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Abstract: Oxytetracycline (OTC) is a tetracycline antibiotic that is widely used in the drug therapy
and livestock industry and may threaten human health and ecosystems when released into the
environment. In this study, a catalyst was prepared from hand-warmer waste using a simple
magnetic separation method. The prepared hand-warmer waste catalyst (HWWC) was used as
a persulfate (PS) activator for OTC removal. Characterization methods, such as X-ray diffraction
and scanning electron microscopy–energy dispersive X-ray spectrometry, were used to investigate
the crystal structure, surface morphology, and weight ratios of the elements in the HWWC. The
degradation efficiency of OTC in the presence of the catalyst and PS was studied, and the radical
generation mechanism of the catalyst was investigated. The removal ratio of OTC by PS activation
was greater than 99% for a reaction time of 24 min at a pH of 6. The effects of the HWWC dosage, PS
concentration, and solution pH on OTC degradation were also investigated. The reuse test revealed
that HWWC can be reused for eight cycles with great stability. These results suggest that PS activation
using hand-warmer waste can be an efficient strategy for the degradation of antibiotics.

Keywords: antibiotics; persulfate activation; hand-warmer waste; magnetic separable iron oxide
catalyst; Fenton-like reaction

1. Introduction

The amount of antibiotics released into the environment is increasing owing to the
lack of appropriate disposal methods and strict control measures, which threaten human
health and the ecosystem [1,2]. Oxytetracycline (OTC), an antibiotic, is widely used as an
antimicrobial agent and growth factor in drug therapy and the livestock industry [3,4].
Approximately 70% of OTC leaves organisms via urine and feces without undergoing
metabolism because of its poor absorption [5]. Therefore, OTC has been detected in various
environments, such as aquatic systems, soil, and sediments [6–8]. In aquatic environments,
several studies have reported that OTC has been detected in river water [9] and in the
influent and effluent of a wastewater treatment plant [10–13]. However, it is difficult to
degrade the released OTC in water using conventional wastewater treatment processes [14].
Therefore, effective treatment of OTC in water is a problem that needs to be solved urgently.

Sulfate radicals (SO4•−) and hydroxyl radicals (HO•) are widely used reactive radical
species in wastewater treatment because of their high oxidizing capabilities [15]. Generally,
activating peroxides such as persulfate (PS), peroxymonosulfate, and hydrogen peroxide
or photocatalytic processes can generate these radical species [16]. Among the above-
mentioned peroxides, PS is much cheaper and easier to activate owing to its low band
energy (140 kJ/mol) [17,18], PS has attracted attention as an oxidant for degrading various
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pollutants [19,20]. Catalysts such as metal-containing oxides and transition metals have
been used to activate PS because they are energy-free and economic [21–23]. Moreover,
research on the reuse of waste containing metal elements such as Fe as a PS activator has
been conducted [16,24,25].

Disposable hand warmers are widely used to keep oneself warm; thus, the demand for
hand warmers greatly increases in winter. After exposure to air, the materials in the hand
warmer pocket react and release heat for a period of time. The spent hand warmer is then
discarded, which can adversely affect the environment and lead to wastage of resources [26],
recycling or reusing the spent hand warmer is needed to reduce environmental pollution.
Hand-warmer waste generally contains iron oxide (Fe2O3) particles. Therefore, reusing
hand-warmer waste for the activation of PS can be an environmentally friendly and
cost-saving technique. To the best of our knowledge, this study is the first to recycle
hand-warmer waste as a catalyst for PS activation.

In this study, a hand-warmer waste catalyst (HWWC) was prepared by a simple
magnetic separation method and used as a PS activator for OTC degradation. The surface
morphology and crystal structure of the prepared HWWC were investigated. The effects of
the catalyst dosage, PS concentration, and pH on the degradation of OTC were studied. In
addition, the stability of the catalyst was evaluated by conducting a reuse test.

2. Materials and Methods
2.1. Chemical and Materials

A hand warmer was obtained from DABONG Industrial Co., Ltd. (Seoul, Korea).
Oxytetracycline hydrochloride (C22H24N2O9·HCl ≥ 97.5%) was purchased from Sigma-
Aldrich Co., Ltd. (Burlington, MA, USA). Sodium phosphate monobasic anhydrous
(NaH2PO4 ≥ 98%), sodium phosphate dibasic anhydrous (Na2HPO4 ≥ 99.0%), sodium
hydroxide (NaOH≥ 98.0%), hydrogen chloride (HCl≥ 35.0–37.0%), and acetonitrile (ACN)
(CH3CN ≥ 99.9%) were purchased from Samchun Pure Chemical Co., Ltd. (Pyeongtaek-si,
Korea). Sodium persulfate (Na2S2O8 ≥ 98%) was purchased from Junsei Chemical Co.,
Ltd. (Tokyo, Japan). Deionized (DI) water with a resistivity of 18.2 MΩ/cm (Millipore,
Darmstadt, Germany) was used to prepare the solutions.

