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Abstract: During the fieldwork of hydraulic engineering, practical engineers normally document
geological information manually. Although there are some GIS-based digital tools for geology, they
are not perfectly applicable to hydraulic engineering. As a result, the current work mode is ineffective,
unmanageable, error-prone, and not conducive to subsequent analysis. To address this problem,
we developed a digital tool which enables geological recording and quick modeling based on 3D
real scenes in the field of hydropower projects. There are three modules in the surface tool: object
recording, image interpretation, and field analysis. The object recording module is to mark geological
points (e.g., drills and shafts), lines (e.g., faults, stratigraphic boundaries), and surfaces (e.g., slope
and stocking yard) on a 3D scene and then store them in the database. The image interpretation is
to interpret the 2D information in images to 3D models loaded in 3D software for further studies,
such as GOCAD. The field analysis includes surface fitting, stability analysis of blocks, occurrences
calculating, rock recognition, and 69/sketching. The tool is helpful for recording data, drawing
geological boundaries, and building a preliminary model in the geological survey.

Keywords: field geology; digital geological recording; 3D real scene of terrain; 3D geology model;
hydraulic engineering

1. Introduction

The traditional work mode of geological investigation in hydraulic engineering suffers
from laborious data collection, subjective field analysis methods, and ineffective data man-
agement. Although there are many digital tools (such as MineScape [1] and FieldMove [2])
for geological engineering, they are not specifically developed for hydraulic engineering,
which mainly focuses on the stability of multi-scale rock mass. As a result, in many cases,
hydraulic engineers would rather document geological information manually.

There has been a rapid development in digital measuring techniques, especially with
geographic information system (GIS), global positioning system (GPS), and remote sensing
(RS) techniques. With the increasing popularity of GPS, the technique has been widely used
in geology. The intelligent electromagnetic compass (IEMC) has also been used in geology,
transformed from military and aerospace applications. Tablets have also been developed
with fast processing speeds. However, the techniques are not typically integrated, and
there is no unified database. Thus, it is necessary to develop a system integrated with GIS,
GPS, and RS embedded in a mobile device as this will help improve efficiency and reduce
labor and time costs.

The storage, access, and visualization of geological information has been studied for a
long time. The interaction and accessibility of geology data are crucial. It is also studied
for spatial data visualization, analysis, and exploration by integrating GIS, virtual reality
(VR) and the internet [3]. Cooperation among the geo-information sciences, computer
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science, and mathematics is increasingly popular. Pavlis et al. [4] established a data model
that can be applied to any GIS system and summarized the basic rules to building the
model. Le et al. [5] studied the management of different types of geological data in a
database management system. The further development of GIS benefits significantly from
good management of different data types, and optimized data structure and software
architecture keep systems in good working condition.

Multidimensional geology information can be described by geometric algebra [6].
However, it is also useful to analyze 2D geological pictures and draw geological boundaries
using traditional methods. In MapIT [7], boundaries can be drawn, and profiles can be
added onto 2D geological images. Qiu et al. [8] developed the Corel Geological Drafting
Kit (CGDK) with visual basic for applications (VBA) for geological mapping, including
stereographic projections and rose diagrams. It is a powerful tool that uses 2D geological
pictures for geological field surveys. However, in reality, geological information exists in
three dimensions. The integration of original geological data and the reconstruction of
their 3D model will help engineers make decisions and avoid risks.

The presentation of 3D geological information has been well studied. Zhong et al. [9]
built a 3D model in a complex geological condition based on non-uniform rational B-spline
(NURBS) technique and the triangulated irregular network (TIN) method. It was also
applied for stability analysis of key surface blocks of rock slope [10] and identification of
complex rock blocks in a tunnel [11]. Klingbeil et al. [12] presented a direct-georeferencing
system combining hardware and software to obtain a high-precision position of images
taken with an unmanned aerial vehicle (UAV), with which a more accurate 3D model can
be established. The UAV and terrestrial laser scanning techniques can be integrated to
build refined 3D models [13]. The 3D geological information was also loaded into a system.
Ming et al. [14] developed a 3D geological multi-body modeling system called GSIS, in
which complex faults and multi-body 3D models were constructed based on cross-sections.
Forno et al. [15] developed a 3D geomorphological survey and mapping tool called GSTOP,
in which real-time location, drawing boundaries, and geological profiles were realized in a
3D model. Velasco et al. [16] built a tool that allowed the user to analyze and define the
possible existing correlation surfaces, units, and faults based on an interactive 3D analysis
environment. Touch et al. [17] built 3D geological modeling with commercial software to
study boring log data. However, Breunig and Zlatanova [18] pointed out that the current
geo-databases do not provide sufficient 3D data modeling or analyzing techniques. As a
result, more efforts are needed for the development of a3D geological system.

