kPa 5 × 105

Poisson’s ratio – 0.3
Correlation length along x direction θx m 5
Correlation length along y direction θy m 1
Correlation length along z direction θz m 10,000

(b) Variable parameter
Volume fraction of weak zones – [0~1]

Note: – means that this parameter has no unit.

On the basis of the parameters shown in Table 2, a Monte-Carlo simulation (100 times)
of the model in Figure 8 was performed, and the results obtained for the average safety
factor are shown in Figure 9. When the volume fraction of the weak zones was 50%, the
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safety factor of the 3D model was 1.3% higher than that of the two-dimensional model
(Liu et al., 2018) [33]. Considering that the number of Monte-Carlo is 100, the deviation of
the mean is basically within the acceptable range. Compared with existing results, it can be
verified that the 3D slope method representing the weak zones on the basis of two-phase
random media is reasonable. Meanwhile, due to the spatial variability of the material
parameters of the slope with weak zones, there is no straightforward rule for the failure
mode of the slope and the irregular critical slip surface. The results obtained in this study
suggest that the characterization of a 3D slope with weak zones on the basis of two-phase
random media, combined with the finite element method, is able to automatically locate
the critical slip surface where the internal strength of the slope is insufficient to resist the
shear stress.
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Figure 9. Validation of proposed method by considering a rock-soil slope stability problem.

At the same time, it can be seen from Figure 9 that when the slope contains weak
zones, the safety factor is 0.64, and when the slope is composed of rocks, the safety factor is
3.2 (the simulation results are consistent with the analytical solution). The median safety
factor of slopes with weak zones and rocks is 1.92, which is greater than the safety factor
of 1.14 obtained when the volume fraction of weak zones is 50%, meaning that the failure
mechanism of slopes with weak zones may be dominated by weak zones. To study the
failure principle of slopes with weak zones, Figure 10 shows the plastic strain diagrams of
homogeneous slopes and slopes with weak zones. It can be seen from the figure that the
homogeneous slope forms an obvious overall shear failure zone. In the slope with weak
zones, due to the existence of the weak zones, a series of small shear failure zones appear in
the failure mode of the slope along the laminar tendency. These small plastic strain regions
reduce the safety factor of the slope.
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3. Slope Stability Analysis

Taking the Gangtou tunnel slope as the object of analysis, as shown in Figure 11, the
position and shape of each section of the slope are quite different, and the distribution of
weak zones inside the slope has spatial variability. The traditional two-dimensional model
can only represent the rotation angle of the layer of weak zones of the weak zones in a
certain section. However, it cannot reflect the real spatial distribution of the weak zones
inside the slope.
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Figure 11. Typical failure mode of Gangtou tunnel slope engineering (the rock in the slope is
weathered flint-striped dolomite, and the soil in the weak zones is residual cohesive soil).

To illustrate the influence of the rotation angle of the layer of weak zones inside the
slope on the stability and failure mechanism of the slope, weak zones with a rotation of
0–60◦ relative to the X-axis, Y-axis and Z-axis were generated in the 3D slope. The model
was about 34 m long, 33 m high and 49 m wide. The number of finite element mesh
elements was 399,611 and the number of nodes was 73669. The constraint boundaries
around the model were normal bearing constraints, and the bottom of the slope was a
complete constraint condition as is shown in Figure 12. Both weak zones and weathered
flint strips dolomite are elastoplastic materials, and the Mohr-Coulomb yield criterion was
adopted. The rock in the slope shown in Figure 11 is weathered flint-striped dolomite, and
the soil in the weak zones is residual cohesive soil. The parameters are shown in Table 3.
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4. Results and Discussion 
The stability calculation of the slope is shown in Figure 13. The rotation angle of the 
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of the slope. In the figure, when the weak zone is rotated 50° around the X-axis and 40° 
around the Y-axis, the slope and the inclination of the weak zone are approximately par-
allel, while simultaneously resulting in the safety factor of the slope being greatly reduced. 
Therefore, when the inclination of the weak zone is approximately balanced with the 
slope, the safety factor of the slope will decrease, and the slope is more prone to landslides. 

Figure 12. Schematic diagram of the distribution of weak zones (red zone represents weathered flint strips dolomite; blue
zone represents weak zones). (a) Rotation angle of 30◦ around the X-axis; (b) rotation angle of 30◦ around the Y-axis; (c)
rotation angle of 30◦ around the Z-axis; (d) rotation angle of 60◦ around the X-axis; (e) rotation angle of 60◦ around the
Y-axis; (f) rotation angle of 60◦ around the Z-axis; (g) Rotation angle of 0◦.

Table 3. Material mechanical parameters of the slope.

Material
Volumetric

Weight
γ (kN/m3)

Elastic Modulus
E (GPa)

Poisson Ratio
v

Cohesion c
(kPa)

Internal Friction
Angle ϕ (◦)

Rock
(weathered flint strips dolomite) 28.0 100 0.2 50 30

Weak zones
(residual cohesive soil) 18.0 0.002 0.3 10.73 20

4. Results and Discussion

The stability calculation of the slope is shown in Figure 13. The rotation angle of
the weak zone layer inside the slope is one of the main controlling factors for the safety
factor of the slope. In the figure, when the weak zone is rotated 50◦ around the X-axis and
40◦ around the Y-axis, the slope and the inclination of the weak zone are approximately
parallel, while simultaneously resulting in the safety factor of the slope being greatly
reduced. Therefore, when the inclination of the weak zone is approximately balanced
with the slope, the safety factor of the slope will decrease, and the slope is more prone to
landslides.
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Figure 13. FOS under different rotational angles of the weak zones.

