
applied
sciences

Article

Self-Tuning Lam Annealing: Learning Hyperparameters While
Problem Solving

Vincent A. Cicirello

����������
�������

Citation: Cicirello, V.A. Self-Tuning

Lam Annealing: Learning

Hyperparameters While Problem

Solving. Appl. Sci. 2021, 11, 9828.

https://doi.org/10.3390/app

11219828

Academic Editor: Carlos A. Iglesias

Received: 15 September 2021

Accepted: 19 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science, Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, USA; cicirelv@stockton.edu

Abstract: The runtime behavior of Simulated Annealing (SA), similar to other metaheuristics, is
controlled by hyperparameters. For SA, hyperparameters affect how “temperature” varies over time,
and “temperature” in turn affects SA’s decisions on whether or not to transition to neighboring states.
It is typically necessary to tune the hyperparameters ahead of time. However, there are adaptive
annealing schedules that use search feedback to evolve the “temperature” during the search. A
classic and generally effective adaptive annealing schedule is the Modified Lam. Although effective,
the Modified Lam can be sensitive to the scale of the cost function, and is sometimes slow to converge
to its target behavior. In this paper, we present a novel variation of the Modified Lam that we
call Self-Tuning Lam, which uses early search feedback to auto-adjust its self-adaptive behavior.
Using a variety of discrete and continuous optimization problems, we demonstrate the ability of the
Self-Tuning Lam to nearly instantaneously converge to its target behavior independent of the scale of
the cost function, as well as its run length. Our implementation is integrated into Chips-n-Salsa, an
open-source Java library for parallel and self-adaptive local search.

Keywords: Self-Tuning; Simulated Annealing; Modified Lam; hyperparameters; Exponential Moving
Average; adaptive search; metaheuristics; self-adaptive; optimization; open-source

PACS: 02.70.-c; 07.05.Mh; 89.20.Ff

MSC: 68T05; 68T20; 68W50; 90C27; 90C59

1. Introduction

Optimization problems of industrial relevance are often NP-Hard, such as applications
of various classical problems such as the optimization variants of NP-Complete problems
like the traveling salesperson, graph coloring, largest common subgraph, and bin packing,
among many others [1].

Approaches that are guaranteed to provide optimal solutions to such problems have
worst case run-times that are exponential. Thus, it is common to turn to metaheuristics,
such as genetic algorithms [2] and other forms of evolutionary computation, simulated
annealing [3–5], tabu search [6], ant colony optimization [7], stochastic local search [8],
among many others. Metaheuristics offer a trade-off between time and solution quality.
Although not guaranteed to optimally solve the problem, they can often find near optimal
solutions, or at least sufficiently optimal solutions, in a fraction of the time of the alter-
natives. They are also usually characterized by an anytime [9] property, where solution
quality improves with additional runtime. Thus, one can run such an algorithm as long as
time allows, utilizing whatever solution is found at the time it is needed.

In this paper, we specifically concern ourselves with Simulated Annealing (SA). Kirk-
patrick, Gelatt, and Vecchi introduced SA several decades ago [3]. Since then, it has been
applied to optimization problems from a variety of industries, such as in transporta-
tion [10,11], assembly lines [12], machine vision [13], path planning for robotics [14,15],
networking [16,17], wireless sensor networks [18,19], scheduling [20], manufacturing [21],

Appl. Sci. 2021, 11, 9828. https://doi.org/10.3390/app11219828 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1072-8559
https://doi.org/10.3390/app11219828
https://doi.org/10.3390/app11219828
https://doi.org/10.3390/app11219828
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11219828
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11219828?type=check_update&version=2

Appl. Sci. 2021, 11, 9828 2 of 37

software testing [22,23], and industrial cutting [24], among many others. SA is a stochastic
local search algorithm inspired by an analogy to the metallurgic process of annealing,
where a metal is heated and then slowly cooled until it achieves a state of equilibrium. As
a local search algorithm, SA iteratively generates random neighbors of the current solution
configuration. A random neighbor with a cost that is equal to or better than that of the
current solution is accepted. A random neighbor with a cost that is worse than that of the
current solution may still be accepted, but the decision is randomized and depends upon
the cost difference and a temperature parameter. The higher the temperature, the higher the
probability that a random neighbor will be accepted. Near the end of a run of SA, when
temperature is low, the probability of accepting a neighbor of higher cost than the current
solution becomes low. Algorithm 1 provides pseudocode for the basic form of SA.

Algorithm 1 Simulated Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U() generates a uniform random value in [0, 1).
6: S← GenerateRandomInitialState
7: T ← T0
8: for i = 1 to N do
9: S′ ← random selection from η(S)

10: if C(S′) ≤ C(S) or U() < e(C(S)−C(S′))/T then
11: S← S′

12: T ← f (T)
13: return Best solution found during run

SA uses the Boltzmann distribution in deciding whether to accept a randomly chosen
neighbor S′. Specifically, if the cost C(S′) of the random neighbor is less than or equal to
the cost C(S) of the current solution S, then it definitely accepts the neighbor. SA always
accepts neighbors that are not worse than the current solution. Otherwise, if the cost of
the neighbor is higher than the cost of the current solution, the neighbor is accepted with
probability, e(C(S)−C(S′))/T (line 10 of Algorithm 1).

The temperature T of the SA changes during the run (line 12 of Algorithm 1). The
component of SA that controls the change of temperature is known as the annealing
schedule, and there are several common annealing schedules such as exponential cooling
(f (T) = α · T, where α ∈ [0.0, 1.0] is a cooling rate less than, but usually near, 1.0, such
as 0.95), linear cooling (f (T) = T − λ, where λ is a parameter), and logarithmic cooling
(fi(T) = c/ ln(i + d), where i is the iteration number, and c and d are parameters). All
of these start the temperature at some initially “high” value T0 (line 7 of Algorithm 1)
and then monotonically decrease it during the run. However, what qualifies as “high”,
and how quickly the temperature should decrease (values for the hyperparameters, α,
λ, c, d of the various annealing schedules), may vary from one problem to another, and
perhaps even from one instance to another. Good choices for these also likely depends
upon the amount of time you have available to solve your problem. If you have much
time available, then you might start with a higher temperature, and use a slower rate of
cooling, than you would if you had very little time available. If you utilize one of these
classic annealing schedules, then you will need to tune the hyperparameters ahead of time
in some way using problem instances representative of the instances that you expect to
encounter for your application. However, if the assumptions that you make about expected
future instances vary much from what you actually later encounter in practice, then your
SA may perform significantly below its capability.

As an alternative to one of the classic annealing schedules, several researchers have de-
veloped adaptive annealing schedules [25–32], imparting upon SA the ability to self-adjust

Appl. Sci. 2021, 11, 9828 3 of 37

the temperature during the run utilizing problem solving feedback to learn to improve
performance. A recent example is Hubin’s hybrid of an adaptive SA with expectation-
maximization for inference in hidden Markov models [26]. Another example is the ap-
proach by Bezáková et al, which accelerates the rate of cooling as the temperature de-
creases [29]. Cicirello observed that many adaptive annealing schedules assume that you at
least know how much time is available for the run, but if that assumption is incorrect then
SA may either spend too much time in a random walk (e.g., if much less time is available
than you thought), or converge too quickly to local optima (e.g., if much more time is
available than you thought). This observation leads Cicirello to introduce an approach that
adapts the run length of SA over the course of a sequence of restarts, both in the sequential
case as well as for a parallel SA [27]. Lam and Delosme’s early work on adaptive simulated
annealing dynamically adjusts the size of the neighborhood function to attempt to follow
a theoretically determined trajectory of the rate of neighbor acceptance, while using a
monotonically decreasing temperature [32]. This has become known as Lam annealing.
Swartz later modified Lam and Delosme’s approach to keep the neighborhood function
fixed, and instead allows the temperature to fluctuate up and down throughout the run
as necessary in order to keep the SA run on the acceptance rate trajectory of Lam and
Delosme’s approach [31]. Boyan refined Swartz’s approach into what is now known as
the Modified Lam [30], and which was then later further optimized by Cicirello [25]. We
provide complete algorithmic details of the Modified Lam in Section 2.1 since it forms the
foundation of our approach.

Our primary contribution is a new adaptive annealing schedule that we call the
Self-Tuning Lam. The Self-Tuning Lam builds upon the Modified Lam, and is designed
to overcome its limitations. The Modified Lam is often described as parameter-free [33].
However, it has several constants, whose values are argued to suffice across most problems.
However, in reality, these constants should really be treated as algorithm hyperparame-
ters [34], whose values can affect either quality of final solution or convergence speed or
both. For example, the Modified Lam is sensitive to the scale of cost differences between
neighboring solutions in the search space. If the run length is sufficiently long, the Modi-
fied Lam will eventually adapt its behavior to the scale of the cost function, but it can be
slow in doing so. Our new Self-Tuning Lam annealing schedule uses feedback from the
early portion of the search to self-learn the algorithm hyperparameters, adjusting to the
scale of cost differences between neighboring solutions. Using a variety of discrete and
continuous optimization problems, we show that the effects of our approach is an adaptive
annealing schedule that nearly instantaneously converges to the target behavior (i.e., Lam
and Delosme’s idealized acceptance rate trajectory) and maintains that target behavior
throughout the run.

Additionally, we have contributed our Java implementation of the Self-Tuning Lam to
Chips-n-Salsa. Chips-n-Salsa is an existing open-source library of stochastic local search
algorithms whose key features include self-adaptive as well as parallel search [35]. The
source code for Chips-n-Salsa is hosted on GitHub https://github.com/cicirello/Chips-
n-Salsa (accessed on 16 September 2021); and regular releases are deployed to the Maven
Central repository https://search.maven.org/artifact/org.cicirello/chips-n-salsa (accessed
on 16 September 2021), from which practitioners can easily import the library using popular
build tools. More details about the library, including API documentation, are available via
the Chips-n-Salsa website https://chips-n-salsa.cicirello.org/ (accessed on 16 September
2021). By integrating our new annealing schedule into an existing library, we increase the
potential impact of our research, enabling others to easily build upon our work.

To enable reproducibility [36], we released all of the source code of our experiments,
the raw data of our experiments, as well as the source code implemented to analyze the
data and to generate all of the figures of this paper. This is all available on GitHub
https://github.com/cicirello/self-tuning-lam-experiments (accessed on 13 October 2021).

The remainder of this paper is organized as follows. We present our approach in
Section 2, in which we begin by detailing the original Modified Lam annealing schedule,

https://github.com/cicirello/Chips-n-Salsa
https://github.com/cicirello/Chips-n-Salsa
https://search.maven.org/artifact/org.cicirello/chips-n-salsa
https://chips-n-salsa.cicirello.org/
https://github.com/cicirello/self-tuning-lam-experiments
https://github.com/cicirello/self-tuning-lam-experiments

Appl. Sci. 2021, 11, 9828 4 of 37

and then providing the algorithmic details of our new Self-Tuning Lam. Then, in Section 3,
we empirically compare the behavior of the Self-Tuning Lam to the original Modified
Lam on a variety of benchmarking problems, including both discrete optimization and
continuous function optimization, as well as an NP-Hard problem. The aim of our experi-
ments is not to demonstrate that our approach is superior to the original Modified Lam.
After all, the No Free Lunch Theorem [37] indicates that any two optimization algorithms are
equivalent if performance is measured over all possible problems. Rather, the aim of our
experiments is to demonstrate that the Self-Tuning Lam, independent of run length and
independent of cost function scale, consistently achieves and maintains the target behavior
of Lam and Delosme’s idealized acceptance rate trajectory. Whether that target behavior
more effectively solves the problem varies; and in our discussion of the results, we explain
the problem characteristics that impacts problem solving performance. We wrap up with
further discussion and conclusions in Section 4.

2. Methods

We begin this section with a detailed description of the original Modified Lam
(Section 2.1). We then extract several hyperparameters (Section 2.2), whose values are
treated by the Modified Lam as predefined constants rather than algorithm hyperparame-
ters to tune. Then we present the details of our new Self-Tuning Lam (Section 2.3) showing
how we can auto-adjust these hyperparameters during the run of SA.