The rapid update of smartphones has led to the development of geological surveys
using mobile devices. This provides new methods for engineers to conduct geological
surveys in the field. The famous GIS tools, e.g., Google Maps and ArcGIS, have basic
functions such as displaying maps and drawing polylines on maps and are helpful for
field work to a certain extent. However, they are not specifically used for geological
surveys and lack professional functions, such as recording geological information in a
specified format, conducting spatial analysis of geological data, and transmitting data
to a geological database. An android application named GeoTool [19] was developed to
measure the directions, strike, and dip of bedding planes. An IOS application named
Smart Compass-Clinometer [20] was also developed to analyze geological stability. Wol-
niewicz [21] developed a tablet application named SedMob for creating sedimentary logs.
The accuracy of the compasses on different platforms (IOS and Android) is studied [22]. It
is convenient to save and extract logging information and easy to perform data synchro-
nization in the remote server. However, all these tools or systems are mainly focused on
recording data and can only provide two-dimensional perspectives; thus, engineers cannot
develop a stereoscopic understanding of terrains and surrounding environments. Addi-
tionally, they lack spatial analysis functions and cannot help engineers figure out geological
conditions effectively. In addition, the data fields present in them are not aimed at hydraulic
engineering, so they are not suitable for the geological survey of hydraulic engineering.
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Many geological objects need to be recorded and analyzed, such as lake water qual-
ity [23], boreholes [24], groundwater and surface water [25], and earthquakes [26] (Wang
et al. 2016). Different modeling, recording, and analyzing methods are adopted for different
geological objects, which can be described better by combining multiple methods [27,28].
In this research, we developed an integrated tool for the quick recording and analysis of
geological objects. A quick evaluation of the geological condition can be performed using
multiple methods, including geological object recording, interpretation of the 2D images,
and 3D analysis of the geological condition. Moreover, in the 3D model, the accumulation
of and the information extracted from images can be loaded into 3D modeling software
for further analysis, such as GOCAD [29]. The tool in this research has a practical value to
geological surveys.

2. Methods

The methodology architecture includes three parts, as shown in Figure 1.

(1) The 3D real scene terrain is the basis of the geological recording and the 3D analysis.
There are two ways to build a 3D real scene terrain model in the SuperMap platform.
The first way is to use UAV photos to build the detailed 3D terrain. The other way
is to use a digital elevation model (DEM) and scene images to build the large-scale
terrain model. The two terrain models show geological information at different scales.

(2) The geological recording can then be carried out on the 3D terrain. The geological
objects and the 3D information extracted from images can be recorded according to
the real coordinates.

(3) Based on the recording, 3D analysis can be conducted, such as accumulation body
estimation and block instability analysis. Multiple methods are integrated to be a
hierarchical one to build the whole system.
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Figure 1. Methodology architecture.

2.1. UAV Oblique Photography and Modeling

In the detailed 3D terrain establishment, it is popular to build a 3D model using UAV
oblique photography [30]. The oblique images are taken by a UAV camera, which can take
photos at different angles, as shown in Figure 2. Therefore, the oblique images can show
more information and match each other easily. Meanwhile, the oblique images have a large
angle of view. They also have many different resolutions for the same geological object. As
a result, it is convenient to conduct a 3D model with oblique images.
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The point matching is applied to build the 3D terrain. The whole process is shown
in Figure 3. First, a group of scene images is used to build the sparse point cloud. The
same contents in different images are matched to show the whole terrain. The sparse point
cloud can be reconstructed to be the dense point cloud using a depth map. Based on the
dense point cloud, a mesh model can be established. The mesh model includes triangle
and quadrangle mesh. Finally, the refined 3D real scene model can be built using the mesh
model and the texture.
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2.2. Data Recording

The data recording is the core part of the tool. In data recording, the data are saved in a
structured storage mode. A hierarchical data model, designed based on a multi-dimension
hash table, is used to manage the data recording. The layer class and order are taken as
the index in the model. The name of the recording object is the key in a hash table. The
complete information and attributes of the recording data are saved using the architecture,
as shown in Figure 4. As a consequence, the data can be accessed and searched rapidly.
The geological geometry is bound to the data recording and is saved with the data for the
convenience of modeling and further analysis.
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2.3. Interpreting 3D Information from 2D Images

There are two steps to calculate the real coordinates of the geological objects in an
image. First, perspective transformation is applied to change the scene of an image to
a new viewing plane, which is parallel to the camera lens. The calculation is shown in
Equation (1) [

x′, y′, w′
]
= [u, v, w]

