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Abstract: Discretization and feature selection are two relevant techniques for dimensionality reduc-
tion. The first one aims to transform a set of continuous attributes into discrete ones, and the second
removes the irrelevant and redundant features; these two methods often lead to be more specific
and concise data. In this paper, we propose to simultaneously deal with optimal feature subset
selection, discretization, and classifier parameter tuning. As an illustration, the proposed problem
formulation has been addressed using a constrained many-objective optimization algorithm based
on dominance and decomposition (C-MOEA /DD) and a limited-memory implementation of the
warping longest common subsequence algorithm (WarpingL.CSS). In addition, the discretization
sub-problem has been addressed using a variable-length representation, along with a variable-length
crossover, to overcome the need of specifying the number of elements defining the discretization
scheme in advance. We conduct experiments on a real-world benchmark dataset; compare two dis-
cretization criteria as discretization objective, namely Ameva and ur-CAIM; and analyze recognition
performance and reduction capabilities. Our results show that our approach outperforms previous
reported results by up to 11% and achieves an average feature reduction rate of 80%.

Keywords: many-objective optimization; evolutionary computation; discretization; feature selection;
variable-length problem; longest common subsequence

1. Introduction

Gestures are composed of multiple body-part motions and can form activities [1].
Hence, gesture recognition offers a wide range of applications, including inter alia, fitness
training, human robot and computer interaction, security, and sign language recognition.
Likewise, gesture recognition is employed in ambient assisted living systems for tackling
burgeoning and worrying public healthcare problems, such as autonomous living for
people with dementia and Parkinson’s disease. Although a large amount of work has been
conducted on image-based sensing technology, camera and depth sensors are limited to
the environment in which they are installed. Moreover, they are sensitive to obstructions
in the field of vision, variation in luminous intensity, reflection, etc. In contrast, wearable
sensors and mobile devices are more suitable for monitoring ambulatory activities and
physiological signals.

In a supervised context, a wide range of action or gesture recognition techniques has
been explored using wearable sensors. k-Nearest Neighbor (k-NN) might be the most
straightforward classifier to utilize since it does not learn but searches the closest data in
the training data using a given distance function. Even though conventional k-NN achieves
good performance, it suffers from lack of ability to deal with these problems: low attribute
and sample noise tolerance, high-dimensional spaces, large training dataset requirements,
and imbalances in the data. Yu et al. [2] recently proposed a random subspace ensemble
framework based on hybrid k-NN to tackle these problems, but the classifier has not yet
been applied to a gesture recognition task. Hidden Markov Model (HMM) is the most
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traditional probabilistic method used in the literature [3,4]. However, computing transition
probabilities necessary for learning model parameters requires a large amount of training
data. HMM-based techniques may also not be suitable for hard real-time (synchronized
clock-based) systems due to its latency [5]. Since data sets are not necessarily large enough
for training, Support Vector Machine (SVM) is a classical alternative method [6-8]. SVM is,
nevertheless, very sensitive to the selection of its kernel type and parameters related to the
latter. There are novel dynamic Bayesian networks often used to deal with sequence analy-
sis, such as recurrent neural networks (e.g., LSTMs) [9] and deep learning approach [10],
which should become more popular in the next years.

Dynamic Time Warping (DTW) is one of the most utilized similarity measures for
matching two time-series sequences [11,12]. Often reproached for being slow, Rakthan-
manon et al. [13] demonstrated that DTW is quicker than Euclidean distance search algo-
rithms and even suggests that the method can spot gestures in real time. However, the
recognition performance of DTW is affected by the strong presence of noise, caused by
either segmentation of gestures during the training phase or gesture execution variability.

The longest common subsequence (LCSS) method is a precursor to DTW. It measures
the closeness of two sequences of symbols corresponding to the length of the longest
subsequence common to these two sequences. One of the abilities of DTW is to deal
with sequences of different lengths, and this is the reason why it is often used as an
alignment method. In [14], LCSS was found to be more robust in noisy conditions than
DTW. Indeed, since all elements are paired in DTW, noisy elements (i.e., unwanted vari-
ation and outliers) are also included, while they are simply ignored in the LCSS. Al-
though some image-based gesture recognition applications can be found in [15-17], not
much work has been conducted using non-image data. In the context of crowd-sourced
annotations, Nguyen-Dinh et al. [18] proposed two methods, entitled Segmented LCSS and
WarpingLCSS. In the absence of noisy annotation (mislabeling or inaccurate identification
of the start and end times of each segment), the two methods achieve similar recognition
performances on three data sets compared with DTW- and SVM-based methods and sur-
pass them in the presence of mislabeled instances. Extensions were recently proposed, such
as a multimodal system based on WarpingLCSS [19], S-SSMART [20], and a limited memory
and real-time version for resource constrained sensor nodes [21]. Although the parameters
of these LCSS-based methods should be application-dependent, they have so far been
empirically determined and a lack of design procedure (parameter-tuning methods) has
been suggested.

In designing mobile or wearable gesture recognition systems, the temptation of in-
tegrating many sensing units for handling complex gesture often negates key real-life
deployment constraints, such as cost, power efficiency, weight limitations, memory usage,
privacy, or unobtrusiveness [22]. The redundant or irrelevant dimensions introduced may
even slow down the learning process and affect recognition performance. The most popular
dimensionality reduction approaches include feature extraction (or construction), feature
selection, and discretization. Feature extraction aims to generate a set of features from
original data with a lower computational cost than using the complete list of dimensions.
A feature selection method selects a subset of features from the original feature list. Feature
selection is an NP-hard combinatorial problem [23]. Although numerous search techniques
can be found in the literature, they fail to avoid local optima and require a large amount
of memory or very long runtimes. Alternatively, evolutionary computation techniques
have been proposed for solving feature selection problem [24]. Since the abovementioned
LCSS technique directly utilizes raw or filtered signals, there is no evidence on whether
we should favour feature extraction or selection. However, these LCSS-based methods
impose the transformation of each sample from the data stream into a sequence of symbols.
Therefore, a feature selection coupled with a discretization process could be employed.
Similar to feature selection, discretization is also an NP-hard problem [25,26].

In contrast to the feature selection field, few evolutionary algorithms are proposed
in the literature [25,27]. Indeed, evolutionary feature selection algorithms have the dis-
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advantage of high computational cost [28] while convergence (close to the true Pareto
front) and diversity of solutions (set of solutions as diverse as possible) are still two major
difficulties [29].

Evolutionary feature selection methods focus on maximizing the classification perfor-
mance and on minimizing the number of dimensions. Although it is not yet clear whether
removing some features can lead to a decrease in classification error rate [24], a multiple-
objective problem formulation could bring trade-offs. Discretization attribute literature
aims to minimize the discretization scheme complexity and to maximize classification
accuracy. In contrast to feature selection, these two objectives seem to be conflicting in
nature [30].

A multi-objective optimization algorithm based on Particle swarm optimization
(heuristic methods) can provide an optimal solution. However, an increase in feature
quantities increases the solution space and then decreases the search efficiency [31]. There-
fore, Zhou et al. 2021 [31] noted that particle swarm optimisation may find a local op-
timum with high dimensional data. Some variants are suggested such as competitive
swarm optimization operator [32] and multiswarm comprehensive learning particle swarm
optimization [33], but tackling many-objective optimization is still a challenge [29].

Moreover, particle swarm optimization can fall into a local optimum (needs a rea-
sonable balance between convergence and diversity) [29]. Those results are similar to
filter and wrapper methods [34] (more details about Filter and wrapper methods can be
found in [31,34]). Yang et al. 2020 [29] suggest to improve computational burdens with
a competition mechanism using a new environment selection strategy to maintain the
diversity of population. Additionally, to solve this issue, since mutual information can
capture nonlinear relationships included in a filter approach, Sharmin et al. 2019 [35] used
mutual information as a selection criteria (joint bias-corrected mutual information) and
then suggested adding simultaneous forward selection and backward elimination [36].

Deep neural networks such as CNN [37] are able to learn and select features. As an
example, hierarchical deep neural networks were included with a multiobjective model to
learn useful sparse features [38]. Due to the huge number of parameter, a deep learning
approach needs a high quantity of balanced samples, which is sometimes not satisfied in
real-world problems [34]. Moreover, as a deep neural network is a black box (non-causal
and non-explicable), an evaluation of the feature selection ability is difficult [37].

Currently, feature selection and data discretization are still studied individually and
not fully explored [39] using many-objective formulation. To the best of our knowledge,
no studies have tried to solve the two problems simultaneously using evolutionary tech-
niques for a many-objective formulation. In this paper, the contributions are summarized
as follows:

1. We propose a many-objective formulation to simultaneously deal with optimal feature
subset selection, discretization, and parameter tuning for an LM-WLCSS classifier.
This problem was resolved using the constrained many-objective evolutionary al-
gorithm based on dominance (minimisation of the objectives) and decomposition
(C-MOEA/DD) [40].

2. Unlike many discretization techniques requiring a prefixed number of discretization
points, the proposed discretization subproblem exploits a variable-length representa-
tion [41].

3. To agree with the variable-length discretization structure, we adapted the recently
proposed rand-length crossover to the random variable-length crossover differential
evolution algorithm [42].

4. We refined the template construction phase of the microcontroller optimized Limited-
Memory WarpingLCSS (LM-WLCSS) [21] using an improved algorithm for computing
the longest common subsequence [43]. Moreover, we altered the recognition phase by
reprocessing the samples contained in the sliding windows in charge of spotting a
gesture in the steam.
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5. To tackle multiclass gesture recognition, we propose a system encapsulating multiple
LM-WLCSS and a light-weight classifier for resolving conflicts.

The main hypothesis is as follows: using the constrained many-objective evolutionary
algorithm based on dominance, an optimal feature subset selection can be found. The
rest of the paper is organized as follows: Section 2 states the constrained many-objective
optimization problem definition, exposes C-MOEA /DD, highlights some discretization
works, presents our refined LM-WLCSS, and reviews multiple fusion methods based
on WarpingLCSS. Our solution encoding, operators, objective functions, and constraints
are presented in Section 3. Subsequently, we present the decision fusion module. The
experiments are described in Section 4 with the methodology and their corresponding
evaluation metrics (two for effectiveness, including Cohen’s kappa, and one for reduction).
Finally, our system is evaluated and the results are discussed in Section 5.