2.1. Modified Lam

At the heart of our approach is an existing adaptive annealing schedule known as the
Modified Lam. The Modified Lam is based on the empirical work of Lam and Delosme [32],
where they studied the behavior of SA over a variety of optimization problems, and
observed that during optimal runs the rate at which SA chooses to keep neighboring
solutions tends to follow a common trajectory. Specifically, at the beginning of an optimal
run, SA accepts nearly all neighbors, but the acceptance rate declines rapidly during the
first 15% of the run when it settles upon an acceptance rate of 44%, which it maintains for
the next 50% of the run. During the last 35% of the run, the acceptance rate rapidly declines
as it converges to a solution. They found that this acceptance rate trajectory effectively
balances the trade-off between exploring the search-space and exploiting observed regions
of better-quality solutions. The optimal runs under observation are prohibitively long
to be of practical use. However, Lam and Delosme went a step further and used their
observations to derive an adaptive SA that attempts to replicate the acceptance rate behavior
of an optimal run, but for a run of predetermined length. Lam and Delosme’s approach
decreases the temperature monotonically, similar to classic annealing schedules, but uses a
variable-sized neighborhood. During the run, if the current acceptance rate is below the
target rate, they increase the size of the neighborhood; while if it is above the target rate,
they decrease the size of the neighborhood.

One of the main drawbacks of Lam and Delosme’s [32] approach is the practicality of
defining the neighborhood of a solution in a way that enables easily changing its size. This
lead Swartz to an alternative approach to matching the idealized target rate of acceptance.
Swartz suggested keeping the neighborhood function fixed, and allowing the temperature
to fluctuate both up and down (rather than strictly decreasing) in order to attempt to match
the target acceptance rate [31]. Boyan later provided a practical instantiation of what is
now the Modified Lam [30]. Boyan’s Modified Lam requires the run length (in number of
SA iterations) as an input. The Modified Lam then defines the target acceptance rate for
iteration i, and for an SA run N iterations in length, as follows:

LamRate(i) =


0.44 + 0.56 · 560−i/(0.15N) if i ≤ 0.15N
0.44 if 0.15N < i ≤ 0.65N
0.44 · 440−(i/N−0.65)/0.35 if i > 0.65N.

(1)

Appl. Sci. 2021, 11, 9828 5 of 37

This leads to exponentially declining acceptance rates for the first 15% and the final 35% of
the run, and a constant acceptance rate of 0.44 for the other 50% of the run. This Lam target
acceptance rate is shown in Figure 1.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

Figure 1. The Lam target acceptance rate.

Boyan’s Modified Lam estimates the actual acceptance rate throughout the run using
an Exponential Moving Average as follows (i again is the iteration number):

AcceptRate(i) =

{
0.998 ·AcceptRate(i− 1) + 0.002 if neighbor accepted
0.998 ·AcceptRate(i− 1) if neighbor not accepted,

(2)

and where AcceptRate(0) = 0.5.
The initial temperature T0 = 0.5, and the temperature Ti is updated during iteration i

depending upon whether the estimated acceptance rate is higher or lower than the target
rate as follows:

Ti =

{
0.999Ti−1 if AcceptRate(i) > LamRate(i)
Ti−1/0.999 otherwise.

(3)

Recently, Cicirello made some further enhancements, including incremental calcu-
lation of the LamRate(i) for iteration i from that of iteration i − 1, into what he called
the Optimized Modified Lam [25], which is shown in pseudocode form in Algorithm 2.
Cicirello’s Optimized Modified Lam follows the same target acceptance rate sequence as
Boyan’s version, but requires only two exponentiations for the entire run, while the original
version requires O(N) exponentiations, for a substantial time savings, especially for long
runs. For multistart SA, the savings are even more significant, in that the Optimized
Modified Lam requires only two exponentiations total during R restarts (provided run
length for all R restarts is the same), whereas the original requires O(RN) exponentiations.
The Optimized Modified Lam is the current default annealing schedule in the open source
Chips-n-Salsa library [35]. From this point onward, whenever we indicate Modified Lam,
we specifically refer to this optimized version; and this is the version with which we
compare the new Self-Tuning Lam later in the experiments of Section 3.

Appl. Sci. 2021, 11, 9828 6 of 37

Algorithm 2 Optimized Modified Lam Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U() generates a uniform random value in [0, 1).
6: S← GenerateRandomInitialState()
7: T ← 0.5
8: AcceptRate← 0.5
9: m0 = 0.56

10: m1 = 560−1/(0.15N)

11: m2 = 440−1/(0.35N)

12: for i = 1 to N do
13: S′ ← random selection from η(S)
14: if C(S′) ≤ C(S) or U() < e(C(S)−C(S′))/T then
15: S← S′

16: AcceptRate← 0.998 ·AcceptRate + 0.002
17: else
18: AcceptRate← 0.998 ·AcceptRate
19: if i ≤ 0.15N then
20: m0 = m0 ·m1
21: LamRate← 0.44 + m0
22: else if i > 0.65N then
23: LamRate← LamRate ·m2
24: else
25: LamRate← 0.44
26: if AcceptRate > LamRate then
27: T ← 0.999T
28: else
29: T ← T/0.999
30: return Best solution found during run

2.2. Extracting Hyperparameters from the Modified Lam

Although the Modified Lam annealing schedule is often argued to be parameter-free,
it has several constants that control its runtime behavior. For sufficiently long runs of SA,
the values for these constants do not matter much, which is why the potential for tuning is
often overlooked and why they are treated as constants rather than parameters. Here we
replace several of these constants with hyperparameters, and later show how to effectively
auto-tune these during the search.

In Section 2.1, we saw that the Modified Lam must approximate the acceptance rate as
it changes throughout the run. Recall that AcceptRate(i) is the estimate of the acceptance
rate at iteration i. The Modified Lam has three constants associated with the definition
of AcceptRate(i), including the 0.998 and 0.002 in Equation (2), as well as the value of
AcceptRate(0). Our Self-Tuning Lam introduces hyperparameters for these.

First note that Equation (2) is equivalent to an Exponential Moving Average (EMA),
At, of a time-series Y, where Yt = 1 if the random neighbor at time t was accepted, and
Yt = 0 if the random neighbor at time t was rejected. Thus define At as follows:

At = (1− α) · At−1 + α ·Yt. (4)

Since Yt can only be 1 or 0, we can rewrite this as:

At =

{
(1− α) · At−1 + α if neighbor accepted
(1− α) · At−1 if neighbor not accepted.

(5)

Appl. Sci. 2021, 11, 9828 7 of 37

A simple rewriting to change time t to iteration i and to rename At arrives at:

AcceptRate(i) =

{
(1− α) ·AcceptRate(i− 1) + α if neighbor accepted
(1− α) ·AcceptRate(i− 1) if neighbor not accepted,

(6)

which when α = 0.002 is the same as the original Equation (2).
We also saw in Section 2.1 that the Modified Lam uses a temperature adjustment

(Equation (3)) much like the classic exponential cooling schedule, where the 0.999 is
essentially the “cooling” rate, but such that the temperature can be adjusted up or down by
that rate as necessary. Additionally, we saw that it uses a predefined initial temperature
T0 = 0.5. We extract T0 as a hyperparameter to tune, and introduce a hyperparameter β by
redefining the temperature adjustment as follows:

Ti =

{
β · Ti−1 if AcceptRate(i) > LamRate(i)
Ti−1/β otherwise.

(7)

We extracted the following hyperparameters, which the Self-Tuning Lam auto-tunes
during the search: AcceptRate(0), the initial value of the EMA estimate of the acceptance
rate; α from Equation (6), which is a discount factor controlling the impact of earlier
observations on the acceptance rate estimate at the current iteration of the search; T0, the
initial temperature; and β, the rate of temperature change from Equation (7).

2.3. Self-Tuning Lam

We now introduce the new Self-Tuning Lam by deriving our approach to learning the
hyperparameters that we identified in Section 2.2.

In the subsections that follow, we utilize the constants itemized in Table 1. The
LamRate(i) refers to Equation (1), and N is the run length in number of SA iterations.
Although they appear to vary with N, the N cancels the N in the definition of LamRate(i).
Thus, these are truly constants, and the value of λ0.001 is independent of N, and likewise
for the others. The purpose and rationale for these is explained as they are used.

Table 1. Constants used in the specification of the Self-Tuning Lam, including the constant, its
mathematical definition, and its double-precision floating point value.

Constant Definition Value

λ0.001 LamRate(0.001N) 0.9768670788789564
λ0.002 LamRate(0.002N) 0.9546897506857566
λ0.01 LamRate(0.01N) 0.8072615745900611
λ0.02 LamRate(0.02N) 0.6808590431613767
ζ0.001 −1/ ln

(
0.001

1.001−λ0.001

)
0.3141120890121576

ζ0.002 −1/ ln
(

0.001
1.001−λ0.002

)
0.260731492877931

ζ0.01 −1/ ln
(

0.001
1.001−λ0.01

)
0.18987910472222955

ζ0.02 −1/ ln
(

0.001
1.001−λ0.02

)
0.17334743675123146

We have decomposed the formal presentation of the Self-Tuning Lam into several
subsections. In Section 2.3.1, we show how to determine the length of the tuning phase.
In Section 2.3.2, we explain how we tune the hyperparameters that control the EMA of
the acceptance rate throughout the run. Those parameters, AcceptRate(0) and α, only
depend upon the run length N in a rather straightforward manner. We derive the initial
temperature T0 in Section 2.3.3, and the rate of temperature change β in Section 2.3.4. This
is where most of the tuning occurs. Tuning the temperature related parameters depends
upon the run length, as well as the scale of cost differences between neighboring solutions,
the latter of which involves sampling the solution space. Finally, Section 2.3.5 puts it all
together with pseudocode of the Self-Tuning Lam.

Appl. Sci. 2021, 11, 9828 8 of 37

2.3.1. Tuning Phase Length

The Self-Tuning Lam tunes the hyperparameters at the start of the run during a tuning
phase of length M, defined in terms of the run length N as follows:

M =

{
b0.001Nc if N ≥ 10,000
b0.01Nc if N < 10,000.

(8)

Thus, the first 0.1% of long runs is used for tuning; and the first 1% of short runs is used for
tuning. Extremely short runs (N < 100 SA iterations) use defaults.

During the M tuning iterations, all neighbors are accepted regardless of cost difference
from current solution. This is consistent with the target acceptance rate 0.1% into the run
(λ0.001 ≈ 0.977), and 1% into the run (λ0.01 ≈ 0.807), when SA should be accepting nearly
all neighbors.

We vary the length of the tuning phase with run length, rather than using a fixed
number of tuning iterations, for two reasons. Longer runs can afford spending more time
tuning than shorter runs; and by varying the tuning phase length as a percentage of the
run, a few values that are required to tune the hyperparameters are independent of run
length (constants of Table 1), which supports very efficient implementation.

2.3.2. Tuning the Acceptance Rate EMA Hyperparameters

There are two hyperparameters, α and AcceptRate(0), that are related to the estima-
tion of the acceptance rate that occurs throughout the run. The Modified Lam defined a
constant AcceptRate(0) = 0.5, independent of run length and cost function scale, essen-
tially assuming that at the start it is equally likely to accept a neighbor as it is to reject it. For
an approach like the Modified Lam, which does not rely on any knowledge of the problem
instance, this is a reasonable assumption considering that an EMA should eventually settle
in upon an accurate estimation independent of its initial value.

The Self-Tuning Lam initializes AcceptRate(0) more accurately, to enhance the ac-
curacy of the EMA of the acceptance rate earlier in the search. Although the 0 seems to
imply the beginning of the run, we actually mean when the adaptive portion of the run
commences, once the M tuning iterations have ended. Prior to that point, the Self-Tuning
Lam does not need AcceptRate(0). Because it accepts all neighbors during the tuning
phase, it would not be unreasonable to define AcceptRate(0) = 1.0. However, we can be
more accurate. We will see in the next section that the temperature is initialized based on
samples of the cost function derived from the tuning iterations so as to cause the expected
value of the acceptance rate to equal the target acceptance rate. Therefore, we can initialize
AcceptRate(0) to the target:

AcceptRate(0) =

{
λ0.001 if N ≥ 10,000
λ0.01 if N < 10,000.