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (1)

This section may be divided into subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn. u and v are the coordinates of the raw image; x and
y are the calculated coordinates, x = x′/w′ and y = y′/w′; the transformation matrix a11 a12 a13

a21 a22 a23
a31 a32 a33

 can be divided into four parts.
[

a11 a12
a21 a22

]
denotes linear transfor-

mation, such as scaling, shearing, and rotation;
[

a31 a32
]

denotes translation trans-

formation, and
[

a13 a23
]T is used to change the perspective. The coordinates can be

calculated as in the following equations:

x =
x′

w′
=

a11u + a21v + a31

a13 + a23 + a33
(2)

y =
y′

w′
=

a12u + a22v + a32

a13 + a23 + a33
(3)

As a result, we can calculate the new coordinates of the geological objects by the
transformation equation. Next, the known points in the image and real-world are taken as
the control points to match the two following planes:

A0x + B0y + C0z + D0= 0 (4)

A′0x + B′0y + C′0 = 0 (5)

Equation (4) is the plane in the real world and can be calculated by the known
points. Equation (5) is the plane in the image. By matching the planes in different
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coordinate systems, we can calculate coordinate z values in the image and extract 3D
geological information.

2.4. Depth in Delaunay Triangulation

The bottom surface of accumulation bodies can be estimated with the coordinates
and the depth of each point using the Delaunay triangulation method. In Figure 5, the
depth of control point M is known, and the depth of the other points can be calculated
through interpolation.
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The coordinates of A, B, M, and X are known in the system. The equation of the
straight line MX and AB can be obtained with Equations (6) and (7).

Ax1 + By1 + C = 0 (6)

A′x2 + B′y2 + C′ = 0 (7)

O(x0, y0) was obtained in Equation (8).{
Ax0 + By0 + C = 0

A′x0 + B′y0 + C′ = 0
(8)

The lengths of Dm (MO) and D1 (XO) were calculated, and the depth of the center
point was the maximum. The lengths of other points were obtained by interpolation in
Equation (9).

z0 = z +
√

1− D1/Dm × Hmax (9)

where z0 is the elevation of the points in the accumulation body, z is the elevation of M, D1 is
the length of XO, Dm is the length of MO, and Hmax is the maximum of the depths, namely,
the depth of the center point. The elevation of each point in the Delaunay triangulation
was calculated, and smooth curves were joined to fit the bottom surface.

3. Development Tools and Requirements

The tool aims to work in the field of geological surveys. As a result, the portability
of the tool is also considered. A tablet with a Microsoft Windows Operating System was
selected. The specifications of the tablet are detailed in Table 1.
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Table 1. Basic information of the tablet.

Hardware Specifications

CPU Intel® Core™ M-5Y10c Processor
Memory 4GB LPDDR3

Display Screen 1920*1080
GPS A-GPS

Camera Rear: 5 megapixels; front: 2 megapixels
Gyroscope 3-Axis gyroscope

The modules are integrated into the user interface designed based on WinForm, and
the developed tools of the modules are Microsoft Visual Studio (Community Edition). All
the platforms and components are presented in Table 2.

Table 2. Development platform and components.

Platform and Components Details

Platform Microsoft Windows
Framework Net Framework

Underlying graphic platform SuperMap iObject 10i
Framework of object-relational mapping Entity Framework

Numerical analysis components Math.Net
Deep learning components TensorflowSharp

Computer vision components EmguCV
Computational geometry components MIConvexHull

Geographic information analysis components CGAL

4. Module Integration on Tablet

In geological surveys, geological engineers need to record the geological objects (point,
line, and surface) and then make further analyses based on the recorded information, such
as estimating the accumulation body, evaluating block instabilities, and extracting informa-
tion from images. Since the geological information is hard to analyze, three modules, object
recording, image interpretation, and field analysis, were developed. Additionally, the 3D
information extracted from the image and the estimation of the accumulation body can
be loaded into 3D modeling software for further study. The architecture of the modules is
shown in Figure 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

 
Figure 6. The architecture of modules. 

The 3D real scene terrain includes the large scale and the detailed one, as shown in 
Figure 7. This is the basis of all the modules in the tool. According to the coordinates on 
the 3D real scene terrain, the objects can be recorded. In addition, a series of auxiliary 
functions were included, such as linear distance, horizontal distance, perpendicular dis-
tance, plane area, and surface measures. 

 
(a) 

 
(b) 

Figure 7. Three-dimensional real scene terrain: (a) large-scale 3D terrain; (b) detailed 3D terrain. 