2. Preliminaries and Background

In this section, we first briefly provide some basic definitions on the constrained
many-objective optimization problem. We then describe a recently proposed optimization
algorithm based on dominance and decomposition, entitled C-MOEA /DD. Additionally,
we review evolutionary discretization techniques and successors of the well-known class-
attribute interdependence maximization (CAIM) algorithm. Afterward, we expose some
modifications on the different key components of the limited memory implementation
of the WarpingLCSS. Finally, we review some fusion methods based on WarpingL.CSS to
tackle the multi-class gesture problem and recognition conflicts.

2.1. Constrained Many-Objective Optimization

Since artificial intelligence and engineering applications tend to involve more than
two and three objective criteria [40], the concept of many objective optimization problems
must be introduced beforehand. Literally, they involve many objectives in a conflicted and
simultaneous manner. Hence, a constrained many-objective optimization problem may be
formulated as follows:

minimize  F(X) = [f1(x),..., fu(x)]T

subjectto gi(x) >0, j=1,...,]
h(x)=0, k=1,...,K
x € Q)

)

where x = [xq,... ,xn]T is a n-decision variable candidate solution taking its value in
the bonded space Q). A solution respecting the | inequality (g;(x) > 0) and K equality
constraints (h(x) = 0) is qualified as attainable. These constraints are included in the
objective functions and are detailed in our proposed method in Section 3.3. F : () — R™
associates a candidate solution to the objective space R” through m conflicting objective
functions. The obtained results are thus alternative solutions but have to be considered
equivalent since no information is given regarding the relevance of the others.

A solution x! is said to dominate another solution x?, written as x! < x? if and only if

Vie{l,..., m} :fl-(xl) < fi(xz)
AFie{l,...,m}: fi(x) < f;(x*) ()

2.2. C-MOEA/DD

MOEA /DD is an evolutionary algorithm for many-objective optimization problems,
drawing its strength from MOEA /D [44] and NSGA-III [45]. As it combines both the
dominance-based and decomposition-based approaches, it implies an effective balance
between the convergence and diversity of the evolutionary process. Decomposition is a
popular method to break down a multiple objective problem into a set of scalar optimization
subproblems. Here, the authors use the penalty-based boundary intersection approach,
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but they highlight that any approach could be applied. Subsequently, we briefly explain
the general framework of MOEA /DD and expose its requisite modifications for solving
constrained many-objective optimization problems.

At first, a procedure generates N solutions to form the initial parent solutions and
creates a weight vector set, W, representing N unique subregions in the objective space. As
the current problem does not exceed six objectives, only the one layer weight generation
algorithm was used. The T closest weights for each solution are also extracted to form
a neighborhood set of weight vectors, E. The initial population, P, is then divided into
several non-domination levels using the fast non-dominated sorting method employed
in NSGA-IL

In the MOEA /DD main while-loop, a common process is applied for each weight
vector in E until the termination criterion is reached. It consists of randomly choosing
k-mating parents in the neighboring subregions of the weight vector considered. When
no solution exists in the selected subregions, they are randomly selected in the current
population. These k-solutions are then altered using genetic operators. For each offspring,
an intricate update mechanism is applied on the population.

First, the associated subregion of the offspring is identified. The considered offspring
is then merged with the population in a temporary container, P’. Next, the non-domination
level structure of P’ is updated. It is worthy to note that an ingenious method was employed
to avoid full non-dominated sorting of P’. Since the population must preserve its size
throughout the run of MOEA /DD, three cases may arise. When all solutions are non-
dominated, the worst solution of the most crowded weight vector is deleted from the
population. This function has been denominated LocateWorst. When there are multiple
non-domination levels, the deletion of one solution depends on the number within the last
non-domination level, F;. On the one hand, there is only one solution in Fj, and the density
of the associated subregion is investigated so as not to incorrectly alter the population
diversity. LocateWorst is called in the case where the density contains only one element.
When the most crowded subregion associated with each solution in F; contains more
than one element, the solution owning the largest scalarized value within it is deleted.
Otherwise, LocateWorst is called so as not to delete isolated subregions.

Since MOEA /DD is designed to solve unconstrained many-objective optimization
problems, Li et al. [40] also provided an extension for handling constrained many-objective
optimization problems, which requires three modifications. First, a constraint violation
value, CV(x), henceforth accompanies each solution x. It is determined as follows:

] K

CV(x) = }_(gj(x)) +k;|hk(><)| ©)

j=1

where the function («) returns the absolute value of « if # < 0 and returns 0 otherwise.
Second, while the abovementioned update procedure is maintained for feasible solutions,
the survey of the infeasible ones is dictated by their association with an isolated subregion.
More precisely, a second chance of survival is granted to these infeasible solutions, and the
solution with the largest CV or the one that is not associated with an isolated subregion
is eliminated from the next population. Finally, the selection for reproduction procedure
becomes a binary tournament, where two solutions are initially randomly picked, and
the solution with the smallest CV is favoured or a random choice is applied in the case
of equality.

2.3. Discretization

The discretization process aims to transform a set of continuous attributes into discrete
ones. Although there is a substantial number of discretization methods in the literature,
Garcia et al. [26] recently carried out extensive testing of the 30 most representative and
newest discretization techniques in supervised classification. Amongst the best performing
algorithms, FUSINTER, ChiMerge, CAIM, and Modified Chi2 obtained the highest average
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accuracies; it is possible to add Zeta and MDLP to this list if the Cohen’s kappa metric is
considered. In the authors’ taxonomy, the evaluation measures for comparing solutions
were broken down into five families: information, statistics, rough set, wrapper, and
binning. Subsequently, we review few evolutionary approaches to solve discretization
problems and succeeding methods of CAIM.

In [46], a supervised method called Evolutionary Cut Points Selection for Discretiza-
tion (ECPSD) was introduced. The technique exploits the fact that boundary points are
suitable candidates for partitioning numerical attributes. Hence, a complete set of bound-
ary points for each attribute is first generated. A CHC model [47] then searches the optimal
subset of cut points while minimizing the inconsistency. Later on, the evolutionary mul-
tivariate discretizer (EMD) was proposed on the same basis [27]. The inconsistency was
substituted for the aggregate classification error of an unpruned version of C4.5 and a Naive
Bayes. Additionally, a chromosome length reduction algorithm was added to overcome
large numbers of attributes and instances in datasets. However, the selection of the most
appropriate discretization scheme relies on the weighted-sum of each objective functions,
where a user-defined parameter is provided. This approach is thus limited even though
varying parameters of a parametric scalarizing approach may produce multiple different
Pareto-optimal solutions. In [25], a multivariate evolutionary multi-objective discretization
(MEMOD) algorithm is proposed. It is an enhanced version of EMD, where the CHC
has been replaced by the well-known NSGA-II, and the chromosome length reduction
algorithm hereafter exploits all Pareto solutions instead of the best one. The following
objective functions have been considered: the number of cut points currently selected, the
average classification error produced by a CART and Naive Bayes, and the frequency of
the selected cut points.

As previously exposed, CAIM stands out due to its performance amongst the classical
techniques. Some extensions have been proposed, such as Class-Attribute Contingency
Coefficient [48], Autonomous Discretization Algorithm (Ameva) [49], and ur-CAIM [30].
Ameva has been successfully applied in activity recognition [50] and fall detection for
people who are older [51]. The technique is designed for achieving a lower number of
discretization intervals without prior user specifications and maximizes a contingency
coefficient based on the x? statistics. The Ameva criterion is formulated as follows:

__ X
Ameva(k) = k0 —1) 4)
where k and I are the number of discrete intervals and the number of classes, respectively.
The ur-CAIM discretization algorithm enhances CAIM for both balanced and imbalanced
classification problems. It combines three class-attribute interdependence criteria in the

following manner:
ur-CAIM = CAIMy * CAIR % (1 — CAIU) ®)

where CAIMy denotes the CAIM criterion scaled into the range [0,1]. CAIR and CAIU
stand for Class-Attribute Interdependence Redundancy and Class-Attribute Interdepen-
dence Uncertainty, respectively. In the ur-CAIM criterion, the CAIR factor has been adapted
to handle unbalanced data.

2.4. Limited-Memory Warping LCSS Gesture Recognition Method

Segmented LCSS and WarpingL.CSS, introduced by [18], are two template matching
methods for online gesture recognition using wearable motion sensors based on the longest
common subsequence (LCS) algorithm. Aside from being robust against human gesture
variability and noisy gathered data, they are also tolerant to noisy labeled annotations. On
three datasets (10-17 classes), both methods outperform DTW-based classifiers with and
without the presence of noisy annotations. WarpingL.CSS has a smaller runtime complexity,
about one order of magnitude, than SegmentedLCSS. In return, a penalty parameter, which
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is application-specific, has to be set. Since each method is a binary classifier, a fusion
method must be established, which will be discussed and illustrated in detail later.

A recently proposed variant of the WarpingLCSS method [21], labeled LM-WLCSS,
allows the technique to run on a resource constrained sensor node. A custom 8-bit Atmel
AVR motion sensor node and a 32-bit ARM Cortex M4 microcontroller were successfully
used to illustrate the implementation of this method on three different everyday life
applications. On the assumption that a gesture may last up to 10 s and given that the
sample rate is 10 Hz, the chips are capable of recognizing, simultaneously and in real-time,
67 and 140 gestures, respectively. Furthermore, the extremely low power consumption used
to recognize one gesture (135 W) might suggest an ASIC (Application-Specific Integrated
Circuit) implementation.

In the following subsections, we review the core components of the training and
recognition processes of an LM-WLCSS classifier, which will be in charge of recognizing a
particular gesture. All streams of sensor data acquired using multiple sensors attached to
the sensor node are pre-processed using a specific quantization step to convert each sample
into a sequence of symbols. Accordingly, these strings allow for the formation of a training
data set essential for selecting a proper template and computing a rejection threshold.
In the recognition mode, each new sample gathered is quantized and transmitted to the
LM-WLCSS and then to a local maximum search module, called SearchMax, to finally
output if a gesture has occurred or not. Figure 1 describes the entire data processing flow.

Training
Template

Raw ..
. uantization [ .
Signals 4 Q Construction

Template

Rejection threshold
computation

Threshold I
Online Recognition

‘ .
Raw 4 . 1 bit
Signals Quantization ‘Dl LM-WLCSS |—>| SearchMax E event

Figure 1. A binary classifier based on the Limited-Memory Warping LCSS [21].