The plastic strain diagram of the slope is shown in Figures 14–16. It can be seen
from the figures that when the slope is in a limit equilibrium state, yield occurs first at the
weak zones, and the deformation of the weak zones develops continuously, resulting in an
increase in the plastic zone. Therefore, when the weak zone layer is rotated at an angle of
50◦ around the X-axis and a rotation angle of 40◦ around the Y-axis, the safety factor of the
slope reaches its lowest value. The figures suggest that the maximum plastic strain zone is
likely to be parallel with the slope and the weak structural surfaces, thus decreasing the
stability of the slope.
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(FOS = 1.98).
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(c) rotation angle of 30◦ around the Z-axis (FOS = 1.94).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 19 
 

 
(b) 

 
(c) 

Figure 15. Plastic strain diagram of the slope with 30° rotation angle of the weak zones. (a) Rotation 
angle of 30° around the X-axis (FOS = 1.87); (b) rotation angle of 30° around the Y-axis (FOS = 1.89); 
(c) rotation angle of 30° around the Z-axis (FOS = 1.94). 

 
(a) 

Figure 16. Cont.



Appl. Sci. 2021, 11, 9852 17 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 19 
 

 
(b) 

 
(c) 

Figure 16. Plastic strain diagram of the slope with 60° rotation angle of the weak zones. (a) The 
rotation angle of 60° around the X-axis (FOS = 1.89); (b) the rotation angle of 60° around the Y-axis 
(FOS = 1.97); (c) the rotation angle of 60° around the Z-axis (FOS = 1.98). 

5. Conclusions 
Aiming at the uneven spatial distribution of weak zones in slopes, this work investi-

gated a mathematical theoretical model based on two-phase random media to character-
ize a 3D slope with weak zones. Based on the USDFILD platform in ABAQUS software, a 
Fortran program corresponding to the proposed model was developed, and the 3D finite 
element modeling of the slope with weak zones was performed. By setting the coordinate 
rotation angle of the anisotropic correlation structure, the inclination angle of the weak 
zones in the slope model was controlled. The validity of the proposed model for the anal-
ysis of the stability of 3D slopes with weak zones was verified on the basis of existing 
research results and analytical solutions. At the same time, the calculation results show 
that the above-mentioned characterization method combined with the finite element 
method is able to realize the automatic retrieval of the internal slip surface of the slope. 
By inverting the failure mode of the slope with weak zones, it can be found that the sta-
bilities of slopes with weak zones re dominated by those weak zones. 

Taking the Gangtou tunnel slope as the object of study, a stability analysis of a 3D 
slope with weak zones was carried out, and the influence of the inclination angle of the 
weak zones on the slope stability was analyzed using the 3D finite element model. The 
results show that the weak zones weaken the strength of the slope, leading to a decrease 
in safety factor. When the inclination angle of the weak zones was approximately parallel 
to the slope angle, the slope with the weak zones was more prone to instability. These 

Figure 16. Plastic strain diagram of the slope with 60◦ rotation angle of the weak zones. (a) The
rotation angle of 60◦ around the X-axis (FOS = 1.89); (b) the rotation angle of 60◦ around the Y-axis
(FOS = 1.97); (c) the rotation angle of 60◦ around the Z-axis (FOS = 1.98).

5. Conclusions

Aiming at the uneven spatial distribution of weak zones in slopes, this work investi-
gated a mathematical theoretical model based on two-phase random media to characterize
a 3D slope with weak zones. Based on the USDFILD platform in ABAQUS software, a
Fortran program corresponding to the proposed model was developed, and the 3D finite
element modeling of the slope with weak zones was performed. By setting the coordinate
rotation angle of the anisotropic correlation structure, the inclination angle of the weak
zones in the slope model was controlled. The validity of the proposed model for the
analysis of the stability of 3D slopes with weak zones was verified on the basis of existing
research results and analytical solutions. At the same time, the calculation results show that
the above-mentioned characterization method combined with the finite element method is
able to realize the automatic retrieval of the internal slip surface of the slope. By inverting
the failure mode of the slope with weak zones, it can be found that the stabilities of slopes
with weak zones re dominated by those weak zones.

Taking the Gangtou tunnel slope as the object of study, a stability analysis of a 3D
slope with weak zones was carried out, and the influence of the inclination angle of the
weak zones on the slope stability was analyzed using the 3D finite element model. The
results show that the weak zones weaken the strength of the slope, leading to a decrease in
safety factor. When the inclination angle of the weak zones was approximately parallel
to the slope angle, the slope with the weak zones was more prone to instability. These
research results provide an important reference for the further quantitative evaluation



Appl. Sci. 2021, 11, 9852 18 of 19

of landslide susceptibility in the engineering of the slope of the Gangtou tunnel and the
selection of excavation slope angles.
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