4.1. Object Recording 
Objects include the point, line, and surface. The point is the basis of all the other ob-

jects. The module can obtain information about the device’s location and orientation 
through the built-in GPS. Since the geological data are also located in 3D real scene terrain, 
the positions of geological data can be integrated into the 3D real scene when the coordi-
nates are matched, as shown in Figure 8a. The point information, such as coordinates, 
depth, and type, is also saved, as shown in Figure 8b. There are many types of data that 
can be recorded in the system, such as borehole, adit, pit, well, trenching, slope, tunneling, 
and foundation. The line and surface can be drawn based on the recorded point data, as 
shown in Figure 9. The module can help geological engineers to gain a preliminary un-
derstanding of the spatial relationship of the geological objects. 

User Interface

Images interpretation Field analysisObject recording

Point Line Surface 3D information 
from 2D image

Accumulation body 
estimation Block 

instability 
analysis

3D modeling software

Data exchange

Deep 
learning-

based 
analysis

Figure 6. The architecture of modules.



Appl. Sci. 2021, 11, 9840 8 of 19

The 3D real scene terrain includes the large scale and the detailed one, as shown in
Figure 7. This is the basis of all the modules in the tool. According to the coordinates on the
3D real scene terrain, the objects can be recorded. In addition, a series of auxiliary functions
were included, such as linear distance, horizontal distance, perpendicular distance, plane
area, and surface measures.
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Figure 7. Three-dimensional real scene terrain: (a) large-scale 3D terrain; (b) detailed 3D terrain.

4.1. Object Recording

Objects include the point, line, and surface. The point is the basis of all the other objects.
The module can obtain information about the device’s location and orientation through
the built-in GPS. Since the geological data are also located in 3D real scene terrain, the
positions of geological data can be integrated into the 3D real scene when the coordinates
are matched, as shown in Figure 8a. The point information, such as coordinates, depth,
and type, is also saved, as shown in Figure 8b. There are many types of data that can be
recorded in the system, such as borehole, adit, pit, well, trenching, slope, tunneling, and
foundation. The line and surface can be drawn based on the recorded point data, as shown
in Figure 9. The module can help geological engineers to gain a preliminary understanding
of the spatial relationship of the geological objects.

4.2. Image Interpretation

In geological surveys for hydraulic engineering, it is dangerous to record observations
on a slope using traditional methods, especially since the slope with low rock mass is
typically in geologically complex locations where landslides may occur. As a result, the
geological information of artificially excavated or naturally occurring slopes is recorded
with images. The information of structures is recorded as pixels, and it is necessary to save
the image to store the complete geological information. However, this requires the database
to save images. Moreover, it is difficult to establish models for analysis based on images.
Therefore, an interpretation function was designed. According to the interpretation process
shown in Figure 10, a geological image (e.g., slope image) is first loaded into the tool and
then rectified with Equations (1)–(3). Next, the image’s coordinate system is mapped to a
three-dimensional space by fitting several control points with Equations (4) and (5) and
the least square method. After that, engineers can plot polylines on the image, and the
3D information in the image can be extracted by matching the actual coordinates and the
image coordinates.

An example of 2D image interpretation is shown in Figure 11. The depicted lines
on the image can be recorded in different colors. The interpreted 3D geological infor-
mation is saved in the database and can also be loaded into 3D modeling software for
further analysis.
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4.3. Field Analysis
4.3.1. Accumulation Body Estimation

The volume evaluation of accumulation bodies is important for the quality and cost
control in hydraulic engineering construction, and the preliminary estimation of the bottom
surface is crucial. However, in the design and survey stages in construction, the geological
information is limited. Based on the method mentioned above, the bottom surface can
be quickly estimated. The process of calculating the bottom surface of an accumulation
body is shown in Figure 12. According to the set parameters, it takes the closed line as the
boundary to build the Delaunay triangulation model as the bottom surface. The center
depth is the input, and the result can be the output. The bottom surface can also be loaded
into 3D modeling software for further analysis. The result is presented in Figure 12. The
method is quick and effective in the preliminary geological survey of hydraulic engineering
when the geological information is limited.
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4.3.2. Block Instability Analysis

Landslide and collapse are severe threats for hydraulic engineering; thus, block in-
stability analysis for slopes is necessary. A block instability analysis module based on
the polar stereographic projection method [31] was integrated into the system. The po-
lar stereographic projection is a geometric approach that can determine the stability of
slopes qualitatively. When the selected geological points were analyzed, the geological
information of the slope was captured, as shown in the blue area in Figure 13. The intersec-
tions of free surfaces and structures were obtained according to the spatial relationship.
A judgment regarding block stability was also made automatically in the tool, and the
geological report of the selected area was outputted, which included detailed descriptions
of the occurrences of fractures, intersection, block structure, block instability analysis, and
direction of possible sliding in the report. Moreover, the report can be extracted as a text
document. The process of block instability analysis is shown in Figure 13.