2.4.1. Quantization Step (Training Phase)

At each time, t, a quantization step assigns an n-dimensional vector,

x(t) = [x1(t) ... xn(t)], (6)

representing one sample from all connected sensors as a symbol. In other words, a prior
data discretization technique is applied on the training data, and the resulting discretization
scheme is used as the basis of a data association process for all incoming new samples.
Specifically to the LM-WLCSS, Roggen et al. [21] applied the K-means algorithm and the
nearest neighbor. Despite the fact that K-means is widely employed, it suffers from the
following disadvantages: the algorithm does not guaranty the optimality of the solution
(position of cluster centers) and the optimal number of clusters assessed must be considered
the optimum. In this paper, we investigate the use of the Ameva and ur-CAIM coefficients
as a discretization evaluation measure in order to find the best suitable discretization
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scheme. The nearest neighbor algorithm is preserved, where the squared Euclidean distance
was selected as a distance function. More formally, a quantization step is defined as follows:

() — Lei1?

max ||L.; — L||?
| j,kzl,...,\£c||| cj ck”

Qc(x(1)) = argmin %

i=1,...,|Lc

where Q.(.) assigns to the sample x(f) the index of a discretization point L.; chosen from
the discretization scheme L, associated with the gesture class c. Therefore, the stream is
converted into a succession of discretization points.

2.4.2. Template Construction (Training Phase)

Let s.; denote the sequence i, i.e., the quantized gesture instance 7, belonging to the
gesture class training data set S.. Hence, S C S, where S is the training data set. In the LM-
WLCSS, the template construction of a gesture class ¢ simply consists of choosing the first
motif instance in the gesture class training data set. Here, we adopt the existing template
construction phase of the WarpingLCSS. A template 5., representing all gestures from the
class c, is therefore the sequence that has the highest LCS among all other sequences of the
same class. It results in the following:

5. =argmax ) 1(8cirScj) (8)
Sci€5c  je|Scl,jAi

where (., .) is the length of the longest common subsequence.

The LCS problem has been extensively studied, and it has an exponential raw complex-
ity of O(2"). A major improvement, proposed in [52], is achieved by dynamic programming
in a runtime of O(nm), where n and m are the lengths of the two compared strings. In [43],
the authors suggested three new algorithms that improve the work of [53], using a van
Emde Boas tree, a balanced binary search tree, or an ordered vector. In this paper, we use
the ordered vector approach, since its time and space complexities are O(nL) and O(R),
where 1 and L are the lengths of the two input sequences and R is the number of matched
pairs of the two input sequences.

2.4.3. Limited-Memory Warping LCSS

LM-WLCSS instantaneously produces a matching score between a symbol s, (i) and
a template 5.. When one identical symbol encounters the template 3., i.e., the ith sample
and the first jth sample of the template are alike, a reward R, is given. Otherwise, the
current score is equal to the maximum between the two following cases: (1) a mismatch
between the stream and the template, and (2) a repetition in the stream or even in the
template. An identical penalty D, the normalized squared Euclidean distance between the
two considered symbols d(.,.) weighted by a fixed penalty P, is thus applied. Distances
are retrieved from the quantizer since a pairwise distance matrix between all symbols in the
discretization scheme has already been built and normalized. In the original LM-WLCSS,
the decision between the different cases is controlled by tolerance €. Here, this behavior
has been nullified due to the exploration capacity of the metaheuristic to find an adequate
discretization scheme. Hence, modeled on the dynamic computation of the LCS score, the
matching score M,(j, i) between the first j symbols of the template 5. and the first i symbols
of the stream W stem from the following formula:

0, ifi=00rj=0
Mc(j—1,i—1)+Re, i W(i) = 5(j)
Mc(j, i) = Mc(j—1,i-1)-D, )
maxq Mq(j—1,i) — D,  otherwise
M(j,i—1) =D,
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where D = P, xd(W(i),5.(j)). It is easily determined that the higher the score, the more
similar the pre-processed signal is to the motif. Once the score reaches a given acceptance
threshold, an entire motif has been found in the data stream. By updating a backtracking
variable, B, with the different lines of (9) that were selected, the algorithm enables the
retrieving of the start-time of the gesture.

2.4.4. Rejection Threshold (Training Phase)

The computation of the rejection threshold, w,, requires computing the LM-WLCSS
scores between the template and each gesture instance (expected chosen template) con-
tained in the gesture class c. Let #(¢) and o(°) denote the resulting mean and standard
deviation of these scores. It follows

We = y(") —hex o9, (10)

. e s (©)
where h. is a real positive in the range |0, g Tl

2.4.5. Searchmax (Recognition Phase)

A SearchMax function is called after every update of the matching score. It aims to
find the peak in the matching score curve, representing the beginning of a motif, using a
sliding window without the necessity of storing that window. More precisely, the algorithm
first searches the ascent of the score by comparing its current and previous values. In this
regard, a flag is set, a counter is reset, and the current score is stored in a variable called
Max. For each following value that is below Max, the counter is incremented. When Max
exceeds the pre-computed rejection threshold, w,, and the counter is greater than the size
of a sliding window WF_, a motif has been spotted. The original LM-WLCSS SearchMax
algorithm has been kept in its entirety. WF,, therefore, controls the latency of the gesture
recognition and must be at least smaller than the gesture to be recognized.

2.4.6. Backtracking (Recognition Phase)

When a gesture has been spotted by SearchMax, retrieving its start-time is achieved
using a backtracking variable. The original implementation as a circular buffer with a
maximal capacity of |5¢| * WB. has been maintained, where |5.| and WB. denote the length
of the template 5, and the length of the backtracking variable B, respectively. However,
we add an additional behavior. More precisely, WF; elements are skipped because of
the required time for SearchMax to detect local maxima, and the backtracking algorithm
is applied. The current matching score is then reset, and the WF, previous samples’
symbols are reprocessed. Since only references to the discretization scheme L. are stored,
re-quantization is not needed.

2.5. Fusion Methods Using WarpingLCSS

WarpingLCSS is a binary classifier that matches the current signal with a given tem-
plate to recognize a specific gesture. When multiple WarpingLCSS are considered in
tackling a multi-class gesture problem, recognition conflicts may arise. Multiple methods
have been developed in literature to overcome this issue. Nguyen-Dinh et al. [18] intro-
duced a decision-making module, where the highest normalized similarity between the
candidate gesture and each conflicting class template is outputted. This module has also
been exploited for the Segmented LCSS and LM-WLCSS. However, storing the candidate
detected gesture and reprocessing as many LCSS as there are gesture classes might be
difficult to integrate on a resource constrained node. Alternatively, Nguyen-Dinh et al. [19]
proposed two multimodal frameworks to fuse data sources at the signal and decision
levels, respectively. The signal fusion combines (summation) all data streams into a sin-
gle dimension data stream. However, considering all sensors with an equal importance
might not give the best configuration for a fusion method. The classifier fusion framework
aggregates the similarity scores from all connected template matching modules, and each
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one processes the data stream from one unique sensor, into a single fusion spotting matrix
through a linear combination, based on the confidence of each template matching module.
When a gesture belongs to multiple classes, a decision-making module resolves the conflict
by outputting the class with the highest similarity score. The behavior of interleaved
spotted activities is, however, not well-documented. In this paper, we decided to deliberate
on the final decision using a light-weight classifier.

3. Proposed Method

In this section, we present an evolutionary algorithm for feature selection, discretiza-
tion, and parameter tuning for an LM-WLCSS-based method. Unlike many discretization
techniques requiring a prefixed number of discretization points, the proposed algorithm
exploits a variable-length structure in order to find the most suitable discretization scheme
for recognizing a gesture using LM-WLCSS. In the remaining part of this paper, our
method is denoted by MOFSD-GR (Many-Objective Feature Selection and Discretization
for Gesture Recognition).

3.1. Solution Encoding and Population Initialization

A candidate solution x integrates all key parameters required to enable data reduction
and to recognize a particular gesture using the LM-WLCSS method.

As previously noted, the sample at time ¢ is an n-dimensional vector x(t) = [x1(t) ... xn(t)],
where 7 is the total number of features characterizing the sample. Focusing on a small subset of
features could significantly reduce the number of required sensors for gesture recognition,
save computational resources, and lessen the costs. Feature selection has been encoded as a
binary valued vector p. = {p]-}]r.':1 € [0,1]", where p; = 0 indicates that the corresponding
features is not retained whereas p; = 1 signifies that the associated feature is selected. This
type of representation is very widespread across literature.

The discretization scheme L. = (L1,Ly, ..., L) is represented by a variable-length
vector, where m is a positive integer uniformly chosen in the range [Klwer, KPP =
[10,70]. The upper limit of this decision variable is purposely larger than necessary to
improve diversity. These limits are selected by trial and error. Each discretization point
Li = (z1,22,...,2z0) € [0,1]",i € {1,...,m}, is a n-dimensional point uniformly chosen in
the training space of the gesture c.

Amongst the abovementioned LM-WLCSS parameters, only the SearchMax window
length WF,, the penalty P, and the coefficient /. of the threshold have been included into
the solution representation.

1.  WEF, controls the latency of the recognition process, i.e., the required time to announce
that a gesture peak is present in the matching score. WF, is a positive integer uniformly
chosen in the interval [WFL“¢", WF."P*'] = [5,15]. By fixing the reward R, to 1, the
penalty P is a real number uniformly chosen in the range [O, 1] ; otherwise, gestures
that are different from the selected template would be hardly recognizable.

2. The coefficient . of the threshold is strongly correlated to the reward R, and the
discretization scheme L.. Since it cannot easily be bounded, its value is locally
investigated for each solution.

3. The backtracking variable length WB, allows us to retrieve the start-time of a gesture.
Although a too short length results in a decrease in recognition performance of the
classifier, its choice could reduce the runtime and memory usage on a constrained
sensor node. Since its length is not a major performance limiter in the learning process
and it can easily be rectified by the decider during the deployment of the system, it
was fixed to three times the length of the longest gesture occurrence in c in order to
reduce the complexity of the search space.

Hence, the decision vector x can be formulated as follows:

X = (Pc/ Le, P, WF, hc)~ (11)
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3.2. Operators

In C-MOEA /DD, selected solutions produce one or more offspring using any genetic
operators. In this paper, for each selected parent solution pair {x1, X, }, a crossover generates
two children {x{, x5} that are mutated afterwards. In the following subsections, these two
operators are explained.