(9)

The original Modified Lam defines α = 0.002, independent of run length. This is
equivalent to what the finance industry refers to as a 999-day EMA, where an N-day EMA
is defined by α = 2/(N + 1). We obviously are not dealing with statistics of investments
over time. However, this definition of an N-day EMA is useful to us as a way to define
α in terms of run length. The problem with using a constant for α is that for short runs
of SA, the ongoing estimation of AcceptRate may not adapt quickly enough as the true
acceptance rate varies throughout the run.

In the Self-Tuning Lam, we define α in terms of the run length N. Specifically, we set α
for a 0.01N-day EMA, but we do not allow an α > 0.2 to avoid basing the running estimate
of the acceptance rate on too few samples. Thus, α is defined as follows:

α = min(2/(0.01N + 1), 0.2). (10)

Appl. Sci. 2021, 11, 9828 9 of 37

2.3.3. Tuning the Initial Temperature T0

One of the two hyperparameters that directly controls the evolution of the temperature
T throughout the run is the initial temperature T0. The Modified Lam sets it to a constant,
independent of run length and cost function scale. The initial temperature has a direct
effect on the Modified Lam’s problem solving efficacy, with respect to cost function scale. If
the average difference of cost between neighboring solutions is significantly above T0, then
the early portion of the search will fail to explore, choosing instead to reject all neighbors
with inferior cost, increasing the impact of local optima in the search space. Since the
Modified Lam is capable of increasing temperature, it will eventually adjust for this if the
run is sufficiently long, but will waste time early in the process.

In the Self-Tuning Lam, we utilize the M iterations of our new tuning phase to
gather data related to the average change in cost of random neighbors. First, recall from
Section 2.3.1 that the tuning phase of the Self-Tuning Lam accepts all neighbors, and thus
begins with a random walk from a random initial solution. Using the M tuning iterations,
we compute the average difference in cost between neighbors, but excluding cases where
the neighboring solutions have the same cost (those will be accounted for separately as
we will see). Let S0 be the random initial solution, and let Si be the random neighbor of
Si−1 generated during iteration i. Additionally, let C(Si) be the cost of solution Si, where
the problem is to minimize this cost. Define k as the count of the number of pairs of
neighboring solutions with different costs found during the tuning phase, as shown here:

k =
M

∑
i=1

{
1 if C(Si) 6= C(Si−1)

0 if C(Si) = C(Si−1).
(11)

Now, define the average change in cost, ∆C, as follows:

∆C =

{
1
k ∑M

i=1|C(Si)− C(Si−1)| if k > 0
1 if k = 0.

(12)

The case above when k = 0 occurs if all of the tuning samples reside on a plateau in the
search space. In this case, we set ∆C = 1 as we require it to be non-zero, which for an
integer cost problem is the lowest possible non-zero cost difference.

Define d as the number of cases where the cost of neighbor Si is either the same as or
superior to that of the prior solution Si−1 during the tuning phase, as shown here:

d =
M

∑
i=1

{
1 if C(Si) ≤ C(Si−1)

0 if C(Si) > C(Si−1).
(13)

These are cases where SA would deterministically choose to accept the neighbor. Next, use d
to define the proportion γ of tuning phase samples where SA would have deterministically
chosen to accept the neighbor, independent of the temperature:

γ =

{
d
M if d 6= M

d
1+M if d = M.

(14)

The case above when d = M occurs when all of the tuning samples reside on a plateau.
Our tuning use of γ requires γ < 1, which is the reason for the adjustment in this case.

We now use ∆C and γ to estimate the probability P(T0) that SA accepts a random
neighbor using the usual Boltzmann decision at temperature T0:

P(T0) = γ + (1− γ) · e−∆C/T0 , (15)

which is the probability γ of the deterministic acceptance case (i.e., SA always accepts
neighbors that are not worse than the current solution), plus the probability, 1− γ, that

Appl. Sci. 2021, 11, 9828 10 of 37

the random neighbor has worse cost times the probability of accepting it anyway (the SA’s
Boltzmann distribution), where we use ∆C as an estimate of the cost difference.

In Equation (9) we defined AcceptRate(0) at the end of the tuning phase to be equal
to the target acceptance rate M iterations into the run. We wish to set the initial tempera-
ture T0, such that the expected acceptance rate induced by T0 matches AcceptRate(0). To
accomplish this, we set P(T0) = AcceptRate(0), as follows:

γ + (1− γ) · e−∆C/T0 = AcceptRate(0), (16)

and then solve for T0:

T0 =
−∆C

ln
(

AcceptRate(0)−γ
1−γ

) . (17)

The (1− γ) term is the reason we made the earlier adjustment in Equation (14) to guarantee
that γ < 1. However, there is an additional issue with the ln in Equation (17) when
γ ≥ AcceptRate(0), which will only occur if the tuning phase wanders around on a
plateau. This should rarely occur since we previously saw that AcceptRate(0) is close to
1.0. If it occurs, we reset γ = AcceptRate(0)− 0.001. This allows us to redefine T0 as:

T0 =


−∆C

ln
(

AcceptRate(0)−γ
1−γ

) if γ < AcceptRate(0)

−∆C
ln
(

0.001
1.001−AcceptRate(0)

) if γ ≥ AcceptRate(0).
(18)

Recall from Equation (9) that AcceptRate(0) is defined in terms of constants depending
upon run length. So, the second logarithmic term is constant, leading finally to:

T0 =


−∆C

ln
(

AcceptRate(0)−γ
1−γ

) if γ < AcceptRate(0)

∆C · ζ0.001 if γ ≥ AcceptRate(0) and N ≥ 10,000
∆C · ζ0.01 if γ ≥ AcceptRate(0) and N < 10,000,

(19)

where ζ0.001 and ζ0.01 are as previously listed in Table 1.

2.3.4. Tuning the Rate of Temperature Change β

During each iteration, the temperature is either cooled by multiplying by β or heated
by dividing by β depending upon whether the acceptance rate is above or below the target
Lam rate. The original Modified Lam sets β to a constant, independent of run length and
cost function scale. However, the value of β in relation to run length and cost function
scale may impact behavior. For example, a β that is too near to 1.0 and may prevent the
annealing schedule from achieving the target Lam acceptance rate, but if β is too low it
may cause large oscillations above and below the target Lam rate.

In the Self-Tuning Lam, using the tuning phase data, we compute a value for β that
will enable it to keep pace with the exponential drop that occurs in the target Lam rate.
Under the assumption that each of the next M iterations after the tuning phase will cool
the temperature, we compute a value for β that will drop the initial temperature T0 to the
temperature T1 that leads to the target Lam rate at the end of that M iterations. Define R to
be the target Lam rate after these M iterations as follows:

R =

{
λ0.002 if N ≥ 10,000
λ0.02 if N < 10,000

(20)

We can now follow a similar approach to Equation (16) to compute the necessary tempera-
ture T1 to achieve the above R, setting up the following equation:

γ + (1− γ) · e−∆C/T1 = R. (21)

Appl. Sci. 2021, 11, 9828 11 of 37

We can then solve this for T1, making a similar assumption for the case when γ ≥ R as we
did in the previous section when γ ≥ AcceptRate(0), to derive the following:

T1 =


−∆C

ln
(

R−γ
1−γ

) if γ < R

∆C · ζ0.002 if γ ≥ R and N ≥ 10,000
∆C · ζ0.02 if γ ≥ R and N < 10,000,

(22)

where ζ0.002 and ζ0.02 are as previously listed in Table 1.
We can use the two temperatures, T0 and T1, to compute the β sufficient to cool T0 to

T1 over M iterations of SA. Specifically, we must solve the following for β:

T0 · βM = T1. (23)

Using our prior derivations of T0 and T1 (Equations (19) and (22)), we obtain:

β =



M

√
ln
(

AcceptRate(0)−γ
1−γ

)
ln
(

R−γ
1−γ

) if γ < R

M

√
−ζ0.002 · ln

(
AcceptRate(0)−γ

1−γ

)
if R ≤ γ < AcceptRate(0) and N ≥ 10,000

M

√
−ζ0.02 · ln

(
AcceptRate(0)−γ

1−γ

)
if R ≤ γ < AcceptRate(0) and N < 10,000

M
√

ζ0.002/ζ0.001 if γ ≥ AcceptRate(0) and N ≥ 10,000
M
√

ζ0.02/ζ0.01 if γ ≥ AcceptRate(0) and N < 10,000.

(24)

2.3.5. Putting It All Together

In this section, we describe the Self-Tuning Lam algorithmically. The tuning phase
length M is computed from the run length N in Algorithm 3 as described in Section 2.3.1.
The hyperparameters α and AcceptRate(0) for the EMA of the acceptance rate are tuned
in Algorithms 4 and 5, respectively, as described in Section 2.3.2. The initial temper-
ature T0 and the rate of temperature change β are tuned in Algorithm 6. Recall from
Sections 2.3.3 and 2.3.4 that tuning the temperature schedule requires collecting obser-
vations of the average change in cost, which is done by a random walk of length M.
Algorithm 6 returns T0 and β as well as the solution S at the end of that random walk,
which is used as the starting solution for the rest of the SA run. The complete pseudocode
of the Self-Tuning Lam is provided in Algorithm 7, which also uses the approach of the
Optimized Modified Lam [25] to incrementally compute the target Lam acceptance rate.

Algorithm 3 ComputeTuningPhaseLength(N)

1: if N ≥ 10,000 then
2: M← b0.001Nc
3: else
4: M← b0.01Nc
5: return M

Algorithm 4 TuneAlpha(N)

1: α← min(2/(0.01N + 1), 0.2)
2: return α

Appl. Sci. 2021, 11, 9828 12 of 37

Algorithm 5 TuneInitialAcceptanceRateEstimate(N)

1: if N ≥ 10,000 then
2: AcceptRate(0)← λ0.001
3: else
4: AcceptRate(0)← λ0.01
5: return AcceptRate(0)

Algorithm 6 TuneTemperatureSchedule(N, M, AcceptRate(0))

1: SumOfDifferences← 0
2: k← 0
3: d← 0
4: S← GenerateRandomInitialState()
5: for i = 1 to M do
6: S′ ← random selection from η(S)
7: if C(S) 6= C(S′) then
8: SumOfDifferences← |C(S)− C(S′)|+ SumOfDifferences
9: k← k + 1

10: if C(S′) ≤ C(S) then
11: d← d + 1
12: S← S′

13: if k > 0 then
14: ∆C ← SumOfDifferences/k
15: else
16: ∆C ← 1
17: if d 6= M then
18: γ← d/M
19: else
20: γ← d/(1 + M)
21: if N ≥ 10,000 then
22: R← λ0.002
23: else
24: R← λ0.02
25: if γ < AcceptRate(0) then
26: T0 ← −∆C

ln
(

AcceptRate(0)−γ
1−γ

)
27: if γ < R then

28: β← M

√
ln
(

AcceptRate(0)−γ
1−γ

)
ln
(

R−γ
1−γ

)
29: else if N ≥ 10,000 then

30: β← M

√
−ζ0.002 · ln

(
AcceptRate(0)−γ

1−γ

)
31: else

32: β← M

√
−ζ0.02 · ln

(
AcceptRate(0)−γ

1−γ

)
33: else if N ≥ 10,000 then
34: T0 ← ∆C · ζ0.001
35: β← M

√
ζ0.002/ζ0.001

36: else
37: T0 ← ∆C · ζ0.01
38: β← M

√
ζ0.02/ζ0.01

39: return S, T0, β

Appl. Sci. 2021, 11, 9828 13 of 37

Algorithm 7 Self-Tuning Modified Lam Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U() generates a uniform random value in [0, 1).
6: M← ComputeTuningPhaseLength(N)
7: α← TuneAlpha(N)
8: AcceptRate← TuneInitialAcceptanceRateEstimate(N)
9: S, T, β← TuneTemperatureSchedule(N, M, AcceptRate)

10: m0 = AcceptRate− 0.44
11: m1 = 560−1/(0.15N)

12: m2 = 440−1/(0.35N)

13: for i = M + 1 to N do
14: S′ ← random selection from η(S)
15: if C(S′) ≤ C(S) or U() < e(C(S)−C(S′))/T then
16: S← S′

17: AcceptRate← (1− α) ·AcceptRate + α
18: else
19: AcceptRate← (1− α) ·AcceptRate
20: if i ≤ 0.15N then
21: m0 = m0 ·m1
22: LamRate← 0.44 + m0
23: else if i > 0.65N then
24: LamRate← LamRate ·m2
25: else
26: LamRate← 0.44
27: if AcceptRate > LamRate then
28: T ← β · T
29: else
30: T ← T/β
31: return Best solution found during run

3. Results

In this section, we present our experimental results, exploring how well the Self-
Tuning Lam follows the target acceptance rate. Recall that the target Lam acceptance
rate declines exponentially over the first 15% of the run to an acceptance rate of 0.44. It
maintains the 0.44 acceptance rate for the next 50% of the run, when it again declines
exponentially over the last 35% of the run. This was illustrated earlier in Figure 1.