2.2. Catalyst Preparation

HWWC was prepared using a simple magnetic separation method. After a disposable
hand warmer was exposed to air for 36 h, 10 g of the contents inside the hand warmer were
placed in 1 L of DI water. The Fe2O3 in the DI water was then magnetically separated. The
separation process was repeated three times, and the obtained solid was dried in an oven
at 80 ◦C for 24 h. The dried solid was ground for further experiments.

2.3. Experimental Procedure

The OTC degradation experiments were initiated by adding 1 mM PS to 50 mL of
the solution containing 20 µM OTC and 0.2 g/L HWWC. The reaction was conducted in
a shaking incubator at 150 rpm and 25 ◦C. The pH of the solution was adjusted to 3, 4, 6,
and 8 using 0.1 M NaOH and 0.1 M HCl and analyzed using a pH meter (Orion Star A211,
Thermo, Waltham, MA, USA). To perform the reuse test, the catalyst was magnetically
separated after each reaction cycle.

2.4. Analytical Method

The OTC concentration was measured using a YL 9100 HPLC system (Youngin Chro-
mass, Anyang, Korea) with a YL 9120 UV/Vis detector and YL 9150 autosampler. A YL
C18-4D column (4.6 mm × 150 mm, 5 µm) was used to separate methanol, ACN, and
10 mM phosphate buffer (pH of 7) (15:15:70). The mobile phase was isocratically eluted at
a flow rate of 1.0 mL/min. The column temperature was 35 ◦C, and OTC was detected at
260 nm.
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2.5. Characterization

The surface morphology and elemental contents of the HWWC were observed using a
scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) (JSM-7900F,
JEOL, Tokyo, Japan). The X-ray diffraction (XRD) pattern of the catalyst was analyzed using
an XRD system (D/max-2500V, Rigaku, Tokyo, Japan). The point of zero charge (pHpzc)
of HWWC was determined by titration method with slight modification [27]. HWWC
(0.04 g) was suspended in 20 mL of 0.01 M NaNO3 for 24 h. Then the pH of solution was
adjusted using 0.1 M HNO3 or NaOH solution. To reach the equilibrium, the solution was
agitated for 1 h, then the pHinitial was measured. After measuring the pHinitial, 0.6 g of
NaNO3 was added to the suspension. After 3 h, the pHfinal of the solution was measured.
The pHpzc value was determined as ∆pH (pHfinal–pHinitial) was 0 when plotting ∆pH
against pHfinal. As shown in Figure 1a, pHpzc of HWWC was 7.4. The magnetic property
of HWWC was measured using vibrating sample magnetometer (VSM) (Model 7404, Lake
shore cryotronics, Westerville, OH, USA).
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Figure 1. (a) pHpzc measurement and (b) X-ray diffraction pattern of prepared hand-warmer waste catalyst.

3. Results and Discussion
3.1. Crystal Structure, Surface Morphology, and Magnetic Properties of HWWC

Figure 1b shows the XRD patterns of the prepared HWWC. The strongest peak ob-
served at approximately 2θ = 35.58◦ indicated a reduction in the (119) diffraction of γ-
Fe2O3 [28]. The peaks observed at approximately 30.08◦, 43.16◦, 57.16◦, and 62.80◦ corre-
sponding to (205), (0012), (1115), and (4012) were also in good agreement with those of
γ-Fe2O3 [28,29]. Other impurity peaks at approximately 33.30◦, 54.10◦, and 63.40◦ agreed
with α-Fe2O3 [30]. These results indicated that the magnetically separated HWWC was a
mixture mainly consisting of γ-Fe2O3 and α-Fe2O.

Figure 2 shows the SEM images and EDS spectra of the HWWC particles. The mor-
phology of the particles was approximately spherical (Figure 2a). Based on the elemental
analysis (O = 32.23%, Fe = 66.98%) (Figure 2b), it was determined that the sample mainly
consisted of Fe and O, therefore confirming that the produced powder was Fe2O3, which
agreed with the XRD results.