3.2.1. Crossover Operation

The classical uniform crossover is used for the selected feature vector. In this paper,
we adapted the recently proposed rand-length crossover for the random variable-length
crossover differential evolution algorithm [42] to crossover two discretization schemes.
More precisely, offspring lengths are firstly randomly and uniformly selected from the
range [KL%", min(|x{¢| + |x5°|, Ke"P*")], where xf ¢ indicates the discretization scheme
(to be used for the gesture class c) associated with the solution x; and |.| indicates the
number of elements in this designated discretization scheme. For the current value of
i € [1,minjcqq 9y |x§£f ||, three cases might occur. When both parent solutions contain a
discretization point at the index i, the simulated binary crossover (SBX) is applied to each
dimension of the two points. When one of the parent solution discretization scheme is
too short, both children inherit from the parent having the longest discretization scheme.
Otherwise, a new discretization point is uniformly chosen in the training space for each
children solution. All newly created discretization points are randomly assigned to children
solution. The pseudo-code of the rand-length crossover for discretization scheme procedure
is given in Algorithm 1.

Since LM-WLCSS penalties are encoded as real-values, the SBX operator is also applied
to the decision variable P.. In contrast, SearchMax window lengths are integers; thus, we
incorporate the weighted average normally distributed arithmetic crossover (NADX) [54]. It
induces a greater diversity than uniform crossover and SBX operators while still proposing
values near and between the parents. Despite the length of the backtracking variable
having been fixed, the NADX operator could be considered.

When selecting features, the discretization schemes or LM-WLCSS penalties, and
SearchMax window lengths of children solutions are different from those of parent solu-
tions, and their coefficients, k., of the threshold must be undefined because the resulting
LM-WLCSS classifier from the solution is altered.

3.2.2. Mutation Operation

All decision variables are equiprobably modified. The uniform bit flip mutation
operator is applied to the selected feature binary vector. Each discretization point in the
discretization scheme is also equiprobably altered. Specifically, when a discretization point
has been identified for a modification, all of its features are mutated using the polynomial
mutation operator. For all of the remaining decision variables, the polynomial mutation is
applied whether decision variables are encoded as integers or real numbers.
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Algorithm 1: Rand-length crossover for discretization schemes.

Input: discretization schemes { £}, £2} of two parent solutions {xj,x, }
Output: discretization schemes {£1’, £2'} for two offspring solutions {x’,x,'}

1 Nogfr < random (K% min(| LY + | £2], KePP))
2 Nogfa < random (Kve min(|LL] + | £2], KPPY))
3 fori=1 to max(N,fr1, Nosr2) do

4 Sample ¢y, c3

5 | ifi>|L]] then

6 ifi < |L£2| then

7 ‘ C] ¢ C L%i

8 else

9 for j=1 to n do

10 c1(j) < random point in the training space of the gesture c
11 c2(j) + random point in the training space of the gesture ¢
12 end

13 end
14 else

15 ifi > |£?| then

16 ‘ C1 < Cp < Lgi

17 else

18 for j=1 to n do

19 | fer(i)ea()}  SBX(LL(), L2(7)
20 end

21 end
22 end
23 | u <« random(0,1)
24 if u < 0.5 then

25 if i < Nysp then Lgi/ 1

2 if i < Nyfp, then L2 < ¢
27 else

28 if i < Nyfsi then LY, < ¢

29 if i < Nyspp then L‘Z‘i, 1
30 end
31 end

32 return {[,}/, E%/}
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3.3. Objective Functions

The quality of a candidate solution is measured by the objective functions. In order to
find the best solution for recognizing a particular gesture using LM-WLCSS, five functions
have been considered:

minimize  F(x) = [~ f1(x), =f2(x), = f3(x), = fa(x), fs(x)]" (12)
where
precision X recall

frlx) = Flscore =2 x precision + recall 13)
1
= 1(3,, 14
fZ(X) |§CHSC| yesg#gc (S y) (14)
f3(x) = Ameva(ﬁc) (15)
p(e) log(p(e)) »
=" 5 Tlog(m) "
=1
fo(x) = Zﬁ",ﬂ] (17)
subject to
|T;| >3 (18)
we >0 (19)

where T is the set of distinct discretization points in the elected template 5., |T,| is the
number of distinct elements in the latter, and [.] denotes the Iverson bracket.

Let us firstly define the basic terms generated by a confusion matrix: ¢p (true positives)
is the number of correctly identified samples, fp (false positives) refers to the incorrectly
identified samples, tn (true negatives) is the number of correctly rejected samples, and fn
(false negatives) refers to the incorrectly rejected samples. In (13), f; measures how well the
trained binary classifier performs on the testing data set. Although the accuracy is widely
acknowledged, it cannot be used as exclusive performance recognition indicator, since the
classifier could have exactly zero predictive power [55]. We alternatively selected the F1

. . . . .. t
score, defined as the harmonic mean of precision and recall, where precision = ; 7 f 7 and
_ _tp
recall = R

The objective function f,, in (14), directly comes from the template construction during
the training phase of the binary classifier. It is the average sum of the longest common
subsequence between the elected template 5. and the other quantized gesture instances in
the gesture class training data set. The higher the score is, the more the template represents
the gesture class c.

The Ameva criterion, determined by the objective function f3 in (15), expresses the
quality of the discretization scheme component of the solution. Its highest values are
attained when all samples from a specific class are quantized to a unique discretization
point (the other discretization points have no associated samples). Additionally, the
criterion favours a low number of discretization points. Since there are only two classes in
this problem, i.e., the samples from the gesture class c represents the positive class, and all
others examples are negatives; it might be possible to encounter similarities in the different
gesture executions for both classes. As a result, negative examples might be quantized
into the same discretization points defining the class template 5., and the Ameva criterion
might try to create unnecessary discretization points. To overcome this issue, a constraint
on the template, defined in (18), imposes that the latter must be defined by at least three
distinct discretization points. Additionally, in (16), the objective function f; counters this
conflicting situation and measures heterogeneity by the normalized entropy of the elected
template 5. included between [0,1]. Lower appearance of a discretization point in the
template is thus penalized. The Ameva criterion may be interchanged with ur-CAIM or
any other discretization criterion.
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In (17), the last objective function indicates the average number of selected features in
the current solution, as we need to reduce the number of features.

Algorithm 2 presents the pseudo-code of the evaluation procedure of a candidate
solution x. First and foremost, a quantizer Q. is created using the discretization scheme
L. and the feature selection vector p.. An LM-WLCSS classifier can thus be trained
on the training dataset. Although the objective function f5 is completely independent
of the classifier construction, an infeasible solution situation may be encountered due
to the negativity of the rejection threshold w,, as stated in (19). In contrast, evaluation
procedure continues, and from the elected class template T, and the rejection threshold, it
follows the objective function f3. As previously mentioned, the decision variable i, must

. . . i © . ..
be locally investigated. When the coefficient of variation ”—C) is different from zero, the

ol
procedure increments the value of k. from 0 to % with a step of % because a
high amplitude of the coefficients can nullify the rejection threshold. For each coefficient
value, the previously constructed LM-WLCSS classifier is not retained. Only updating the
SearchMax threshold, clearing the circular buffer (variable B.), and resetting the matching
score are necessary. Here, the greater objective function f; obtained value (i.e., the best-
obtained classifier performance) and its associated /. are preserved, and the evaluated

solution x and objective function F(x) are updated in consequence.

c

3.4. Multi-Class Gesture Recognition System

Whenever a new sample x(t) is acquired, each of the required subset of the vector is
transmitted to the corresponding trained LM-WLCSS classifier to be specifically quantized
and instantaneously classified. Each binary decision, forming a decision vector d(t), is sent
to a decision fusion module to eventually yield which gesture has been executed. Among
all of the aggregation schemes for binarization techniques, we decided to deliberate on
the final decision through a light-weight classifier, such as neural networks, decision trees,
logistic regressions, etc. Figure 2 illustrates the final recognition flow.

Incoming x(t)

| Template | | Threshold |

q Conflicts
}—‘ | L l resolution
o o | 1 !
| > Quantization |—>| LM-WLCSS |—>| SearchMax |7 : Decision vector !
Cy 1 1
| dy |
e 1
| dm |
1 1
*— | Template | | Threshold | . v :
- 7 3 ' Lightweight '
—‘ N| — ! Classifier '
| g Quantization H LM-WLCSS |—>| SearchMax l—— 'L ____________ ,

Cm

YyYYYY

Final decision

%1 (£) o2 (2)

Figure 2. A multiclass gesture recognition system including multiple binary classifiers based on
LM-WLCSS.
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Algorithm 2: Solution evaluation.

Input: solution x
Output: solution F(x)
1 Create a quantizer Q. using the discretization scheme L. and the feature selection
vector p.
2 if w. > 0or |T;| > 3 then
F(x) < [0,0,0,0,00]
return F(x)
end
Compute f3(x) and f5(x)
Train a LM-WLCSS classifier using Q.
Compute f(x) and f4(x)

ceoulo)
1fg(—;:Othen

® NN N U e W

o

10 he <0
1 | Compute fi(x)
12 else

13 hmax <+ 0
14 | fimax <0

15 repeat

16 Update the SearchMax threshold w, <+ y(c) — hex o€

17 Clear the backtracking variable B; and reset the matching score
M.(j,0) < 0, wherej =1,...,[5]

18 f1 < Compute f1(x)

19 if fi > fimax then

20 fimax < f,

21 hmax < h,

22 end

23 he < he + %

tilh > Y
2 until /1 > S

25 he < hmax

26 | f1(x) < fimax

27 end

28 F(x) < [ fi(x), —f2(x), = f3(x), — fa(x), f5(x)]

29 return F(x)

4. Experiments

In this section, we describe the experimental framework. First, we present the Oppor-
tunity dataset [56] as a benchmark for gesture recognition and dimensionality reduction.
This dataset, available on the UCI machine learning repository (https:/ /archive.ics.uci.edu/
ml/datasets/opportunity+activity+recognition (accessed on 15 September 2021), aims to
propose a benchmark for human activity recognition algorithms or for specific stages of the
activity recognition chain, such as dimensionality reduction, signal fusion, and classifica-
tion. It includes multiple runs of a scripted two-part scenario performed by several subjects
equipped with on-body sensors in a simulated studio flat, wherein numerous ambient and
object sensors have been integrated. All raw sensor readings have 243 dimensions. The
first part consists of an activity of daily living, allowing for a look at four abstraction levels
of the activity recognition. The second one, denominated ‘drill run’, focuses on the number
of instance daily gestures.