We compare the Self-Tuning Lam to the Modified Lam on discrete optimization
(Section 3.1) and continuous optimization problems (Section 3.2), as well as an NP-Hard
problem (Section 3.3). Our objective is not necessarily to demonstrate superiority in solution
quality in a broad sense. Rather, we aim to show that the behavior of the Self-Tuning Lam
better matches the target behavior for Lam annealing. In particular, we aim to show
that it consistently follows the target Lam acceptance rate across problems with varying
characteristics, independent of cost function scale, and run length. We do however also
report solution quality in terms of the cost function that is minimized.

We solve each problem 100 times with the Self-Tuning Lam and 100 times with the
Modified Lam, for each of several run lengths. At 200 equally spaced intervals during
the run, we record whether or not SA accepted the neighbor. Then, at each of those
200 intervals, we compute the acceptance rate across the 100 SA runs as the percentage of
the runs where SA accepted a neighbor at an interval. We then compute the Mean Squared
Error (MSE) of the 200 samples of the Self-Tuning Lam’s acceptance rate relative to the
target rate, and likewise for the Modified Lam. After confirming normality, we test the
significance of the difference in the MSE with a T-test.

Appl. Sci. 2021, 11, 9828 14 of 37

In Section 3.4, we also explore the time differences (if any) between the two annealing
schedules. The purpose of this comparison is to confirm that the tuning procedure of the
Self-Tuning Lam does not increase the runtime of SA.

The Java programs for running the experiments were compiled on Windows 10 using
OpenJDK 11 for a Java 11 target. The experiments were executed using the OpenJDK
64-bit Server VM (build 11.0.8+10) on a Windows 10 machine, with an AMD A10-5700
3.4 GHz CPU, and 8GB RAM. For the original Modified Lam annealing schedule, as well
as the SA implementation itself, we used Chips-n-Salsa 2.12.1, compiled on Ubuntu using
OpenJDK 11, 64-bit, for a Java 8 target (the library currently supports Java 8 and up). We
used an official release from the Maven Central repository, rather than a development
version of the Chips-n-Salsa library to ensure reproducibility of our results. The build
configuration files in the source code repository will ensure that interested readers who
rerun our experiments use the exact versions of libraries, etc., that were used to produce the
results of this paper. The new Self-Tuning Lam annealing schedule has been subsequently
added to the Chips-n-Salsa library, 2.13.0.

3.1. Discrete Optimization Results

We begin our experimental comparison with discrete optimization problems. We
specifically use classic optimization problems over the space of bit vectors [38,39], which
are commonly used in benchmarking genetic algorithms. The problems isolate specific
characteristics (e.g., local minima, etc.) commonly encountered in search spaces.

For all of the bit-string optimization problems, our neighborhood function flips a
randomly chosen bit (i.e., from a 0 to a 1 or vice versa).

3.1.1. OneMax: Single Global Optimum and No Local Optima

Our first set of results are on the well-known OneMax problem, originally posed
by Ackley [38] and commonly utilized in benchmarking genetic algorithms, where the
objective is to maximize the function (over bit vectors x):

f (x) = 10 ·CountOfOneBits(x). (25)

We use a bit vector length of 256, so the optimal solution (all ones) has a value of 2560.
We have defined our SA as a minimizer, which is how SA is usually described. Thus,

we transform the problem, such that we must minimize the following cost function:

C(x) = 10 ·CountOfZeroBits(x). (26)

Further, although Ackley’s formulation has a coefficient of 10 (i.e., each 0-bit incurs a cost
of 10), we make an additional modification to explore the effects of cost scale:

Cφ(x) = φ ·CountOfZeroBits(x). (27)

We consider three cases, C1, C10, and C100, where each 0-bit incurs a cost of 1, 10, and 100
respectively. The optimal solution is a bit vector of all ones, which has a cost of 0.

OneMax is not hard to solve. However, we should expect SA to waste time while
solving it. Since the search landscape has a single global optimum, and no local optima,
any movement that increases cost must eventually be reverted. A simple strict descending
hill climber optimally solves OneMax faster than SA, since SA will accept neighbors of
increasing cost to attempt to avoid local optima that it does not know are not there.

Figures 2–4 show the actual acceptance rates computed over the 100 runs of the Self-
Tuning Lam and the Modified Lam, as well as the target acceptance rate for the three
variations of the OneMax cost function, C1, C10, and C100, respectively. The figures also
list the MSE for each algorithm relative to the target acceptance rate, and the p-value for a
T-Test testing the significance of the difference of the MSE.

Appl. Sci. 2021, 11, 9828 15 of 37

In the first case, where each 0-bit incurs a cost of 1 (Figure 2), the Self-Tuning Lam
matches the target acceptance rate extremely well (low MSE) for all run lengths considered;
whereas the Modified Lam is affected more by run length, as is easily seen visually in
Figure 2a for short runs 1000 SA iterations in length. The Self-Tuning Lam’s MSE is lower
than that of the Modified Lam at extremely statistically significant levels for runs of length
1000 and 10,000 iterations (Figure 2a,b). However, for longer runs of 100,000 iterations, the
difference in MSE is not significant, p = 0.15, as shown in Figure 2c. The 1 million iteration
case, at first glance, appears to be an exception where the Modified Lam better matches
the target rate (e.g., lower MSE at statistically significant level, p = 0.008). However, a
closer inspection of the raw data shows that this is because the Self-Tuning Lam optimally
solved the problem prior to the end of the run for all 100 runs at this run length. The effect
is seen in Figure 2d approximately 70% to 75% into the run where the acceptance rate
for the Self-Tuning Lam drops to 0, where it remains. The SA implementation from the
Chips-n-Salsa library terminates a run early if a solution is found with a cost equal to the
theoretical minimum cost for the problem. The same occurs for the Modified Lam in this
case, but slightly later in the run, closer to the 80% mark. Due to this, the MSE comparison
for the 1 million iteration runs of Figure 2d should be excluded from the analysis.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−27

Target acceptance rate

Modified Lam (MSE = 0.0293)

Self-Tuning Lam (MSE = 0.0058)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0037

Target acceptance rate

Modified Lam (MSE = 0.0058)

Self-Tuning Lam (MSE = 0.0016)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.15

Target acceptance rate

Modified Lam (MSE = 0.0035)

Self-Tuning Lam (MSE = 0.0020)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0081

Target acceptance rate

Modified Lam (MSE = 0.0017)

Self-Tuning Lam (MSE = 0.0034)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 2. OneMax (each 0-bit costs 1): Self-Tuning Lam, Modified Lam, and target acceptance rates
for (a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

When we increase the cost incurred by each 0-bit to 10 (Figure 3) and 100 (Figure 4),
we see that the Self-Tuning Lam continues to match the target acceptance rate very well
(i.e., low MSE) at all run lengths, but the Modified Lam is much farther from the target.
The MSE of the Self-Tuning Lam is much lower than that of the Modified Lam at extremely
statistically significant levels for these two cost function scales and run lengths except for
1 million iteration runs for C10 (Figure 3d) where no significant difference was found. In the
other cases, the acceptance rate of the Modified Lam either oscillates wildly with respect to
the target rate (e.g., Figure 3b) or never manages to synchronize itself with the target rate
in the first place (e.g., Figures 3a and 4a–d).

Appl. Sci. 2021, 11, 9828 16 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−29

Target acceptance rate

Modified Lam (MSE = 0.0633)

Self-Tuning Lam (MSE = 0.0051)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−15

Target acceptance rate

Modified Lam (MSE = 0.0476)

Self-Tuning Lam (MSE = 0.0022)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0028

Target acceptance rate

Modified Lam (MSE = 0.0176)

Self-Tuning Lam (MSE = 0.0017)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.21

Target acceptance rate

Modified Lam (MSE = 0.0047)

Self-Tuning Lam (MSE = 0.0031)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 3. OneMax (each 0-bit costs 10): Self-Tuning Lam, Modified Lam, and target acceptance rates
for (a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−29

Target acceptance rate

Modified Lam (MSE = 0.0621)

Self-Tuning Lam (MSE = 0.0051)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−50

Target acceptance rate

Modified Lam (MSE = 0.1315)

Self-Tuning Lam (MSE = 0.0022)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−42

Target acceptance rate

Modified Lam (MSE = 0.1446)

Self-Tuning Lam (MSE = 0.0026)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−40

Target acceptance rate

Modified Lam (MSE = 0.1452)

Self-Tuning Lam (MSE = 0.0029)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 4. OneMax (each 0-bit costs 100): Self-Tuning Lam, Modified Lam, and target acceptance rates
for (a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 17 of 37

Although our focus is in better matching the target Lam rate, we also provide results
on the optimization objective in Tables 2–4 for all three scales of OneMax. In all three cases,
all runs of length 100,000 or more iterations optimally solved the problem by the end of the
run. Nearly all 10,000 iteration runs optimally solved the problem as well. Any difference
in solution quality for longer runs is negligible. For the shortest runs (1000 iterations), the
Modified Lam found higher quality (lower cost) solutions on average when the cost per bit
was either 10 or 100 (Tables 3 and 4, respectively), but the Self-Tuning Lam found better
solutions when the cost per bit was 1 (Table 2).

There is a simple explanation for why the Modified Lam finds better solutions for
short runs when 0-bits cost 10 or 100. Ironically, it is exactly due to its failure to match
the target acceptance rate. OneMax has no local optima, so accepting any neighbor of
increasing cost will definitely increase time to find the optimal. When we scale the cost of
0-bits to 10 or 100, the initial temperature T0 = 0.5 is so low relative to the costs that the
probability of accepting neighbors of increased cost is very near 0, and the run is so short
that there is insufficient time to increase T to converge with the target acceptance rate (e.g.,
see Figures 3a and 4a). Thus, the Modified Lam is behaving like a strict hill climber, and
a strict hill climber should necessarily outperform SA on OneMax. We include OneMax
results to demonstrate the Self-Tuning Lam’s ability to more effectively match the target
acceptance rate independent of the cost scale, which it does quite nicely.