Figure 3 shows the VSM analysis result of the HWWC particles. The saturation
magnetization of the HWWC was determined to be 34.14 emu/g, which was sufficient
(>16.3 emu/g) for it to be magnetically recovered from solution using a conventional
magnet [31,32]. Thus, HWWC can be easily recovered from water through magnetic
separation and reused.
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3.2. Control Experiments

Figure 4 shows the removal of OTC under different experimental conditions. OTC
was removed when both PS and HWWC were present. The degradation efficiency of
OTC by PS activation was greater than 99% in 24 min, and the estimated pseudo first-
order rate constant (k) was 0.21 ± 0.03 min−1. This removal rate was comparable to OTC
degradation through the Fenton process using H2O2/Fe2+ (kapp = 0.068–0.213 min−1) [33],
which indicates that the PS activation process using HWWC can be a promising technique
for removing antibiotics from water. The removal rate of OTC in the presence of PS and
HWWC in 24 min was low (<6.0%). The degradation mechanism of OTC by PS activation
can be expressed by the following equations (Equations (1)–(5)) [34]:

Pollutant + Fe(III)→ Pollutant + Fe(II) (1)

Fe(II) + S2O8
2− → Fe(III) + SO4

•− + SO4
2− (2)

Fe(III) + H2O→ Fe(II) + HO• + H+ (3)

H2O + SO4
•− → H+ + HO• + SO4

2− (4)
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SO4
•− + HO• + Pollutant→ CO2 + H2O (5)
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Figure 4. Control experiment for oxytetracycline (OTC) degradation ([PS]0 = 1 mM, [OTC]0 = 20 µM,
[HWWC]0 = 0.2 g/L, pH = 6). PS: persulfate; HWWC: hand-warmer waste catalyst.

The electrons could be transferred to Fe(III) when the pollutant was adsorbed onto
the Fe2O3 surface (Equation (1)). Therefore, a Fenton-like reaction occurred between
S2O8

2− and Fe(II) at the surface of Fe2O3, therefore generating SO4
•− and reforming

Fe(III) (Equation (2)). HO• also might have been formed by this reaction and contributed
to pollutant degradation (Equations (3)–(5)) [35–37]. Therefore, the pollutant could be
degraded by the generated surface-adsorbed radicals (SO4

•− and HO•) that might diffuse
into the aqueous solution (Equation (5)) [34].

Figure 5 shows the effect of two radical scavengers, ethanol (EtOH) and t-butanol
(TBA), on the degradation of OTC. According to equations (Equations (6)–(9)) [38], the
reaction rate of EtOH and HO• is 50 times faster than that of EtOH and SO4

•−, while
TBA reacts with HO• almost 1000 times faster than that with SO4

•−. From the results, the
oxidation of OTC was significantly reduced with the addition of TBA and EtOH, suggesting
that EtOH can effectively inhibit the oxidation efficiency. In addition, compared with EtOH,
the removal rate of OTC was found to be lower in the presence of TBA, which demonstrates
that a small amount of SO4

•− remaining in the solution can still decompose OTC. Thus, it
can be concluded that SO4

•− is the dominant oxidizing species in the OTC degradation
process by persulfate activation using HWWC catalysts.

EtOH + HO• → Intermediates (k = (1.2–2.8) × 109 M−1s−1) (6)

EtOH + SO4
•− → Intermediates (k = (1.6–7.7) × 107 M−1s−1) (7)

TBA + HO• → Intermediates (k = (3.8–7.6) × 108 M−1s−1) (8)

TBA + SO4
•− → Intermediates (k = (4.0–9.1) × 105 M−1s−1) (9)

3.3. Effects of HWWC Dosage and PS Concentration on OTC Degradation

The catalyst dosage and PS concentration are important factors in pollutant degrada-
tion. Therefore, degradation experiments with various HWWC dosages (0.05, 0.20, and
0.40 g/L) and PS concentrations (0.5, 1.0, and 2.0 mM) were investigated. As shown in
Figure 6, the degradation efficiency of OTC increased in proportion to the HWWC dosage
and PS concentration. The k value increased from 0.02 ± 0.00 min−1 to 0.14 ± 0.02 min−1

and increased from 0.09 ± 0.01 min−1 to 0.12 ± 0.01 min−1 when the HWWC dosage
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and PS concentration increased, respectively. HWWC and PS were the activator and
source of reactive radical species, respectively. Thus, their increase could promote OTC
degradation [39].
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Figure 5. Oxytetracycline (OTC) degradation in the presence of scavengers ([OTC]0 = 20 µM,
[PS]0 = 1 mM, [HWWC]0 = 0.2 g/L, [scavenger]0 = 10 mg/L, pH = 6). PS: persulfate; HWWC:
hand-warmer waste catalyst.
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Figure 6. Oxytetracycline (OTC) degradation with (a) different catalyst dosages and (b) different persulfate concentrations
([OTC]0 = 20 µM).