4.1. Benchmark Dataset

The different approaches used in thte literature to report classification results on this
particular benchmark are reviewed. Finally, we detail the key points of our experimental
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setup, such as the required dataset partitioning imposed by our approach to avoid biases,
general parameter settings, and performance metrics.

4.2. Experimental Setup

Three main ways have been adopted by gesture recognition literature to report clas-
sification results on the Opportunity dataset. First, in [57,58], the proposed method was
tested on the challenging task B2 [58], where performance recognition must be reported on
the testing set composed of ADL4 and ADLS5 for Subjects 2 and 3. According to the chal-
lenge, the authors are free to include any remaining subsets into the training set. Missing
values, due to packet-loss, have been replaced by linear interpolation. All on-body sensors
have been exploited, resulting in an input space with 113 dimensions. Secondly, [58] also
reported gesture recognition performances for each of the four subjects using an identical
data preparation provided by the UCI repository. Although datasets have 113 dimensions,
the methods used for handling missing data may reduce this number. Chen et al. [59]
conducted a similar experimentation, but all types of sensors were included, i.e., 243 di-
mensions. Finally, in [18], a five-fold cross validation (in K-fold cross validation), a dataset
D is split into k mutually exclusive subsets, where the size of each fold is approximately
equal. One of the partition Dy, with t € {1,2,...,k}, is used for testing the classifier
performance, and the remaining of the dataset, i.e., D \ Dy, consists of its training dataset.
This process has to be repeated k-times and was performed on the “drill run” subset of the
Opportunity dataset using accelerometers on arms. Based on the same model validation
technique, [19] evaluated the proposed methods on the ‘drill run” of each subject using a
five-fold cross validation. The experiments only employed 17 3D-sensors, and raw signals
were down-sampled. In this work and the aforementioned one, there is no mention of
methods for handling missing data.

In our proposed method, the whole training data stream must be quantized for each
solution since the selected dimensions and discretization scheme vary. Due to the humon-
gous Euclidean distance searches induced and limited experiment time requirements, we
favour smaller datasets. Hence, for the sake of comparison, we reproduced the experiments
of Nguyen-Dinh et al. [19] but without down-sampling raw signals. All 51 dimensions
were scaled to unit size. We used the default method for handling missing values provided
by the UCI repository. For each subject, Table 1 summarizes the number of repetitions
(#inst) per gesture and their average length (avg) with standard deviation (SD). It follows
that gestures have strong variability, especially ‘CleanTable’, ‘DrinkfromCup’, and Tog-
gleSwitch’, and the number of instances is inconstant. Additionally, this input dataset
noticeably contains a very large portion of ‘null classes’ (40%).
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Table 1. Number of instances and average gesture lengths per subject in the Gesture set of the Opportunity dataset.
Subject 1 Subject 2 Subject 3 Subject 4
Gesture Length Gesture Length Gesture Length Gesture Length

Gesture Names  #inst avg SD #inst avg SD #inst avg SD #inst  avg SD
CleanTable 20 120.00  47.01 20 163.10 4243 18 132.6 15.90 21 74.14 29.30
CloseDishwasher 20 86.85 11.03 19 89.05 11.44 18 85.67 7.86 21 59.57 15.15
CloseDoorl 21 102.95 9.55 20 110.35 9.31 18 126 8.64 21 85.14 10.43
CloseDoor2 20 101.70  20.54 20 121.05 1047 18 135.8 7.43 21 83.00 9.17
CloseDrawerl 20 61.80 4.43 20 42.05 6.84 18 68.83 5.71 21 38.67 10.60
CloseDrawer2 20 63.35 5.05 20 43.60 7.60 18 75.44 7.40 21 43.86 9.38
CloseDrawer3 20 76.50 8.04 20 73.40 9.33 18 78.28 5.72 21 55.10 10.04
CloseFridge 20 76.25 5.84 20 73.20 7.57 19 84.79 13.37 21 56.00 12.94
DrinkfromCup 40 189.05  19.57 40 20920 29.33 36 186.4 18.22 40 159.00 44.08
OpenDishwasher 20 89.75 5.70 21 97.19 14.03 18 90.33 7.34 21 65.81 12.05
OpenDoorl 20 91.75 11.09 20 101.55  14.72 18 130.6 10.86 21 79.81 10.94
OpenDoor2 20 103.10 5.66 20 101.10  18.01 18 145.2 14.64 21 77.24 11.53
OpenDrawerl 20 64.80 7.57 20 72.25 9.29 18 74.28 8.56 21 53.76 11.98
OpenDrawer2 20 68.75 5.46 20 56.30 8.32 18 76.56 5.80 21 47.57 12.34
OpenDrawer3 20 82.60 4.79 20 61.90 8.37 18 85.39 6.69 21 55.67 10.94
OpenFridge 20 75.50 6.43 20 82.50 11.28 19 100.2 11.19 21 57.71 6.69
ToggleSwitch 38 39.84 10.58 28 62.04 25.75 36 55.36 11.87 39 31.03 26.31

In this paper, we performed a five-fold cross-validation. The proposed framework for
building a multi-class gesture recognition system based on LM-WLCSS, however, requires
the partitioning of each training dataset, Z = D \ D;, into three mutually exclusive subsets,
21, 2y, and Z3, to avoid biased results. Z; represents the training dataset used for all the
base-level classifiers and contains 70% of Z. The remaining data is equally split over Z;
and Z;. Performance recognition is maximized over the test set Z;. Once each binary
classifier has been trained, predictions on the stream Z3 are obtained, transforming all
incoming multi-modal samples into a succession of decision vectors. This newly created
dataset, Z3/, allows us to resolve conflicts by training a light-weight classifier. Finally, the
final performance of the system is assessed by using the testing dataset D;.

For our method, C-MOEA /DD parameters remain identical to the original paper [40];
hence, the penalty parameter in PBI § = 5, the neighborhood size T = 20, and the
probability used to select in the neighborhood § = 0.9. For the reproduction procedure,
the crossover probability is p. = 1.0, and the distribution index for the SBX operators is
e = 30. As stated before, mutation of a decision variable of a solution may occur with an
equiprobability of occurrence p,, = 1/6, and when this decision variable is a vector, each
element also has an equal probability to be altered. The polynomial mutation distribution
index was fixed at #;,;, = 20. In this problem, we fixed the population size at 210, and the
stopping criterion is reached when the number of evaluation exceeds 100,000.

4.3. Evaluation Metrics

The effectiveness of the proposed many-objective formulation is evaluated from the
two following perspectives:

1. Effectiveness: Work based on WarpingLCSS and its derivatives mainly use the
weighted Fl-score Fy, and its variant Fy, . ,, which excludes the null class, as primary
evaluation metrics. F,, can be estimated as follows:

N. precision_ * recall,

Fp=2% (20)

~ Niotq1 precision, + recall.

where N, and Ny, are, respectively, the number of samples contained in class ¢
and the total number of samples. Additionally, we considered Cohen’s kappa. This
accuracy measure, standardized to lie on a —1 to 1 scale, compares an observed
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accuracy Obs 4. with an expected accuracy Exp,.., where 1 indicates the perfect
agreement, and values below or equal to 0 represent poor agreement. It is computed
as follows:

Obsacc — Exp 4.,

Kappa =
1- Eprcc

(21)

2. Reduction capabilities: Similar to Ramirez-Gallego et al. [60], a reduction in dimen-
sionality is assessed using a reduction rate. For feature selection, it designates the
amount of reduction in the feature set size (in percentage). For discretization, it
denotes the number of generated discretization points.

5. Results and Discussion

The validation of our simultaneous feature selection, discretization, and parameter
tuning for LM-WLCSS classifiers is carried out in this section. The results on performance
recognition and dimensionality reduction effectiveness are presented and discussed. The
computational experiments were performed on an Intel Core i7-4770k processor (3.5 GHz,
8 MB cache), 32 GB of RAM, Windows 10. The algorithms were implemented in C++.
The Euclidean and LCSS distance computations were sped up using Streaming SIMD
Extensions and Advanced Vector Extensions. Subsequently, the Ameva or ur-CAIM crite-
rion used as an objective function f3 (15) is referred to as MOFSD-GR 4,¢0, and MOFSD-
GRyr-camv respectively.

On all four subjects of the Opportunity dataset, Table 2 shows a comparison between
the best-provided results by Nguyen-Dinh et al. [19], using their proposed classifier fusion
framework with a sensor unit, and the obtained classification performance of MOFSD-
GR Amepa and MOFSD-GRyr.camm. Our methods consistently achieve better F, and Fy .
scores than the baseline. Although the use of Ameva brings an average improvement of
6.25%, te F1 scores on subjects 1 and 3 are close to the baseline. The current multi-class
problem is decomposed using a one-vs.-all decomposition, i.e., there are m binary classifiers
in charge of distinguishing one of the m classes of the problem. The learning datasets for the
classifiers are thus imbalanced. As shown in Table 2, the choice of ur-CAIM corroborates
the fact that this method is suitable for unbalanced dataset since it improves the average F1
scores by over 11%.

Table 2. Average recognition performances on the Opportunity dataset for the gesture recognition
task, either with or without the null class.

[19] MOFSD-GR
Ameva ur-CAIM
F w F WNoNull F w F WNoNull Kappa F w F TWNoNull Kappa
Subject 1 0.82 0.83 0.84 0.83 0.81 0.90 0.91 0.88
Subject 2 0.71 0.73 0.82 0.81 0.79 0.89 0.90 0.87
Subject 3 0.87 0.85 0.89 0.87 0.85 0.93 0.93 0.91
Subject 4 0.75 0.74 0.85 0.83 0.81 0.87 0.87 0.84

Figure 3 illustrates the feature reduction rates produced by MOFSD-GR 4, and
MOFSD-GRyy-camv across all 17 gestures of the Opportunity dataset. The following analysis
are made.

1.  The ur-CAIM criterion consistently leads to a better reduction rate (close to 80% in
mean). Therefore, from a design point of view, the effectiveness of sensors—and their
ideal placements—to recognize a specific activity are more identified.