Table 2. Average solution cost for the OneMax problem, case when each 0-bit costs 1.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 24.5 16.5 <10−26

10,000 0.01 0.04 0.17
100,000 0.00 0.00 n/a

1,000,000 0.00 0.00 n/a

Table 3. Average solution cost for the OneMax problem, case when each 0-bit costs 10.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 25.2 167.9 <10−66

10,000 0.00 0.08 0.01
100,000 0.00 0.00 n/a

1,000,000 0.00 0.00 n/a

Table 4. Average solution cost for the OneMax problem, case when each 0-bit costs 100.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 231.0 1661.0 <10−66

10,000 0.00 6.00 0.01
100,000 0.00 0.00 n/a

1,000,000 0.00 0.00 n/a

3.1.2. TwoMax: Single Global Optimum and Single Local Optimum

We next consider the classic TwoMax problem [38] over bit vectors x of length n,
characterized by one global optimum, and one local optimum, where we must maximize:

f (x) = |18 ·CountOfOneBits(x)− 8 · n|. (28)

The global maximum is x of all ones, with f (x) = 10n; and the local maximum is x of all
zeros, with f (x) = 8n. We transform the problem to minimizing the cost function:

C(x) = 10 · n− |18 ·CountOfOneBits(x)− 8 · n|. (29)

Appl. Sci. 2021, 11, 9828 18 of 37

The global minimum has a cost of 0, and the local minimum has a cost of 2n. We again use
bit vectors of length 256, so the local minimum for this problem has a cost of 512.

Figure 5 shows the acceptance rates for the Modified Lam and the Self-Tuning Lam,
and the target acceptance rate, for different run lengths. Similar to what we previously saw
for OneMax, the Self-Tuning Lam effectively follows the target Lam acceptance rate, with
very low MSE, and which you can also see visually in the graphs. The acceptance rate for
the Modified Lam oscillates wildly for most run lengths, and for the shortest run length
is rather far from the target. The MSE of the Self-Tuning Lam is extremely statistically
significantly lower than that of the Modified Lam (from a p < 10−6 for the 100,000 iteration
run length to a p < 10−29 for the shortest run lengths).

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−29

Target acceptance rate

Modified Lam (MSE = 0.0621)

Self-Tuning Lam (MSE = 0.0046)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−24

Target acceptance rate

Modified Lam (MSE = 0.0780)

Self-Tuning Lam (MSE = 0.0023)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−6

Target acceptance rate

Modified Lam (MSE = 0.0385)

Self-Tuning Lam (MSE = 0.0019)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−12

Target acceptance rate

Modified Lam (MSE = 0.0330)

Self-Tuning Lam (MSE = 0.0028)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 5. TwoMax problem: Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Table 5 summarizes the results for TwoMax. For very short runs, the Modified Lam
outperforms the Self-Tuning Lam (at statistically significant levels). However, as run length
increases, the Self-Tuning Lam begins outperforming the Modified Lam due to its more
effective exploration. The performance advantage appears to switch around run length
10,000, when the Self-Tuning Lam finds solutions with lower average cost, although not at a
statistically significant level. When run length is increased further to 100,000 SA iterations,
the Self-Tuning Lam optimally solves the problem in all 100 experimental runs, while
the Modified Lam gets caught in the local optima for some runs. The cost difference is
statistically significant in that case (p = 0.04).

Table 5. Average solution cost for the TwoMax problem.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 60.00 312.62 <10−36

10,000 15.36 10.78 0.69
100,000 20.48 0.00 0.04

1,000,000 0.00 0.00 n/a

Appl. Sci. 2021, 11, 9828 19 of 37

3.1.3. Trap: Single Global Optimum and a Strongly Attractive Local Optimum

In the Trap problem, there is a single global optimum, and a single local optimum,
but where most of the search space is within the attraction basin of the local optimum [39].
Specifically, we must maximize the following function over bit vectors x of length n:

f (x) =

{ 8n(z−CountOfOneBits(x))
z if CountOfOneBits(x) ≤ z

10n(CountOfOneBits(x)−z)
(n−z) otherwise,

(30)

where z =
∣∣ 3n

4

∣∣. The global maximum is x of all ones, with f (x) = 10n; and the local
maximum is x of all zeros, with f (x) = 8n, just like TwoMax. However, the sub-optimal
local maximum is significantly more attractive than the global maximum. We transform
the problem to minimizing the following cost function:

C(x) = 10 · n− f (x), (31)

which has a minimum cost of 0 for the global optimum, and a cost of 2n for the local
optimum, which for the 256-bit vectors of our experiments has a cost of 512.

In Figure 6, we see that the Self-Tuning Lam consistently achieves the target Lam
acceptance rate independent of run length with low MSE, while the Modified Lam is far
less consistent. The Modified Lam eventually achieves the target rate for longer runs,
taking more time at the start to adapt the temperature. For 1 million iteration runs, the
difference in MSE is not statistically significant (p = 0.32). However, for all other run
lengths, the Self-Tuning Lam achieves a much lower MSE at statistically significant levels.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−29

Target acceptance rate

Modified Lam (MSE = 0.0627)

Self-Tuning Lam (MSE = 0.0052)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−13

Target acceptance rate

Modified Lam (MSE = 0.0461)

Self-Tuning Lam (MSE = 0.0019)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.025

Target acceptance rate

Modified Lam (MSE = 0.0155)

Self-Tuning Lam (MSE = 0.0019)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.32

Target acceptance rate

Modified Lam (MSE = 0.0031)

Self-Tuning Lam (MSE = 0.0018)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 6. Trap problem: Self-Tuning Lam, Modified Lam, and target acceptance rates for (a) 1000 iter-
ations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Both algorithms consistently get stuck in the “trap”. Although for TwoMax we saw
that the superior exploration of the Self-Tuning Lam leads to an increased chance of
converging to the global optimum, this is not the case with Trap. Table 6 summarizes the
results. No runs at any length of either algorithm found the global optimum. For the two

Appl. Sci. 2021, 11, 9828 20 of 37

longest run lengths, all 100 runs of both algorithms got caught in the trap, converging to the
local optimum with cost 512. The same is nearly true for the runs of length 10,000, where
some runs of the Self-Tuning Lam were still attempting to escape the trap (e.g., the average
cost in that case was just above 512). Although the shortest runs saw an average cost for
the Modified Lam lower than that of the Self-Tuning Lam at a statistically significant level,
neither algorithm escaped the trap in any runs.

Table 6. Average solution cost for the Trap problem.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 539.63 683.63 <10−65

10,000 512.00 512.43 0.04
100,000 512.00 512.00 n/a

1,000,000 512.00 512.00 n/a

3.2. Continuous Optimization Results

We now consider continuous function optimization, utilizing function optimization
problems that have been used in other experimental studies [40,41]. Additionally, we
define a variation of each enabling scaling the function so that we can demonstrate that the
Self-Tuning Lam’s behavior is robust to cost scale. We consider several run lengths. For
each combination of problem, run length, and algorithm, we average 100 runs.

We use Gaussian mutation [42], where a real value x is mutated into x′ via:

x′ = x + N(0, σ), (32)

where N(0, σ) is a normally distributed random variable with mean 0 and standard devia-
tion σ. We use σ = 0.05. The reason for such a small σ is the domain of the functions we
are optimizing. For example, x ∈ [0.0, 1.0] for two of them.

3.2.1. One Global Minimum, One Local Minimum, and Inflexion Point

We first use a pair of functions from Forrester et al. [40], both of which are minimization
problems, so unlike the discrete optimization experiments, no transformation is necessary.
Both define x ∈ [0.0, 1.0]. The first function that we must minimize is:

f1(x) = (6x− 2)2 sin(12x− 4), (33)

The second problem is defined in terms of the first, where we must minimize:

f2(x) = 0.5 f1(x) + 10(x− 0.5) + 5. (34)

Both functions are characterized by a global minimum, a sub-optimal local minimum, and
an inflexion point, as seen in Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0

x

−5

0

5

10

15

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

f(
x)

(a) (b)

Figure 7. Graphs of (a) f1(x) and (b) f2(x).

Appl. Sci. 2021, 11, 9828 21 of 37

The global minimum for f1 occurs at x ≈ 0.75725, and is f1(x) ≈ −6.02074. The local
minimum occurs at x ≈ 0.14259, which leads to f1(x) ≈ −0.98633. Similarly, the global
minimum for f2 occurs at x ≈ 0.09239, and is f2(x) ≈ 0.665095. The local minimum occurs
at x ≈ 0.73650, which leads to f2(x) ≈ 4.46227.

However, we add a scale parameter to each to enable exploring the impact of function
scale on the behavior of the Self-Tuning Lam and Modified Lam annealing schedules.
Therefore, we consider the following functions (for φ ∈ {1, 10, 100, 1000}):

f1,φ(x) = φ(6x− 2)2 sin(12x− 4), (35)

and
f2,φ(x) = φ(0.5 f1(x) + 10(x− 0.5) + 5). (36)

We begin by examining the results on minimizing f1,φ(x). Before exploring the
acceptance rates, take a look at comparisons of the average solutions found by the two
algorithms at different run lengths N, for the four scaled versions of the problem, f1,1(x),
f1,10(x), f1,100(x), and f1,1000(x), in Tables 7–10, respectively. Note that the value of the
optimal solution scales according to our scale factor.

Table 7. Average solution for minimizing f1,1(x). The minimum is f1,1(x) ≈ −6.02074.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −4.309034 −3.651338 0.06
10,000 −5.416610 −4.965097 0.09

100,000 −6.020740 −5.970393 0.32
1,000,000 −6.020740 −6.020740 n/a

Table 8. Average solution for minimizing f1,10(x). The minimum is f1,10(x) ≈ −60.2074.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −33.524983 −40.061769 0.07
10,000 −28.994029 −54.713137 <10−14

100,000 −48.628247 −60.207395 <10−6

1,000,000 −60.207401 −60.207401 0.14

Table 9. Average solution for minimizing f1,100(x). The minimum is f1,100(x) ≈ −602.074.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −340.284138 −349.329322 0.80
10,000 −350.353270 −520.506232 <10−6

100,000 −360.422102 −598.098820 <10−14

1,000,000 −602.074006 −602.074006 0.06

Table 10. Average solution for minimizing f1,1000(x). The minimum is f1,1000(x) ≈ −6020.74.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −3402.841736 −3637.881712 0.51
10,000 −3251.811974 −5199.982268 <10−8

100,000 −3201.467852 −5970.395531 <10−18

1,000,000 −6020.740052 −6020.740056 0.14

We derive several observations from these. First, for the original version of the
problem f1,1(x), we did not observe a statistically significant difference. However, for all
other scalings of the function, f1,10(x), f1,100(x), and f1,1000(x), the Self-Tuning Lam finds
vastly superior solutions than the Modified Lam for runs of 10,000 or 100,000 SA iterations,
at extremely statistically significant levels. There is not a significant difference for the

Appl. Sci. 2021, 11, 9828 22 of 37

1 million iteration runs, as both algorithms consistently optimally or near optimally solve
the problem at that run length. However, the solutions found by the Self-Tuning Lam are
already near-optimal for the 100,000 iteration runs, while the Modified Lam solutions are
still significantly off at that run length. The Self-Tuning Lam optimally solves the problem
an order of magnitude faster than the Modified Lam. We attribute this to the Self-Tuning
Lam’s ability to more consistently follow its target Lam acceptance rate, independent of
function scale, as seen in Figures 8–11, and independent of run length (e.g., parts (a) to (d)
of each figure that follows).

We continue by examining the results of the experiments on minimizing f2,φ(x).
Comparisons of the average solutions found by the two algorithms at different run lengths
N, for the four scaled versions of the problem that we consider, f2,1(x), f2,10(x), f2,100(x),
and f2,1000(x), are shown in Tables 11–14, respectively. Note that the value of the optimal
solution scales according to our scale factor φ.

First, for the original version of the problem (Table 11), no statistically significant differ-
ence was seen, except for the shortest runs (N = 1000), where the Modified Lam exhibited
a slight performance advantage. The Self-Tuning Lam achieved a near-optimal solution on
average with fewer iterations than the Modified Lam (e.g., beginning at 10,000 iterations for
the Self-Tuning Lam vs 100,000 iterations for the Modified Lam). However, the difference
at 10,000 iterations was not statistically significant (p = 0.32).