4.3.3. Deep Learning-Based Recognition for Rocks

In field surveys, determining the types of rock is the key to evaluating geological
conditions. The traditional method mainly depends on the experience of engineers. In
this software, the TensorFlow framework is integrated, and a deep learning model for rock
recognition was established and trained using the method presented by Zhang et al. [32].
According to the methodology, the famous deep convolutional neural network, Inception-
v3 model, presented by Google, was embedded, and the parameters pre-trained by the
ImageNet dataset [33] were loaded. After that, the model was retrained with 3000 images
that contained 20 kinds of rocks. The final validation accuracy is 0.955, and the cross-
entropy is 0.434.
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5. Case Study

The tool was also applied in a geological survey of a hydropower project. It was a
large engineering project in a complicated geological condition. The valley and slope were
steep, and the angles of slopes were generally 30–90◦. Mudslides, landslides, and land
collapses are common in the area. Thus, the bad geological conditions have a negative
influence on the project site selection. It is necessary to assess the potentially unstable area
after impounding. Moreover, with the rise in the water level, there may be new geological
hazards. We should record geological information and make a preliminary analysis, such as
surface drawing and accumulation body estimation, in this area. Additionally, we should
extract information from images. Figure 14 shows the traditional geological survey in
hydraulic engineering.
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Figure 14. Traditional fieldworks in hydraulic engineering.

The obtained information is loaded in a 3D modeling software to verify the proposed
approach. As shown in Figure 15, the geological survey was mainly performed along the
river. All kinds of geological information were recorded. Based on the recorded geological
information, 3D analysis was performed in the tool, especially for accumulation bodies.
The results are shown in Figure 16.

Figure 15. Results of a geological survey.
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Figure 16. Results of accumulation body and occurrence estimation.

The geological information in 2D images was also converted into 3D information in
the geological survey. Photo stitching was applied to show the effectiveness. The two
strata, I and II, were recorded in the tool, as shown in Figure 17a,b. According to the actual
coordinates, the two structures were loaded into 3D modeling software. Figure 17c shows
the spatial relationship between the two structures. In Figure 17d, two photos were stitched
to show the real positions of strata I and II, which proved the function’s effectiveness.
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6. Conclusions

The geological survey of hydraulic engineering always suffers from ineffective data
acquisition and backward field analysis and data management methods. In this research,
three essential techniques for the digitization of the fieldwork of hydraulic engineering are
proposed, namely, digital data recording, interpretations for 2D images, and computer-
aided analysis for geological phenomena. The specific methods include (1) modelling for
3D real scenes, (2) structured storage for geological data, (3) interpreting from 2D images
to 3D information, (4) evaluation of accumulation body, (5) block instability analysis, and
(6) intelligent analysis for geological data.

To implement the above solution, we presented: (1) an oblique photography-based
scheme for displaying the real field scene, (2) a hierarchical model for data storage, (3) a
control point-based interpreting method for extracting 3D information from 2D pictures,
and (4) a Delaunay triangulation-based method for the evaluation of accumulation bodies.
Additionally, we chose the polar stereographic projection method for the instability analysis
of slopes, and built a deep neural network for the intelligent recognition of rocks. As a
result, all the above methods together with the techniques of GIS, GPS, and 3D modelling,
were integrated into a digital tool.

The tool was also applied to a case study involving hydraulic engineering where
information was recorded along the river that may negatively influence the dam. Based on
the recorded geological information, a preliminary 3D geological analysis was performed
to estimate the bottom surface of the accumulation bodies. In addition, it enables 2D images
to be interpreted into 3D information that can be used for geological structural analysis. A
comparison was made between the output results and the stitched photos, which proved
that the method was influential in the case study.

In addition, it should be noted that the tool is for generalized and preliminary surveys,
and aims at helping engineers acquire, manage, and analyze geological information in
a highly efficient way during their field work. Therefore, the modules integrated in it
are not based on complex calculations. For example, the presented estimation method
for accumulation bodies needs engineers to set a center depth by experience. Technically
speaking, this method is not rigorous enough. However, the exact depth of an accumu-
lation body is challenging to determine in the field, but can only be calculated through
extensive geological evidence and repeated trial-calculation in the lab. Therefore, the
proposed method is to provide a reference for engineers for subsequent fieldwork. With
the development of computer techniques and survey methods, the proposed solution and
tool will be continuously improved to enhance the rigor of methods and the usability of
the functions.
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