2. The Ameva criterion achieves a more stable standard deviation in the reduction rate
across all subjects than the ur-CAIM criterion.

3. Since MOFSD-GR 4,0, achieves a better recognition rate than the baseline, its implied
reduction capabilities are still acceptable (>40%).
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Figures 3 and 4 depict the number of discretization points yielded by the two dis-
cretization strategies across all 17 gestures of the Opportunity dataset. From the results,
the following assessment can be made.

1.  Asintended by the nature of Ameva, MOFSD-GR 4,¢y, yields a small number of
cut points close to the constraint imposing that the template be made of at least
three distinct discretization points (18). However, this advantage seems to limit
the exploration capacity of C-MOEA /DD since only half of the original features
are discarded.

2. Incontrast, MOFSD-GRy;.camv tends to generate larger discretization schemes than
MOFSD-GR 4 perq- Since the ur-CAIM criterion aggregates two conflicting objectives
(CAIM aimed to generate a lower number of cut points, and the pair CAIR and CAIU
advocates a larger number), compromises are made.

0.9
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= ur-CAIM
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Figure 3. Box plot representation for feature selection (reduction rate in %).
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Figure 4. Box plot representation for discretization (number of cut points).

Tables 3 and 4 present more detailed results. They recapitulate the average, 3, and
standard deviation, SD, of the number of cut points (#dp) produced and features selected (#d)
by MOFSD-GR 400, and MOFSD-GRy;-camv, respectively. Please note that no substantive
conclusions could be drawn from the intersections between the following sets of selected
features from (1) a particular subject, (2) a particular gesture, and (3) a particular gesture and
fold due to the one-vs.-all decomposition approach used for this multi-class problem.
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Table 3. Average cut points and selected features obtained by MOFSD-GR 4¢4-

Subject 1 Subject 2 Subject 3 Subject 4

Gesture Names Pad SDyg Hadp SDg4, Pad SDyg4 Padp SDgqp Mad SDy, Padp SDya, Mad SDyg4 Madp SDyq4,
CleanTable 25.20 3.90 5.40 0.55 26.40 3.05 4.80 1.30 23.60 1.95 6.00 1.58 24.80 3.27 6.20 1.64
CloseDishwasher 27.00 6.67 5.20 1.79 24.60 5.08 4.60 0.89 21.60 5.13 5.20 1.64 22.20 3.56 5.80 1.30
CloseDoor1 22.60 7.50 5.60 2.07 27.00 1.22 4.80 1.30 24.20 4.49 6.00 2.92 22.00 2.92 5.60 2.51
CloseDoor2 24.60 2.41 4.00 0.00 28.20 2.59 4.60 0.89 22.20 1.92 6.20 1.92 25.80 4.60 4.20 0.45
CloseDrawerl 28.80 2.28 6.40 2.30 27.40 4.83 9.40 3.21 24.00 4.18 6.40 1.52 21.80 4.55 8.60 2.79
CloseDrawer2 25.00 2.65 7.60 3.21 28.80 3.03 6.20 1.48 23.60 2.61 6.00 2.35 21.60 3.71 7.00 3.74
CloseDrawer3 27.20 3.27 4.40 0.55 25.20 4.15 5.00 1.00 26.00 4.12 4.40 0.55 25.40 3.44 4.20 0.45
CloseFridge 26.00 2.55 4.60 0.89 26.60 3.21 5.20 1.10 26.40 3.21 6.20 2.17 27.40 2.51 4.40 0.55
DrinkfromCup 24.40 3.44 4.00 0.00 24.80 3.96 4.40 0.89 25.00 4.00 5.00 1.00 26.20 5.02 4.60 1.34
OpenDishwasher 24.60 3.36 4.60 0.89 24.20 4.21 4.20 0.45 27.00 3.39 5.00 0.00 26.00 2.12 4.80 0.84
OpenDoorl 27.80 5.26 7.20 5.54 28.80 2.77 7.60 5.27 23.20 3.56 5.60 1.82 25.20 1.10 4.60 0.89
OpenDoor2 29.20 2.39 4.40 0.89 25.60 3.29 4.60 0.89 23.20 3.56 4.80 1.10 23.80 1.64 4.40 0.55
OpenDrawerl 25.00 4.30 6.20 2.68 26.00 2.55 9.80 2.17 24.60 2.70 6.00 2.35 27.00 4.85 8.40 7.67
OpenDrawer2 24.00 3.08 6.80 1.30 24.00 3.39 5.80 1.92 25.40 2.19 9.00 5.15 26.20 4.82 5.00 1.00
OpenDrawer3 25.40 4.67 4.20 0.45 26.40 4.22 6.20 2.68 25.80 1.92 5.20 1.79 27.80 3.56 5.40 2.07
OpenFridge 25.20 4.09 5.40 0.89 27.20 4.87 8.80 5.72 27.00 4.69 8.80 5.07 27.00 1.41 5.20 2.17
ToggleSwitch 23.20 1.92 11.40 11.08 26.40 2.70 5.80 1.79 25.60 5.50 11.00 9.67 24.60 2.07 7.80 2.49
Mean 25.60 3.75 5.73 2.06 26.33 3.48 5.99 1.94 24.61 3.48 6.28 2.50 24.99 3.24 5.66 191
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Table 4. Average cut points and selected features obtained by MOFSD-GR.cA1M-

Subject 1 Subject 2 Subject 3 Subject 4
Gesture Names Pad SDy4 Padp SDyap Pad SDy, Padp SDya4, Pad SDy, Madp SDyap Pad SDy4 Madp SDya4,
CleanTable 13.20 8.64 33.00 22.99 9.00 7.11 14.80 9.04 7.60 7.70 11.60 5.68 11.20 9.83 15.60 21.03
CloseDishwasher 6.80 4.76 17.20 15.67 13.60 7.64 10.40 5.22 2.20 1.30 7.00 5.10 6.20 5.67 22.00 12.75
CloseDoor1l 4.60 2.19 12.00 10.17 5.40 2.41 19.00 10.84 10.80 10.03 16.00 11.90 6.80 5.54 17.40 13.56
CloseDoor2 6.60 4.62 10.20 9.12 6.20 5.07 15.40 7.44 7.40 6.19 20.00 24.03 3.40 2.30 10.80 6.06
CloseDrawerl 22.40 5.98 30.60 16.47 16.80 9.26 36.60 25.17 14.00 4.85 41.40 19.05 14.20 7.40 46.80 15.51
CloseDrawer2 16.60 3.21 36.80 25.97 15.40 4.34 37.80 13.81 4.60 1.52 31.60 18.73 14.40 5.77 27.20 7.50
CloseDrawer3 5.40 4.51 7.40 4.77 4.20 1.48 23.40 23.20 5.80 497 14.00 11.64 10.60 10.33 22.40 18.19
CloseFridge 7.60 6.50 11.80 6.50 8.40 5.68 26.20 12.01 4.40 2.79 18.20 12.19 10.20 6.06 28.00 10.79
DrinkfromCup 6.80 4.44 12.40 5.86 8.80 10.13 10.40 10.26 3.60 1.52 13.20 5.54 14.00 8.15 13.80 19.16
OpenDishwasher 5.60 6.07 10.40 7.40 9.40 7.02 14.00 10.42 4.00 2.00 9.00 5.48 3.80 2.95 19.20 22.88
OpenDoorl 3.60 1.52 8.60 2.41 7.20 5.12 23.80 18.03 5.00 3.94 9.40 4.93 7.60 4.88 7.40 2.07
OpenDoor2 13.60 7.37 9.00 8.00 6.20 3.27 9.40 3.51 3.80 1.48 15.80 7.26 8.00 3.67 10.60 3.21
OpenDrawerl 11.60 493 25.80 5.26 9.40 7.47 36.20 14.11 16.60 10.90 43.80 23.64 11.20 5.12 30.60 17.16
OpenDrawer2 16.20 10.69 37.40 15.50 14.60 8.02 40.40 13.58 6.40 2.19 28.00 20.38 9.80 4.82 38.80 10.83
OpenDrawer3 10.40 7.83 23.20 2242 8.00 5.00 22.20 18.31 3.20 2.17 8.60 5.86 6.20 5.07 34.40 19.24
OpenFridge 13.20 9.39 35.20 8.20 5.00 2.45 37.20 25.02 2.20 0.45 36.20 16.13 8.40 7.30 38.60 21.61
ToggleSwitch 13.80 9.26 31.80 11.14 17.80 7.66 29.20 18.21 12.00 3.39 35.60 19.82 17.40 6.66 30.60 16.02

Mean 10.47 5.99 20.75 11.64 9.73 5.83 2391 14.01 6.68 3.96 21.14 12.79 9.61 5.97 24.36 13.97
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6. Limitation of the Study

More experimental comparisons against other recent methods or applies on different
activity datasets such as Nurse Care Activity Recognition Challenge [61] to demonstrate
the effectiveness of the proposed algorithm could be added in this paper. Moreover, other
performances metrics could be investigated such as f-measure or feature reduction rate.
However, such metrics cannot determine the overall performance of a feature selection
algorithm considering both feature selection and discretization. In such a case, other
proposed metrics (e.g., score, pareto optimality, and stability) can be employed for an
improved analysis.

An optimal solution considers constraints (both Equations (18) and (19) in our pro-
posed method) and then could be a local solution for the given set of data and problem
formulated in the decision vector (11). This solution still needs proof of the convergence
toward a near global optimum for minimization under the constraints given in Equations
(12) to (19). Our approach could be compared with other recent algorithms such as con-
volutional neural network [37], fuzzy c-mean [62], genetic algorithm [63], particle swarm
optimisation [64], and artificial bee colony [28]. However some difficulties arise before
comparing and analysing the results: (1) near optimal solution for all algorithms represent
a compromise and are difficult to demonstrate, and (2) both simultaneous feature selection
and discretization contain many objectives.