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−19

Target acceptance rate

Modified Lam (MSE = 0.0560)

Self-Tuning Lam (MSE = 0.0029)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0
ac
ce
p
ta
n
ce

ra
te

p ≤ 10−13

Target acceptance rate

Modified Lam (MSE = 0.0146)

Self-Tuning Lam (MSE = 0.0021)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.15

Target acceptance rate

Modified Lam (MSE = 0.0026)

Self-Tuning Lam (MSE = 0.0018)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.62

Target acceptance rate

Modified Lam (MSE = 0.0024)

Self-Tuning Lam (MSE = 0.0020)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 8. Minimize f1,1(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for (a) 1000 it-
erations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 23 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−36

Target acceptance rate

Modified Lam (MSE = 0.0461)

Self-Tuning Lam (MSE = 0.0036)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−7

Target acceptance rate

Modified Lam (MSE = 0.0192)

Self-Tuning Lam (MSE = 0.0020)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.068

Target acceptance rate

Modified Lam (MSE = 0.0063)

Self-Tuning Lam (MSE = 0.0021)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.29

Target acceptance rate

Modified Lam (MSE = 0.0032)

Self-Tuning Lam (MSE = 0.0018)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 9. Minimize f1,10(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−41

Target acceptance rate

Modified Lam (MSE = 0.0895)

Self-Tuning Lam (MSE = 0.0031)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−11

Target acceptance rate

Modified Lam (MSE = 0.0456)

Self-Tuning Lam (MSE = 0.0022)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.020

Target acceptance rate

Modified Lam (MSE = 0.0131)

Self-Tuning Lam (MSE = 0.0022)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.44

Target acceptance rate

Modified Lam (MSE = 0.0032)

Self-Tuning Lam (MSE = 0.0022)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 10. Minimize f1,100(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 24 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−46

Target acceptance rate

Modified Lam (MSE = 0.1202)

Self-Tuning Lam (MSE = 0.0037)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−22

Target acceptance rate

Modified Lam (MSE = 0.0795)

Self-Tuning Lam (MSE = 0.0017)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0052

Target acceptance rate

Modified Lam (MSE = 0.0189)

Self-Tuning Lam (MSE = 0.0019)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.28

Target acceptance rate

Modified Lam (MSE = 0.0045)

Self-Tuning Lam (MSE = 0.0022)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 11. Minimize f1,1000(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Table 11. Average solution for minimizing f2,1(x). The minimum is f2,1(x) ≈ 0.665095.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 1.044128 1.690334 0.002
10,000 0.703067 0.665095 0.32

100,000 0.665095 0.665095 0.32
1,000,000 0.665095 0.665095 0.07

Table 12. Average solution for minimizing f2,10(x). The minimum is f2,10(x) ≈ 6.65095.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 22.978824 13.303961 <10−4

10,000 18.422196 6.650951 <10−8

100,000 6.650951 6.650951 0.69
1,000,000 6.650951 6.650951 0.95

Table 13. Average solution for minimizing f2,100(x). The minimum is f2,100(x) ≈ 66.5095.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 203.207943 149.615304 0.03
10,000 172.830434 66.509514 <10−7

100,000 66.509512 66.509512 0.58
1,000,000 66.509512 66.509512 0.51

Appl. Sci. 2021, 11, 9828 25 of 37

Table 14. Average solution for minimizing f2,1000(x). The minimum is f2,1000(x) ≈ 665.095.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 2563.685013 1720.298119 0.001
10,000 1994.106640 665.095131 <10−10

100,000 665.095123 665.095123 0.22
1,000,000 665.095123 665.095123 0.22

At all other scales (Tables 12–14) the Self-Tuning Lam achieved far superior solutions
on average than the Modified Lam at very statistically significant levels for N ≤ 10,000.
For all three of those scales, the Self-Tuning Lam’s solutions for N = 10,000 were on
average near-optimal, just as achieved for the original version of the problem; whereas the
Modified Lam required an order of magnitude longer to achieve solutions of that quality.
No statistically significant difference was seen for the longest runs of N ≥ 100,000, as
average solutions for both algorithms are very near the optimal.

When minimizing f2,φ, the Self-Tuning Lam optimally solves the problem an order
of magnitude faster than the Modified Lam. This is likely due to the Self-Tuning Lam’s
ability to more consistently follow the target acceptance rate, independent of cost scale (see
Figures 12–15) and run length (e.g., parts (a) to (d) of those figures).

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−32

Target acceptance rate

Modified Lam (MSE = 0.1393)

Self-Tuning Lam (MSE = 0.0039)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0
ac
ce
p
ta
n
ce

ra
te

p ≤ 10−21

Target acceptance rate

Modified Lam (MSE = 0.0193)

Self-Tuning Lam (MSE = 0.0020)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.32

Target acceptance rate

Modified Lam (MSE = 0.0027)

Self-Tuning Lam (MSE = 0.0020)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.068

Target acceptance rate

Modified Lam (MSE = 0.0026)

Self-Tuning Lam (MSE = 0.0015)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 12. Minimize f2,1(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 26 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−25

Target acceptance rate

Modified Lam (MSE = 0.0435)

Self-Tuning Lam (MSE = 0.0031)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−6

Target acceptance rate

Modified Lam (MSE = 0.0169)

Self-Tuning Lam (MSE = 0.0022)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.073

Target acceptance rate

Modified Lam (MSE = 0.0057)

Self-Tuning Lam (MSE = 0.0018)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.34

Target acceptance rate

Modified Lam (MSE = 0.0029)

Self-Tuning Lam (MSE = 0.0020)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 13. Minimize f2,10(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−43

Target acceptance rate

Modified Lam (MSE = 0.0783)

Self-Tuning Lam (MSE = 0.0033)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−11

Target acceptance rate

Modified Lam (MSE = 0.0396)

Self-Tuning Lam (MSE = 0.0021)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.035

Target acceptance rate

Modified Lam (MSE = 0.0107)

Self-Tuning Lam (MSE = 0.0019)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.44

Target acceptance rate

Modified Lam (MSE = 0.0029)

Self-Tuning Lam (MSE = 0.0020)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 14. Minimize f2,100(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 27 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−45

Target acceptance rate

Modified Lam (MSE = 0.1142)

Self-Tuning Lam (MSE = 0.0033)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−21

Target acceptance rate

Modified Lam (MSE = 0.0769)

Self-Tuning Lam (MSE = 0.0019)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0078

Target acceptance rate

Modified Lam (MSE = 0.0186)

Self-Tuning Lam (MSE = 0.0021)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.20

Target acceptance rate

Modified Lam (MSE = 0.0047)

Self-Tuning Lam (MSE = 0.0019)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 15. Minimize f2,1000(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

3.2.2. Single Global Minimum and Large Number of Local Minimums

We now consider a problem with many local minimums, but only a single global
minimum, as illustrated in Figure 16, where we must minimize the function [41]:

g(x) =
sin(10πx)

2x
+ (x− 1)4, (37)

for x ∈ [0.5, 2.5]. The minimum occurs at x ≈ 0.548563, where g(x) ≈ −0.869011.

0.5 1.0 1.5 2.0 2.5

x

−1

0

1

2

3

4

5

g
(x
)

Figure 16. Graph of g(x).

We introduce a scale parameter to explore the impact of cost scale on the behavior of
the annealing schedules. Thus, we define the variation for φ ∈ {1, 10, 100, 1000}:

gφ(x) = φ

(
sin(10πx)

2x
+ (x− 1)4

)
. (38)

Appl. Sci. 2021, 11, 9828 28 of 37

Tables 15–18 summarize the results. At a high-level, we find a similar pattern to
the previous continuous problems. For the original function scale (Table 15), runs with
N ≥ 10,000 produced no statistically significant difference, but for the shortest runs
(N = 1000), the Modified Lam found better quality solutions.

Once we scale the cost function (Tables 16–18), the Self-Tuning Lam finds near-optimal
solutions an order of magnitude faster than the Modified Lam (at N = 10,000 for the Self-
Tuning Lam vs. N = 100,000 for the Modified Lam). Furthermore, for each of those three
scales, the differences in solution quality for short runs (N ≤ 10,000) are very statistically
significant in favor of the Self-Tuning Lam. The differences in solution quality for the
longest runs (N ≥ 100,000) are not statistically significant. Both algorithms find solutions
that are on average near-optimal for runs of those lengths.

Table 15. Average solution for minimizing g1(x). The minimum is g1(x) ≈ −0.869011.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −0.682822 −0.547887 <10−5

10,000 −0.851176 −0.846336 0.62
100,000 −0.869011 −0.869011 0.24

1,000,000 −0.869011 −0.869011 0.26

Table 16. Average solution for minimizing g10(x). The minimum is g10(x) ≈ −8.69011.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −4.555178 −5.712597 0.0002
10,000 −8.187308 −8.416688 0.08

100,000 −8.690111 −8.690111 0.01
1,000,000 −8.690111 −8.690111 0.63

Table 17. Average solution for minimizing g100(x). The minimum is g100(x) ≈ −86.9011.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −38.269621 −52.774954 <10−5

10,000 −76.827533 −85.156692 <10−5

100,000 −86.901113 −86.901113 0.60
1,000,000 −86.901113 −86.901113 0.07

Table 18. Average solution for minimizing g1000(x). The minimum is g1000(x) ≈ −869.011.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 −340.359950 −565.666535 <10−10

10,000 −715.997501 −855.184880 <10−12

100,000 −869.011133 −869.011126 0.14
1,000,000 −869.011135 −869.011135 0.10

Figures 17–20 show graphs of the acceptance rates of the Self-Tuning Lam and the
Modified Lam, relative to the target Lam acceptance rate for the problems of minimizing g1,
g10, g100, and g1000, respectively. Just as we saw previously with the problems of minimizing
f1,φ and f2,φ, the Self-Tuning Lam more consistently follows its target Lam acceptance rate,
independent of function scale, as seen in each of Figures 17–20, and independent of run
length as seen in parts (a) to (d) of each of the four figures that follow. This is contrasted
with the acceptance rates of the Modified Lam that only converge to the target acceptance
rates for the longer run lengths, such as in part (d) of each of the following figures, and in
some cases part (c).

Appl. Sci. 2021, 11, 9828 29 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−36

Target acceptance rate

Modified Lam (MSE = 0.1109)

Self-Tuning Lam (MSE = 0.0035)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−14

Target acceptance rate

Modified Lam (MSE = 0.0120)

Self-Tuning Lam (MSE = 0.0018)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.68

Target acceptance rate

Modified Lam (MSE = 0.0019)

Self-Tuning Lam (MSE = 0.0021)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.15

Target acceptance rate

Modified Lam (MSE = 0.0017)

Self-Tuning Lam (MSE = 0.0023)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 17. Minimize g1(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−29

Target acceptance rate

Modified Lam (MSE = 0.0444)

Self-Tuning Lam (MSE = 0.0038)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−7

Target acceptance rate

Modified Lam (MSE = 0.0179)

Self-Tuning Lam (MSE = 0.0016)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.088

Target acceptance rate

Modified Lam (MSE = 0.0059)

Self-Tuning Lam (MSE = 0.0021)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.82

Target acceptance rate

Modified Lam (MSE = 0.0020)

Self-Tuning Lam (MSE = 0.0018)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 18. Minimize g10(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 30 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−40

Target acceptance rate

Modified Lam (MSE = 0.0873)

Self-Tuning Lam (MSE = 0.0034)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−10

Target acceptance rate

Modified Lam (MSE = 0.0404)

Self-Tuning Lam (MSE = 0.0021)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.035

Target acceptance rate

Modified Lam (MSE = 0.0124)

Self-Tuning Lam (MSE = 0.0022)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.49

Target acceptance rate

Modified Lam (MSE = 0.0029)

Self-Tuning Lam (MSE = 0.0021)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 19. Minimize g100(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−45

Target acceptance rate

Modified Lam (MSE = 0.1169)

Self-Tuning Lam (MSE = 0.0028)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−22

Target acceptance rate

Modified Lam (MSE = 0.0798)

Self-Tuning Lam (MSE = 0.0018)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0053

Target acceptance rate

Modified Lam (MSE = 0.0181)

Self-Tuning Lam (MSE = 0.0019)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.24

Target acceptance rate

Modified Lam (MSE = 0.0041)

Self-Tuning Lam (MSE = 0.0021)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 20. Minimize g1000(x): Self-Tuning Lam, Modified Lam, and target acceptance rates for
(a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 31 of 37

3.3. An NP-Hard Problem: The Traveling Salesperson

We now examine experiments with the Traveling Salesperson Problem (TSP), a classic
NP-Hard [1] problem. We generate test problem instances randomly, with city locations
distributed uniformly. To explore the effects of cost function scale, consider two problem
variations with cities arranged within a: (a) unit square, and (b) 100 by 100 square. We
average the results over 100 runs, using 100 random instances, whereas the earlier bench-
mark problems define a single instance per problem. We use 100 instances to ensure that
we do not rely on an instance that is either especially easy or especially hard. The cost
function is the Euclidean distance of the tour of the cities. The mutation operator is the
classic two-change [43], which removes two edges from the tour, replacing them with two
edges that create a different valid tour.