3.4. Effects of pH on OTC Degradation

In heterogeneous PS activation, the initial pH has a significant influence on the degra-
dation of pollutants [40]. Therefore, the degradation efficiency at various solution pH
conditions (3, 4, 6, and 8) was investigated (Figure 7). As shown in Figure 5, the removal
ratio of OTC at 4 min was 70.8 ± 7.0%, 70.7 ± 0.8%, 31.0 ± 1.9%, and 28.6 ± 0.9% at a pH
of 3, 4, 6, and 8, respectively. The degradation performance at a pH of 3 and 4 showed
no significant change, but the efficiency significantly decreased when the solution pH
increased from 4 to 8, therefore implying that acidic conditions were more favorable for the
degradation of OTC by heterogeneous PS activation. This result was observed because the
surface properties of the catalyst and the lifetimes of the generated radical species changed
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as the solution pH changed. When the point of zero charge of the catalyst was higher
than the solution pH, the surface of the catalyst displayed a positive charge; thus, it could
adsorb more SO4

•− [41]. In addition, the lifetimes of HO• and SO4
•− decreased under

alkaline conditions; thus, the radical species that diffused into the bulk phase might have
been insufficient for further degradation [42].
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Figure 7. Oxytetracycline (OTC) degradation efficiency with different pH conditions ([PS]0 = 1 mM,
[OTC]0 = 20 µM, [HWWC]0 = 0.2 g/L). PS: persulfate; HWWC: hand-warmer waste catalyst.

3.5. Applicability of HWWC

The stability of the catalyst is an important index for practical applications in wastew-
ater treatment. Therefore, sequential OTC degradation experiments were performed to
test the reusability of the catalyst (Figure 8a). The reaction was conducted for 24 min, after
which the HWWC was recovered using an external magnet. The degradation performance
of the HWWC did not significantly decrease after eight repeat experiments with a final
degradation efficiency of 92.7%. This result indicated that the catalyst exhibited excellent
regeneration performance and stability. Since the actual environmental water contains a
large amount of organic and inorganic compounds, the activity of SO4

•− and HO• may be
reduced. Therefore, it is necessary to investigate the effect of radical scavengers of these
organic and inorganic compounds. Chloride ion (Cl−), one of the representative inorganic
compounds present in large amounts in environmental water, can reduce degradation
efficiency by the following equations (Equations (10)–(11)) [38,43]. In the present condition,
however, the effect of chloride ion ([Cl−]0 = 10 mg/L) was negligible (Figure 8b). By con-
trast, the OTC degradation was significantly reduced by the organic compounds present
in the secondary effluent (pH = 7.2, [DOC]0 = 4.71 mg/L, UV254 = 0.100, SUVA = 2.12)
(Figure 8c). This is because the electron-rich moieties in the molecular structure of nat-
ural organic matter (NOM) present in the secondary effluent can be readily attacked by
electrophilic radicals such as SO4

•− and HO• [44].

SO4
•− + Cl− → SO4

2− + Cl• (10)

Cl− + HO• → Cl• + HO− (11)
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pH = 6); (b) OTC degradation in the presence of Cl− ([Cl−]0 = 10 mg/L); (c) Degradation kinetics of OTC by persulfate
activation using HWWC in the secondary effluent (pH = 7.2, [DOC]0 = 4.71 mg/L, UV254 = 0.100, SUVA = 2.12). PS:
persulfate; HWWC: hand-warmer waste catalyst.

4. Conclusions

HWWC was successfully prepared by a simple magnetic separation method. The
XRD and SEM-EDS results revealed that the HWWC consisted of a mixture of γ-Fe2O3 and
α-Fe2O3. The magnetic saturation of HWWC was sufficient to be separated by conventional
magnets, which can facilitate their application for water treatment. The control experiment
showed that OTC was removed by the generated radical species when both HWWC and
PS were present. SO4

•− was the dominant oxidizing species in the OTC degradation by
persulfate activation using HWWC catalyst. Influencing parameters such as HWWC dose,
PS concentration, and solution pH were evaluated, and the degradation efficiency of OTC
increased with increasing HWWC dose and PS concentration, and the optimal pH values
for OTC degradation were 3 and 4. In addition, the HWWC degraded OTC after eight
repeat experiments with great stability. Degradation efficiency was significantly affected
by NOM present in the secondary effluent, while the effect of chloride ions was negligible.
Overall, these results suggest that PS activation using magnetic Fe2O3 catalysts derived
from hand-warmer waste could be an effective alternative for removing OTC and other
recalcitrant organic compounds in water.
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