7. Conclusions and Future Works

In this paper, we proposed an evolutionary many-objective optimization approach
for simultaneously dealing with feature selection, discretization, and classifier parameter
tuning for a gesture recognition task. As an illustration, the proposed problem formulation
was solved using C-MOEA /DD and an LM-WLCSS classifier. In addition, the discretiza-
tion sub-problem was addressed using a variable-length structure and a variable-length
crossover to overcome the need of specifying the number of elements defining the dis-
cretization scheme in advance. Since LM-WLCSS is a binary classifier, the multi-class
problem was decomposed using a one-vs.-all strategy, and recognition conflicts were re-
solved using a light-weight classifier. We conducted experiments on the Opportunity
dataset, a real-world benchmark for gesture recognition algorithm. Moreover, a compari-
son between two discretization criteria, Ameva and ur-CAIM, as a discretization objective
of our approach was made. The results indicate that our approach provides better clas-
sification performances (an 11% improvement) and stronger reduction capabilities than
what is obtainable in similar literature, which employs experimentally chosen parameters,
k-means quantization, and hand-crafted sensor unit combinations [19].

In our future work, we plan to investigate search space reduction techniques, such
as boundary points [27] and other discretization criteria, along with their decomposition
when conflicting objective functions arise. Moreover, efforts will be made to test the
approach more extensively either with other dataset or LCS-based classifiers or deep
learning approach. A mathematical analysis using a dynamic system, such as Markov
chain, will be defined to prove and explain the convergence toward an optimal solution of
the proposed method. The backtracking variable length, B, is not a major performance
limiter in the learning process. In this sense, it would be interesting to see additional
experiments showing the effects of several values of this variable on the recognition phase
and, ideally, how it affects the NADX operator.

Our ultimate goal is to provide a new framework to efficiently and effortlessly tackle
the multi-class gesture recognition problem.

Author Contributions: Conceptualization, ].V.; methodology, J.V.; formal analysis, M.J.-D.O. and
J.V,; investigation, M.J.-D.O. and ].V.; resources, M.].-D.O.; data curation, J.V.; writing—original
draft preparation, J.V. and M.].-D.O.; writing—review and editing, J.V. and M.].-D.O.; supervision,



Appl. Sci. 2021, 11,9787 23 0f 25

M.]J.-D.O.; project administration, M.J.-D.O.; funding acquisition, M.].-D.O. All authors have read
and agreed to the published version of the manuscript.

Funding: While performing this project, J.V. received a scholarship from REPARTI Strategic Network
supported by Fonds québécois de la recherche sur la nature et les technologies (FRQ-NT). This work
was supported by The Natural Sciences and Engineering Research Council of Canada (NSERC)
under the grant number 418235-2012 and RGPIN-2018-06329 as well as by Fond de Recherche du
Québec—Nature et Technologie (FRQ-NT) under the grant number 2016-PR-188869. We thank the
REPARTI Center (strategic network) for its financial support coming from FRQ-NT.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the open access database used in this study.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset analysed in this study is available following this link: https:
/ /archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition (accessed on 15 September
2021).

Acknowledgments: The authors thank Sophie Lasfargeas (University of Quebec at Chicoutimi) for
her constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Byrne, RW.,; Cartmill, E.; Genty, E.; Graham, K.E.; Hobaiter, C.; Tanner, ]. Great ape gestures: intentional communication with a
rich set of innate signals. Anim. Cogn. 2017, 20, 755-769. [CrossRef]

2. Yu,Z;Chen, H;Liu,J; You, ].; Leung, H.; Han, G. Hybrid k -Nearest Neighbor Classifier. IEEE Trans. Cybern. 2016, 46, 1263-1275.
[CrossRef]

3. Amma, C,; Georgi, M.; Schultz, T. Airwriting: a wearable handwriting recognition system. Pers. Ubiquitous Comput. 2014,
18, 191-203. [CrossRef]

4.  Galka, J.; Masior, M.; Zaborski, M.; Barczewska, K. Inertial Motion Sensing Glove for Sign Language Gesture Acquisition and
Recognition. IEEE Sens. J. 2016, 16, 6310-6316. [CrossRef]

5. Lu, Z; Chen, X;; Li, Q.; Zhang, X.; Zhou, P. A Hand Gesture Recognition Framework and Wearable Gesture-Based Interaction
Prototype for Mobile Devices. IEEE Trans. Hum.-Mach. Syst. 2014, 44, 293-299. [CrossRef]

6.  Benatti, S.; Casamassima, F.; Milosevic, B.; Farella, E.; Schonle, P; Fateh, S.; Burger, T.; Huang, Q.; Benini, L. A Versatile Embedded
Platform for EMG Acquisition and Gesture Recognition. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 620-630. [CrossRef]

7.  Geng, Y, Chen,].; Fu, R,; Bao, G.; Pahlavan, K. Enlighten Wearable Physiological Monitoring Systems: On-Body RF Characteristics
Based Human Motion Classification Using a Support Vector Machine. IEEE Trans. Mob. Comput. 2016, 15, 656—-671. [CrossRef]

8. Fukui, R.; Watanabe, M.; Shimosaka, M.; Sato, T. Hand shape classification in various pronation angles using a wearable wrist
contour sensor. Adv. Robot. 2015, 29, 3—-11. [CrossRef]

9.  Cifuentes, ].; Boulanger, P.; Pham, M.T,; Prieto, F.; Moreau, R. Gesture Classification Using LSTM Recurrent Neural Networks.
In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23-27 July 2019; pp. 6864-6867.

10. Wang, J.; Chen, Y,; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.
2019, 119, 3-11. [CrossRef]

11.  Shokoohi-Yekta, M.; Hu, B.; Jin, H.; Wang, J.; Keogh, E. Generalizing DTW to the multi-dimensional case requires an adaptive
approach. Data Min. Knowl. Discov. 2017, 31, 1-31. [CrossRef]

12.  Dindo, H.; Presti, L.L.; Cascia, M.L.; Chella, A.; Dedi¢, R. Hankelet-based action classification for motor intention recognition.
Robot. Auton. Syst. 2017, 94, 120-133. [CrossRef]

13.  Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, ].; Keogh, E. Addressing Big Data Time
Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data 2013,
7,10:1-10:31. [CrossRef]

14.  Vlachos, M.; Kollios, G.; Gunopulos, D. Discovering similar multidimensional trajectories. In Proceedings 18th International
Conference on Data Engineering, San Jose, CA, USA, 26 Feburary—1 March 2002; pp. 673-684. [CrossRef]

15. Frolova, D.; Stern, H.; Berman, S. Most Probable Longest Common Subsequence for Recognition of Gesture Character Input.
IEEE Trans. Cybern. 2013, 43, 871-880. [CrossRef]

16. Stern, H.; Shmueli, M.; Berman, S. Most discriminating segment—Longest common subsequence (MDSLCS) algorithm for
dynamic hand gesture classification. Pattern Recognit. Lett. 2013, 34, 1980-1989. [CrossRef]

17.  Nyirarugira, C.; Kim, T. Stratified gesture recognition using the normalized longest common subsequence with rough sets. Signal

Process. Image Commun. 2015, 30, 178-189. [CrossRef]


https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
http://doi.org/10.1007/s10071-017-1096-4
http://dx.doi.org/10.1109/TCYB.2015.2443857
http://dx.doi.org/10.1007/s00779-013-0637-3
http://dx.doi.org/10.1109/JSEN.2016.2583542
http://dx.doi.org/10.1109/THMS.2014.2302794
http://dx.doi.org/10.1109/TBCAS.2015.2476555
http://dx.doi.org/10.1109/TMC.2015.2416186
http://dx.doi.org/10.1080/01691864.2014.952337
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1007/s10618-016-0455-0
http://dx.doi.org/10.1016/j.robot.2017.04.003
http://dx.doi.org/10.1145/2500489
http://dx.doi.org/10.1109/ICDE.2002.994784.
http://dx.doi.org/10.1109/TSMCB.2012.2217324
http://dx.doi.org/10.1016/j.patrec.2013.02.007
http://dx.doi.org/10.1016/j.image.2014.10.008

Appl. Sci. 2021, 11,9787 24 0f 25

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Nguyen-Dinh, L.V.; Calatroni, A.; Troster, G. Robust Online Gesture Recognition with Crowdsourced Annotations. J. Mach. Learn.
Res. 2014, 15, 3187-3220.

Nguyen-Dinh, L.V.; Calatroni, A.; Troster, G. Towards a Unified System for Multimodal Activity Spotting: Challenges and a
Proposal. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, Seattle Washington, WA, USA, 13-17 September 2014; ACM: New York, NY, USA, 2014; pp. 807-816. [CrossRef]
Hardegger, M.; Roggen, D.; Calatroni, A.; Troster, G. S-SSMART: A Unified Bayesian Framework for Simultaneous Semantic
Mapping, Activity Recognition, and Tracking. ACM Trans. Intell. Syst. Technol. 2016, 7, 34:1-34:28. [CrossRef]

Roggen, D.; Cuspinera, L.P.; Pombo, G.; Ali, F.; Nguyen-Dinh, L.V., Limited-Memory Warping LCSS for Real-Time Low-Power
Pattern Recognition in Wireless Nodes. In Wireless Sensor Networks: 12th European Conference, EWSN, Proceedings; Springer
International Publishing: Porto, Portugal, 2015; pp. 151-167. [CrossRef]

Chan, M.; Esteve, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif.
Intell. Med. 2012, 56, 137-156. [CrossRef]

Unler, A.; Murat, A. A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J.
Oper. Res. 2010, 206, 528-539. [CrossRef]

Xue, B.; Zhang, M.; Browne, W.N,; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans.
Evol. Comput. 2016, 20, 606-626. [CrossRef]

Tahan, M.H.; Asadi, S. MEMOD: a novel multivariate evolutionary multi-objective discretization. Soft Comput. 2017, 22, 1-23.
[CrossRef]

Garcia, S.; Luengo, J.; Saez, ].A.; Lopez, V.; Herrera, F. A Survey of Discretization Techniques: Taxonomy and Empirical Analysis
in Supervised Learning. IEEE Trans. Knowl. Data Eng. 2013, 25, 734-750. [CrossRef]

Ramirez-Gallego, S.; Garcia, S.; Benitez, ] M.; Herrera, F. Multivariate Discretization Based on Evolutionary Cut Points Selection
for Classification. IEEE Trans. Cybern. 2016, 46, 595-608. [CrossRef]

Wang, X.H.; Zhang, Y.; Sun, X.Y,; Wang, Y.L.; Du, C.H. Multi-objective feature selection based on artificial bee colony: An
acceleration approach with variable sample size. Appl. Soft Comput. J. 2020, 88, 106041 [CrossRef]