Tables 19 and 20 compare average tour costs of the two algorithms for the case
where the 1000 cities are randomly distributed over the unit square, and over a 100 by
100 square, respectively. To statistically validate the results, we use T-tests with paired
samples since both algorithms solve the same 100 random instances. Figures 21 and 22
show the acceptance rates of the two algorithms relative to the target Lam rate.

In the first case (Table 19 and Figure 21), when cities are distributed over the unit
square, we find that for runs of length N = 1000 and N = 10,000, the Self-Tuning Lam
finds better quality solutions at extremely statistically significant levels (p < 10−52 and
p = 0.0001, respectively); while at the longest run lengths, differences are not statistically
significant. When the Self-Tuning Lam performs better it corresponds to when it better
matches the target Lam rate as seen in Figure 21a,b. For the longest runs when there
is no statistically significant difference in the cost function, we also find that there is no
statistically significant difference in the MSE of the two algorithms relative to the target
Lam rate, which can be seen in Figure 21c,d.

When we distribute cities over a 100 by 100 square (Table 20 and Figure 22), we first
find for very short runs (N = 1000 iterations) that the Modified Lam produces slightly
better solutions on average at a statistically significant level (p = 0.003). However, in
this case there was no significant difference in the MSE of the acceptance rates of the two
algorithms with respect to the target rate (Figure 22a). When we increase the run length
to N = 10,000 iterations, the Self-Tuning Lam produces better quality solutions at an
extremely statistically significant level (p < 10−8), in line with the statistically significant
lower MSE of its acceptance rate from the target Lam rate (Figure 22b). As before, we did
not find a significant difference in the cost function for the longest run lengths, where we
also see approximately equivalent MSE for the acceptance rates (Figures 22c,d). Note that
although the MSE difference is significant (p = 0.01) for the N = 100,000 iteration runs
(Figures 22c), visual inspection shows it is due very early in the run and that the Modified
Lam otherwise well approximates the target rate.

Table 19. Average cost of solution to TSP with 1000 cities distributed within a unit square.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 440.91 411.18 <10−52

10,000 250.52 246.80 <0.0001
100,000 108.88 109.21 0.22

1,000,000 47.01 46.88 0.21

Table 20. Average cost of solution to TSP with 1000 cities distributed within a 100 by 100 square.

N Modified Lam Self-Tuning Lam T-Test p-Value

1000 40,825.52 41,095.38 0.003
10,000 25,235.56 24,691.62 <10−8

100,000 10,895.33 10,902.40 0.80
1,000,000 4686.09 4692.92 0.56

Appl. Sci. 2021, 11, 9828 32 of 37

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−31

Target acceptance rate

Modified Lam (MSE = 0.1610)

Self-Tuning Lam (MSE = 0.0340)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−9

Target acceptance rate

Modified Lam (MSE = 0.0176)

Self-Tuning Lam (MSE = 0.0073)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.75

Target acceptance rate

Modified Lam (MSE = 0.0022)

Self-Tuning Lam (MSE = 0.0023)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.49

Target acceptance rate

Modified Lam (MSE = 0.0021)

Self-Tuning Lam (MSE = 0.0026)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 21. TSP with cities in unit square: Self-Tuning Lam, Modified Lam, and target acceptance
rates for (a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.52

Target acceptance rate

Modified Lam (MSE = 0.0360)

Self-Tuning Lam (MSE = 0.0330)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p ≤ 10−14

Target acceptance rate

Modified Lam (MSE = 0.0240)

Self-Tuning Lam (MSE = 0.0077)

(a) 1000 iteration run length (b) 10,000 iteration run length

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.0100

Target acceptance rate

Modified Lam (MSE = 0.0089)

Self-Tuning Lam (MSE = 0.0024)

0% 20% 40% 60% 80% 100%

percent of run

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce
p
ta
n
ce

ra
te

p = 0.34

Target acceptance rate

Modified Lam (MSE = 0.0037)

Self-Tuning Lam (MSE = 0.0025)

(c) 100,000 iteration run length (d) 1 million iteration run length

Figure 22. TSP (cities in 100 by 100 square): Self-Tuning Lam, Modified Lam, and target acceptance
rates for (a) 1000 iterations, (b) 10,000 iterations, (c) 100,000 iterations, and (d) 1 million iterations.

Appl. Sci. 2021, 11, 9828 33 of 37

3.4. Time Comparison of the Annealing Schedules

In this subsection, we examine whether the Self-Tuning Lam impacts the runtime of
SA. We posit that the time required to tune the hyperparameters is negligible. Computing
the tuning phase length M and α involve a small number of basic arithmetic operations
as seen earlier in Equations (8) and (10); and AcceptRate(0) is defined as one of two
constants. All three of these are computed once. Tuning the initial temperature T0 and
the rate of temperature change β are more involved. Each of these include some one-time
computation (Equations (19) and (24)), which require computing a couple logarithms and
an m-th root. However, they also depend on ∆C, which is computed across the M tuning
iterations. However, during the M tuning iterations, the Self-Tuning Lam simply accepts
all neighbors, without using the Boltzmann distribution for the decision. So calculating ∆C
is instead of calculating the Boltzmann distribution during those iterations, which saves
SA from the need to compute any exponentiations during the tuning phase. These savings
should offset the time needed to tune T0 and β.

To confirm that the Self-Tuning Lam’s tuning process does not increase runtime com-
pared to the Modified Lam, we isolate the annealing computation from SA, independent
of any specific optimization problem, timing the operations that are strictly due to the
annealing schedule. We did this as follows. For a given run length N, we initialize the
annealing schedule for that run length. We then simulate N iterations by generating a “cost”
for a neighbor at each iteration, without actually generating any neighbors or calculating
any actual cost function. At the beginning of the run, the artificially generated “cost”
alternates between higher than current cost and lower than current cost. An eighth of
the way through the run, we generate “costs” that are better than the current every four
iterations, and then after the next eighth of the run this becomes every eight iterations, and
so forth. The rationale is to simulate typical behavior where SA will eventually settle into a
local optimum. By artificially generating costs in this way, we eliminate the time impact
of cost function computation and neighbor generation. Therefore, what we are timing is
simply the operations of the annealing schedules alone.

For each run length N and each of the two algorithms, we repeat this procedure
100 times, computing the average runtime in seconds of CPU time. Table 21 summarizes
the results. Runs of fewer than N = 16,000 iterations completed too quickly on our test
machine to meaningfully measure CPU time. Therefore, our results begin with N = 16,000,
and we double N for each subsequent trial. As you can see, the differences in the CPU
time of the two annealing schedules are not statistically significant (p > 0.05) at any run
length considered.

Table 21. Runtime comparison, measured in seconds of CPU time, of the Modified Lam and Self-
Tuning Lam annealing schedules. Averages of 100 runs of each run length.

N Modified Lam Self-Tuning Lam T-Test p-Value

16,000 0.00063 0.00094 0.52
32,000 0.00156 0.00172 0.82
64,000 0.00313 0.00328 0.86

128,000 0.00594 0.00625 0.77
256,000 0.01156 0.01328 0.054
512,000 0.02406 0.02547 0.20

1,024,000 0.04875 0.05000 0.14

4. Discussion and Conclusions

The Modified Lam is one of the more widely-known adaptive annealing schedules.
Rather than a monotonically decreasing temperature, the Modified Lam allows the tem-
perature to fluctuate both up and down, using feedback from the search to attempt to
match Lam and Delosme’s idealized rate of neighbor acceptance. It has often been argued
to be a parameter-free annealing schedule, often performing well across a wide range of
problem types. It uses an EMA estimate of the acceptance rate internally to determine if

Appl. Sci. 2021, 11, 9828 34 of 37

SA is currently accepting too few neighbors or too many neighbors relative to the target
idealized rate. The parameters of that EMA are treated as constants, rather than tunable
parameters. As a consequence, short runs may not sufficiently weight the most recent
iterations, and long runs may too heavily weight the most recent iterations. Due to its
constant initial temperature, it may accept too few neighbors in the early portion of the
search, essentially beginning with a strict hill climb; and its constant rate of temperature
change may prevent the Modified Lam from adjusting the temperature quickly enough to
track the target rate of acceptance.

In our experiments, we showed that due to this, the Modified Lam is sensitive to cost
function scale and run length. Namely, we saw that short runs of the Modified Lam lead
to an acceptance rate during the run that rarely matches the target acceptance rate, and is
often significantly below the target, such as seen in Figures 2a, 3a, 4a, 5a, 6a, 9a, 10a, 11a,
13a, 14a, 15a, 18a, 19a and 20a. For longer runs, the Modified Lam is often slow to match
the target acceptance rate, and then once it does begins large oscillations around the target
as it continuously overcompensates in its adjustments, such as in Figures 3b, 5b–d and 6b.
In some cases, the Modified Lam is just generally far off from its target acceptance rate,
such as in Figures 4a–d, 10b, 11b, 12a, 14b, 15b, 17a, 19b and 20b.

We also saw that with the TSP, an NP-Hard problem, that the cases where the Self-
Tuning Lam outperformed the Modified Lam are exactly those cases (i.e., run length and
cost function scale) where the Modified Lam failed to match the target Lam acceptance rate.
The two algorithms only found equivalent quality solutions when their acceptance rate
trajectories both approximately matched the target rate.

Our new Self-Tuning Lam considers four hyperparameters, the initial value and
discount factors for the EMA internal estimate of the acceptance rate, as well as the initial
temperature, and rate of temperature change. It then uses a small part of the beginning of
the run to self-tune these hyperparameters using search feedback, effectively adjusting the
behavior of the annealing schedule to the scale of the cost function and to the run length.
Throughout Section 3, we considered a variety of discrete and continuous optimization
problems, and saw that the Self-Tuning Lam consistently follows the target idealized
acceptance rate, independent of the problem, cost function scale, and run length, as seen in
the red dashed lines in all of the figures showing acceptance rates throughout that section.
In most cases, the Self-Tuning Lam’s acceptance rate during SA runs more closely matches
the target rate than the Modified Lam (e.g., lower MSE at very statistically significant levels).
In many cases, the Self-Tuning Lam also leads to superior solutions to the optimization
problems themselves, more effectively escaping local minimums; whereas the Modified
Lam’s acceptance rate was often lower than its target, resulting in insufficient exploration
to evade locally optimal solutions. Furthermore, we saw that the time associated with
self-tuning the hyperparameters is negligible, with no statistically significant difference in
the CPU time of the two annealing schedules.

We showed that the Self-Tuning Lam is an effective, adaptive annealing schedule,
applicable across broad problem classes. Its behavior is neither sensitive to cost scale, nor
to run length. It completely eliminates the need to tune annealing schedule parameters
ahead of time, instead learning hyperparameter values online during the search. In this
way, it adapts to the specific problem instance that it is solving.