Yang, W.; Chen, L.; Wang, Y.; Zhang, M. Multi-Many-Objective Particle Swarm Optimization Algorithm Based on Competition
Mechanism. Comput. Intell. Neurosci. 2020, 2020, 5132803. [CrossRef]

Cano, A,; Nguyen, D.T.; Ventura, S.; Cios, K.J. ur-CAIM: improved CAIM discretization for unbalanced and balanced data. Soft
Comput. 2016, 20, 173-188. [CrossRef]

Zhou, Y,; Kang, J.; Kwong, S.; Wang, X.; Zhang, Q. An evolutionary multi-objective optimization framework of discretization-
based feature selection for classification. Swarm Evol. Comput. 2021, 60, 100770. [CrossRef]

Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2015, 45, 191-204. [CrossRef]
Yu, X.; Zhang, X. Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization
problems. PLoS ONE 2017, 12, e0172033. [CrossRef]

Zhou, Y.; Kang, ].; Guo, H. Many-objective optimization of feature selection based on two-level particle cooperation. Inf. Sci.
2020, 532,91-109. [CrossRef]

Sharmin, S.; Shoyaib, M.; Ali, A.A.; Khan, M.A.H.; Chae, O. Simultaneous feature selection and discretization based on mutual
information. Pattern Recognit. 2019, 91, 162-174. [CrossRef]

Roy, P; Sharmin, S.; Ali, A.; Shoyaib, M. Discretization and Feature Selection Based on Bias Corrected Mutual Information Considering
High-Order Dependencies; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Singapore, 2020; Volume 12084, pp. 830-842. [CrossRef]

Lu, HY,; Zhang, M.; Liu, Y.Q.; Ma, S.P. Convolution Neural Network Feature Importance Analysis and Feature Selection
Enhanced Model. Ruan Jian Xue Bao/J. Softw. 2017, 28, 2879-2890. [CrossRef]

Gong, M; Liu, J.; Li, H,; Cai, Q.; Su, L. A multiobjective sparse feature learning model for deep neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 2015, 26, 3263-3277. [CrossRef] [PubMed]

Tsai, C.F.; Chen, Y.C. The optimal combination of feature selection and data discretization: An empirical study. Inf. Sci. 2019,
505, 282-293. [CrossRef]

Li, K; Deb, K; Zhang, Q.; Kwong, S. An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and
Decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694-716. [CrossRef]

Ryerkerk, M.L.; Averill, R.C.; Deb, K.; Goodman, E.D. Solving metameric variable-length optimization problems using genetic
algorithms. Genet. Program. Evolvable Mach. 2017, 18, 247-277. [CrossRef]

Al-Dabbagh, M.D.; Al-Dabbagh, R.D.; Abdullah, R.R.; Hashim, E. A new modified differential evolution algorithm scheme-based
linear frequency modulation radar signal de-noising. Eng. Optim. 2015, 47, 771-787. [CrossRef]

Zhu, D,; Wang, L.; Wu, Y.; Wang, X. A Practical O(R\log\log n+n) time Algorithm for Computing the Longest Common
Subsequence. CoRR 2015, 44, abs/1508.05553.

Zhang, Q.; Li, H. MOEA /D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11,712-731. [CrossRef]

Deb, K,; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577-601. [CrossRef]


http://dx.doi.org/10.1145/2638728.2641301
http://dx.doi.org/10.1145/2824286
http://dx.doi.org/10.1007/978-3-319-15582-1_10
http://dx.doi.org/10.1016/j.artmed.2012.09.003
http://dx.doi.org/10.1016/j.ejor.2010.02.032
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1007/s00500-016-2475-5
http://dx.doi.org/10.1109/TKDE.2012.35
http://dx.doi.org/10.1109/TCYB.2015.2410143
http://dx.doi.org/10.1016/j.asoc.2019.106041
http://dx.doi.org/10.1155/2020/5132803
http://dx.doi.org/10.1007/s00500-014-1488-1
http://dx.doi.org/10.1016/j.swevo.2020.100770
http://dx.doi.org/10.1109/TCYB.2014.2322602
http://dx.doi.org/10.1371/journal.pone.0172033
http://dx.doi.org/10.1016/j.ins.2020.05.004
http://dx.doi.org/10.1016/j.patcog.2019.02.016
http://dx.doi.org/10.1007/978-3-030-47426-3_64
http://dx.doi.org/10.13328/j.cnki.jos.005349
http://dx.doi.org/10.1109/TNNLS.2015.2469673
http://www.ncbi.nlm.nih.gov/pubmed/26340790
http://dx.doi.org/10.1016/j.ins.2019.07.091
http://dx.doi.org/10.1109/TEVC.2014.2373386
http://dx.doi.org/10.1007/s10710-016-9282-8
http://dx.doi.org/10.1080/0305215X.2014.927449
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2013.2281535

Appl. Sci. 2021, 11,9787 25 0f 25

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Garcia, S.; Lépez, V.; Luengo, J.; Carmona, C.J.; Herrera, F. A Preliminary Study on Selecting the Optimal Cut Points in
Discretization by Evolutionary Algorithms. ICPRAM 2012, 2012, 211-216.

Eshelman, L.J. The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic
Recombination. In Foundations of Genetic Algorithms; RAWLINS, G.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 1,
pp. 265-283. [CrossRef]

Tsai, C.J.; Lee, C.I; Yang, W.P. A discretization algorithm based on Class-Attribute Contingency Coefficient. Inf. Sci. 2008,
178,714-731. [CrossRef]

Gonzalez-Abril, L.; Cuberos, F.; Velasco, F.; Ortega, ]. Ameva: An autonomous discretization algorithm. Expert Syst. Appl. 2009,
36, 5327-5332. [CrossRef]

Soria Morillo, L.M.; Alvarez-Garcia, J.A.; Gonzalez-Abril, L.; Ortega Ramirez, J.A. Discrete classification technique applied to TV
advertisements liking recognition system based on low-cost EEG headsets. Biomed. Eng. Online 2016, 15, 75. [CrossRef]

Angel Alvarez de la Concepcién, M.; Morillo, LM.S.; Alvarez Garcia, J.A.; Gonzalez-Abril, L. Mobile activity recognition and fall
detection system for elderly people using Ameva algorithm. Pervasive Mob. Comput. 2017, 34, 3-13. [CrossRef]

Wagner, R.A; Fischer, M.J. The String-to-String Correction Problem. J. ACM 1974, 21, 168-173. [CrossRef]

Iliopoulos, C.S.; Rahman, M.S. New efficient algorithms for the LCS and constrained LCS problems. Inf. Process. Lett. 2008,
106, 13-18. [CrossRef]

Ladkany, G.S.; Trabia, M.B. A genetic algorithm with weighted average normally-distributed arithmetic crossover and twinkling.
Appl. Math. 2012, 3, 1220-1235. [CrossRef]

Ben-David, A. A lot of randomness is hiding in accuracy. Eng. Appl. Artif. Intell. 2007, 20, 875-885. [CrossRef]

Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Forster, K.; Troster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et
al. Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 2010 Seventh
International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15-18 June 2010, pp. 233-240. [CrossRef]
Ordonez, FJ.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16, 115. [CrossRef]

Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Troster, G.; del R. Millan, J.; Roggen, D. The Opportunity challenge: A
benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033-2042. [CrossRef]
Chen, Y.L.; Wu, X; Li, T.; Cheng, J.; Ou, Y.; Xu, M. Dimensionality reduction of data sequences for human activity recognition.
Neurocomputing 2016, 210, 294-302. [CrossRef]

Ramirez-Gallego, S.; Krawczyk, B.; Garcia, S.; Wozniak, M.; Herrera, F. A survey on data preprocessing for data stream mining:
Current status and future directions. Neurocomputing 2017, 239, 39-57. [CrossRef]

Inoue, S.; Lago, P; Takeda, S.; Shamma, A.; Faiz, F.; Mairittha, N.; Mairittha, T. Nurse Care Activity Recognition Challenge. IEEE
Dataport 2019. [CrossRef]

Lin, H.Y. Feature clustering and feature discretization assisting gene selection for molecular classification using fuzzy c-means
and expectation-maximization algorithm. J. Supercomput. 2021, 77, 5381-5397. [CrossRef]

Zhou, Y;; Zhang, W.; Kang, J.; Zhang, X.; Wang, X. A problem-specific non-dominated sorting genetic algorithm for supervised
feature selection. Inf. Sci. 2021, 547, 841-859. [CrossRef]

Hu, Y.,; Zhang, Y.; Gong, D. Multiobjective Particle Swarm Optimization for Feature Selection with Fuzzy Cost. IEEE Trans.
Cybern. 2021, 51, 874-888. [CrossRef]


http://dx.doi.org/10.1016/B978-0-08-050684-5.50020-3
http://dx.doi.org/10.1016/j.ins.2007.09.004
http://dx.doi.org/10.1016/j.eswa.2008.06.063
http://dx.doi.org/10.1186/s12938-016-0181-2
http://dx.doi.org/10.1016/j.pmcj.2016.05.002
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/j.ipl.2007.09.008
http://dx.doi.org/10.4236/am.2012.330178
http://dx.doi.org/10.1016/j.engappai.2007.01.001
http://dx.doi.org/10.1109/INSS.2010.5573462
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1016/j.neucom.2015.11.126
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.21227/2cvj-bs21
http://dx.doi.org/10.1007/s11227-020-03480-y
http://dx.doi.org/10.1016/j.ins.2020.08.083
http://dx.doi.org/10.1109/TCYB.2020.3015756

	Introduction
	Preliminaries and Background
	Constrained Many-Objective Optimization
	C-MOEA/DD
	Discretization
	Limited-Memory Warping LCSS Gesture Recognition Method
	Quantization Step (Training Phase)
	Template Construction (Training Phase)
	Limited-Memory Warping LCSS
	Rejection Threshold (Training Phase)
	Searchmax (Recognition Phase)
	Backtracking (Recognition Phase)

	Fusion Methods Using WarpingLCSS

	Proposed Method
	Solution Encoding and Population Initialization
	Operators
	Crossover Operation
	Mutation Operation

	Objective Functions
	Multi-Class Gesture Recognition System

	Experiments
	Benchmark Dataset
	Experimental Setup
	Evaluation Metrics

	Results and Discussion
	Limitation of the Study
	Conclusions and Future Works
	References