One limitation of the approach concerns the applications where the cost function we
are optimizing is very expensive to compute, such that we can only afford an extremely
short run of SA. For example, from Equation (8), we find that a run N = 100 iterations in
length will only use M = 1 iteration to estimate the average neighbor cost difference. If the
run is even shorter than that, no tuning samples are obtained and the Self-Tuning Lam sets
the hyperparameters that control temperature adaptation as if the average cost difference
is 1. This follows directly from the specification of the remainder of the tuning process.
This is a minor limitation since most applications of SA can afford longer runs. However,
one scenario where such an unusually short run of SA might be encountered is if the cost
function involved running a discrete event simulation once for each iteration of SA. In such

Appl. Sci. 2021, 11, 9828 35 of 37

a case, we should indeed expect such a short SA run in the number of iterations because
each iteration will consume much time. This type of case creates an equivalent challenge
for any adaptive annealing schedule since adaptation can only occur with sufficient time.
One potential future direction to explore is whether it might be advantageous, in the case
of very short SA runs, to utilize data from prior runs on other instances of the problem in
estimating the average cost difference. For cases where our tuning process otherwise has
little or no samples it can work with, this may be beneficial.

Our implementation of the Self-Tuning Lam is integrated into an open source Java
library of adaptive and parallel stochastic local search algorithms. The code to reproduce
our experiments, as well as the raw and processed data, is also openly available.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All experiment data (raw and post-processed) is available on GitHub,
https://github.com/cicirello/self-tuning-lam-experiments (accessed on 13 October 2021), which
also includes all source code of our experiments, as well as instructions for compiling and running
the experiments.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EMA Exponential Moving Average
MSE Mean Squared Error
SA Simulated Annealing

References
1. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1979.
2. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
3. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
4. Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Kluwer Academic Publishers: Norwell, MA,

USA, 1987.
5. Delahaye, D.; Chaimatanan, S.; Mongeau, M. Simulated Annealing: From Basics to Applications. In Handbook of Metaheuristics;

Gendreau, M., Potvin, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–35. [CrossRef]
6. Glover, F.; Laguna, M. Tabu Search; Springer Science+Business Media: New York, NY, USA, 1997.
7. Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
8. Hoos, H.; Stützle, T. Stochastic Local Search: Foundations and Applications; Morgan Kaufmann: San Francisco, CA, USA, 2004.
9. Zilberstein, S. Using Anytime Algorithms in Intelligent Systems. AI Mag. 1996, 17, 73–83. [CrossRef]
10. Liang, Y.; Gao, S.; Wu, T.; Wang, S.; Wu, Y. Optimizing Bus Stop Spacing Using the Simulated Annealing Algorithm with

Spatial Interaction Coverage Model. In Proceedings of the 11th ACM SIGSPATIAL International Workshop on Computational
Transportation Science, Seattle, WA, USA, 6 November 2018; pp. 53–59. [CrossRef]

11. Cismaru, D.C. Energy Efficient Train Operation using Simulated Annealing Algorithm and SIMULINK model. In Proceedings of
the 2018 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 4–6 October 2018; pp. 1–4.
[CrossRef]

12. Dinh, M.H.; Nguyen, V.D.; Truong, V.L.; Do, P.T.; Phan, T.T.; Nguyen, D.N. Simulated Annealing for the Assembly Line Balancing
Problem in the Garment Industry. In Proceedings of the Tenth International Symposium on Information and Communication
Technology, Hanoi, Vietnam, 4–6 December 2019; pp. 36–42. [CrossRef]

13. Zhou, Z.; Du, Y.; Du, Y.; Yun, J.; Liu, R. A Simulated Annealing White Balance Algorithm for Foreign Fiber Detection. In
Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics, Tianjin, China, 19–21 September
2018; pp. 160–164. [CrossRef]

14. Zhuang, H.; Dong, K.; Qi, Y.; Wang, N.; Dong, L. Multi-Destination Path Planning Method Research of Mobile Robots Based on
Goal of Passing through the Fewest Obstacles. Appl. Sci. 2021, 11, 7378. [CrossRef]

https://github.com/cicirello/self-tuning-lam-experiments
https://github.com/cicirello/self-tuning-lam-experiments
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1007/978-3-319-91086-4_1
http://dx.doi.org/10.1609/aimag.v17i3.1232
http://dx.doi.org/10.1145/3283207.3283212
http://dx.doi.org/10.1109/ICATE.2018.8551415
http://dx.doi.org/10.1145/3368926.3369698
http://dx.doi.org/10.1145/3278198.3278214
http://dx.doi.org/10.3390/app11167378

Appl. Sci. 2021, 11, 9828 36 of 37

15. Daryanavard, H.; Harifi, A. UAV Path Planning for Data Gathering of IoT Nodes: Ant Colony or Simulated Annealing
Optimization. In Proceedings of the 2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan, Iran,
17–18 April 2019; pp. 1–4. [CrossRef]

16. Ma, B.; He, Y.; Du, J.; Han, M. Research on Path Planning Problem of Optical Fiber Transmission Network Based on Simulated
Annealing Algorithm. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 1298–1301. [CrossRef]

17. Abuajwa, O.; Roslee, M.B.; Yusoff, Z.B. Simulated Annealing for Resource Allocation in Downlink NOMA Systems in 5G
Networks. Appl. Sci. 2021, 11, 4592. [CrossRef]

18. Sun, W.; Zhang, L. WSN Location Algorithm Based on Simulated Annealing Co-linearity DV-Hop. In Proceedings of the 2018
2nd IEEE Advanced Information Management,Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an,
China, 25–27 May 2018; pp. 1518–1522. [CrossRef]

19. Li, J.; Li, L.; Yu, F.; Ju, Y.; Ren, J. Application of simulated annealing particle swarm optimization in underwater acoustic
positioning optimization. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–4. [CrossRef]

20. Rudy, J. Parallel Makespan Calculation for Flow Shop Scheduling Problem with Minimal and Maximal Idle Time. Appl. Sci. 2021,
11, 8204. [CrossRef]

21. Najafabadi, H.R.; Goto, T.G.; Falheiro, M.S.; Martins, T.C.; Barari, A.; Tsuzuki, M.S.G. Smart Topology Optimization Using
Adaptive Neighborhood Simulated Annealing. Appl. Sci. 2021, 11, 5257. [CrossRef]

22. Yan, L.; Hu, W.; Han, L. Optimize SPL Test Cases with Adaptive Simulated Annealing Genetic Algorithm. In Proceedings of
the ACM Turing Celebration Conference, Association for Computing Machinery, Chengdu, China, 17–19 May 2019; pp. 1–7.
[CrossRef]

23. Zamli, K.Z.; Safieny, N.; Din, F. Hybrid Test Redundancy Reduction Strategy Based on Global Neighborhood Algorithm and
Simulated Annealing. In Proceedings of the 2018 7th International Conference on Software and Computer Applications, Kuantan,
Malaysia, 8–10 February 2018; pp. 87–91. [CrossRef]

24. Liu, S.; Wang, H.; Cai, Y. Research on Fish Slicing Method Based on Simulated Annealing Algorithm. Appl. Sci. 2021, 11, 6503.
[CrossRef]

25. Cicirello, V.A. Optimizing the Modified Lam Annealing Schedule. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2020, 7, e1.
[CrossRef]

26. Hubin, A. An Adaptive Simulated Annealing EM Algorithm for Inference on Non-Homogeneous Hidden Markov Models. In
Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, Sanya,
China, 19–21 December 2019; pp. 1–9. [CrossRef]

27. Cicirello, V.A. Variable Annealing Length and Parallelism in Simulated Annealing. In Proceedings of the Tenth International
Symposium on Combinatorial Search, Pittsburgh, PA, USA, 16–17 June 2017; pp. 2–10.

28. Štefankovič, D.; Vempala, S.; Vigoda, E. Adaptive Simulated Annealing: A near-Optimal Connection between Sampling and
Counting. J. ACM 2009, 56, 18:1–18:36. [CrossRef]

29. Bezáková, I.; Štefankovič, D.; Vazirani, V.V.; Vigoda, E. Accelerating Simulated Annealing for the Permanent and Combinatorial
Counting Problems. SIAM J. Comput. 2008, 37. [CrossRef]

30. Boyan, J.A. Learning Evaluation Functions for Global Optimization. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 1998.

31. Swartz, W.P. Automatic Layout of Analog and Digital Mixed Macro/Standard Cell Integrated Circuits. Ph.D. Thesis, Yale
University, New Haven, CT, USA, 1993.

32. Lam, J.; Delosme, J.M. Performance of a New Annealing Schedule. In Proceedings of the 25th ACM/IEEE Design Automation
Conference, Anaheim, CA, USA, 12–15 June 1988; pp. 306–311. [CrossRef]

33. Cicirello, V.A. On the Design of an Adaptive Simulated Annealing Algorithm. In Proceedings of the International Conference
on Principles and Practice of Constraint Programming First Workshop on Autonomous Search, Providence, RI, USA, 23
September 2007.

34. Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach.
Learn. Res. 2019, 20, 1–32.

35. Cicirello, V.A. Chips-n-Salsa: A Java Library of Customizable, Hybridizable, Iterative, Parallel, Stochastic, and Self-Adaptive
Local Search Algorithms. J. Open Source Softw. 2020, 5, 2448. [CrossRef]

36. National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science; The National Academies
Press: Washington, DC, USA, 2019. [CrossRef]

37. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
38. Ackley, D.H. A Connectionist Algorithm for Genetic Search. In Proceedings of the 1st International Conference on Genetic

Algorithms, Pittsburgh, PA, USA, 1 July 1985; pp. 121–135.
39. Ackley, D.H. An Empirical Study of Bit Vector Function Optimization. In Genetic Algorithms and Simulated Annealing; Davis, L.,

Ed.; Morgan Kaufmann Publishers: Los Altos, CA, USA, 1987; pp. 170–204.
40. Forrester, A.I.J.; Sóbester, A.; Keane, A.J. Appendix: Example Problems. In Engineering Design via Surrogate Modelling: A Practical

Guide; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 195–203. [CrossRef]
41. Gramacy, R.B.; Lee, H.K.H. Cases for the nugget in modeling computer experiments. Stat. Comput. 2012, 22, 713–722. [CrossRef]

http://dx.doi.org/10.1109/IICITA.2019.8808834
http://dx.doi.org/10.1109/ITAIC.2019.8785544
http://dx.doi.org/10.3390/app11104592
http://dx.doi.org/10.1109/IMCEC.2018.8469558
http://dx.doi.org/10.1109/OCEANSE.2019.8867063
http://dx.doi.org/10.3390/app11178204
http://dx.doi.org/10.3390/app11115257
http://dx.doi.org/10.1145/3321408.3326676
http://dx.doi.org/10.1145/3185089.3185146
http://dx.doi.org/10.3390/app11146503
http://dx.doi.org/10.4108/eai.16-12-2020.167653
http://dx.doi.org/10.1145/3371425.3371641
http://dx.doi.org/10.1145/1516512.1516520
http://dx.doi.org/10.1137/050644033
http://dx.doi.org/10.1109/DAC.1988.14775
http://dx.doi.org/10.21105/joss.02448
http://dx.doi.org/10.17226/25303
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1002/9780470770801.app1
http://dx.doi.org/10.1007/s11222-010-9224-x

Appl. Sci. 2021, 11, 9828 37 of 37

42. Hinterding, R. Gaussian mutation and self-adaption for numeric genetic algorithms. In Proceedings of the 1995 IEEE International
Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; pp. 384–389. [CrossRef]

43. Lin, S. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 1965, 44, 2245–2269. [CrossRef]

http://dx.doi.org/10.1109/ICEC.1995.489178
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x

	Introduction
	Methods
	Modified Lam
	Extracting Hyperparameters from the Modified Lam
	Self-Tuning Lam
	Tuning Phase Length
	Tuning the Acceptance Rate EMA Hyperparameters
	Tuning the Initial Temperature T0
	Tuning the Rate of Temperature Change
	Putting It All Together

	Results
	Discrete Optimization Results
	OneMax: Single Global Optimum and No Local Optima
	TwoMax: Single Global Optimum and Single Local Optimum
	Trap: Single Global Optimum and a Strongly Attractive Local Optimum

	Continuous Optimization Results
	One Global Minimum, One Local Minimum, and Inflexion Point
	Single Global Minimum and Large Number of Local Minimums

	An NP-Hard Problem: The Traveling Salesperson
	Time Comparison of the Annealing Schedules

	Discussion and Conclusions
	References

