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Abstract: Brain activity recognition based on electroencephalography (EEG) marks a major research
orientation in intelligent medicine, especially in human intention prediction, human–computer
control and neurological diagnosis. The literature research mainly focuses on the recognition of single-
person binary brain activity, which is limited in the more extensive and complex scenarios. Therefore,
brain activity recognition in multiperson and multi-objective scenarios has aroused increasingly
more attention. Another challenge is the reduction of recognition accuracy caused by the interface
of external noise as well as EEG’s low signal-to-noise ratio. In addition, traditional EEG feature
analysis proves to be time-intensive and it relies heavily on mature experience. The paper proposes a
novel EEG recognition method to address the above issues. The basic feature of EEG is first analyzed
according to the band of EEG. The attention-based RNN model is then adopted to eliminate the
interference to achieve the purpose of automatic recognition of the original EEG signal. Finally, we
evaluate the proposed method with public and local data sets of EEG and perform lots of tests to
investigate how factors affect the results of recognition. As shown by the test results, compared with
some typical EEG recognition methods, the proposed method owns better recognition accuracy and
suitability in multi-objective task scenarios.

Keywords: brain activity recognition; EEG; attention-based RNN model; XGBoot classifier; brain–
computer interface

1. Introduction

Brain activity recognition has been one of the key topics in the field of brain science
research in recent years. It has great potential to change traditional brain science applica-
tions, such as diagnosis of diseases related to the nervous system, auxiliary applications
for the disabled and the elderly, device control and disease monitoring, etc. For people
with limited behavioral ability, brain activity recognition can help them complete basic
daily activities and enable them to live more independently. At the same time, with the
continuous development and maturity of deep learning technology, EEG-based brain
activity recognition is more accurate, which effectively improves the use value of brain
activity recognition technology in the field of actual diagnosis and treatment and assisted
living [1]. Brain activity is mostly represented by electroencephalogram (EEG) signals.
Voltage fluctuations of brain neurons are recorded in a noninvasive manner by placing
electrodes on the scalp [2]. EEG records the changes of radio waves during brain activity,
which is the overall reflection of the electrophysiological activities of brain nerve cells
on the cerebral cortex or scalp surface. EEG is distributed in different frequency bands
according to different brain activities, so it can grasp the current state of brain activity.

In recent years, researchers have conducted in-depth research on brain activity recog-
nition, but it still faces several challenges such as multiperson and multitask classification.
First, some researches focus on EEG feature representation, and a series of EEG feature
recognition methods are proposed. For instance ,Vzard et al. [3] adopted common spatial
patterns (CSP) and LDA for the preprocessing of EEG data, concluding 71.59% accuracy
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rate under binary alert state [4]. Multiclass CSP (mCSP) and Self-Regulated Interval Type-2
Neuro-Fuzzy Inference System (SRIT2NFIS) classifiers were exploited for the recognition
of four classes of EEG-based motor imagery and achieved the accuracy of 54.63%. Shi-
ratori et al. [5] combined mCSP and random forest for three-class EEG-based moving
image tasks, achieving a 56.7% accuracy rate. Through the analysis of these studies, it is
found that the accuracy of the classification and recognition algorithm is not enough to
support the application standard of EEG under actual demand. This is mainly because the
complexity and high dimensionality of the EEG signal make the feature representation of
the original EEG data have a great influence on the classification accuracy. On the basis
of summarizing these studies, finding a high-accuracy EEG data classification algorithm
to support the application of EEG in real life is one of the important problems we need
to solve. Second, most of the current applications that use EEG recognition are for dis-
ease diagnosis (such as epilepsy and Alzheimer’s disease), which only requires binary
classification (normal or abnormal). However, emerging application fields mostly rely on
multiclass EEG classification. Regarding this [6], adopted SVM to classify the four types
of EEG data with a classification accuracy of 70%. Vernon et al. [7] proposed a set of EEG
classification methods based on CNN for different BCI paradigms, which is robust enough
in practice. In addition, the above research mainly focuses on EEG data recognition in
single-person with single-task mode. As for the multiperson and multitask scenarios, Ridha
Djemal et al. [8] employed an LDA (linear discriminant analysis) classifier to classify two
datasets with nine and three subjects, while the classification accuracy is still unsatisfactory.

Based on the above discussion,a novel EEG data recognition method is proposed.
The correlation coefficient matrix is calculated in multiperson and multitask scenarios by
analyzing the similarity of EEG signals. EEG signal features are then extracted through the
attention-based RNN model. Finally, the extracted features are fed into XGBoost classifier
for identifying EEG data type, with every type matched with given brain activities. Here
are the contributions of the paper:

(1) The paper proposes an EEG analysis-based brain activity recognition approach able
to be directly applied in primitive EEG data analysis, thereby reducing dependence
on professional EEG knowledge.

(2) The attention-based RNN model is adopted to improve the effect of EEG classification
through adjusting hidden layer neuron’s size.

(3) The dedicated experiments are conducted on EEG datasets comprising 560,000 sam-
ples under 20 topics and 5 categories to evaluate this proposed method. According to
the comparison with other prime EEG classification approaches, the method in this
paper can improve the accuracy by about 10%.

The subsequent parts of the research are presented in the following order: Section 2
briefs on relevant technical preliminaries. The proposed brain activity recognition method
is elaborated in Section 3. The experiments and comparative analysis are given is Section 4.
Finally, the paper is concluded in Section 5.

2. Preliminaries
2.1. EEG Analysis

As indicated by EEG data analysis, there are five frequency patterns, namely, delta,
theta, alpha, beta and gamma patterns, in line with the correlation of human behavior
states [9–11]. Every decomposed EEG pattern includes signals associated with certain brain
information. Each EEG pattern represents an active pattern of a specific brain state and
qualitative evaluation of awareness as below.

Delta pattern (0.5–4 Hz) is related to deep sleep, which indicates the low awareness of
subjects. Theta pattern (4–8 Hz) embodied in light sleep is in the state of low awareness.

Alpha mode (8–12 Hz) is mostly seen in closed eyes and deep relaxation, when the
subject is in a state of medium consciousness.
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Beta pattern (12–30 Hz) is the dominant type, where the subject continues to widen
the horizon and improve awareness. The majority of human daily activities, like eating,
walking, and talking belong to this pattern.

Gamma pattern (30–100 Hz) suggests the co-cooperation of few brain areas for per-
forming certain motor and cognitive functions. It is related to stronger awareness.

We judge there exists an internal relationship between EEG pattern and awareness
degree [10,12]. Due to the growth of band frequency (Delta pattern, Theta pattern, Alpha
pattern, Beta pattern, Gamma pattern), awareness degree continually improves. Aforemen-
tioned arguments could be deduced from the two factors as below: Firstly, EEG pattern is
associated with brain neuron activities. Essentially, EEG signal is measured with voltage
fluctuations caused by ion currents in the activity of brain neurons [13]. Secondly, there
exists a relationship between awareness degree and brain neuron activities. On an intuitive
level, those subjects who have stronger awareness will have more activated neurons.

For identification techniques, EEG signal feature is expected to be steady and dis-
tinguishable. The steady feature suggests fine system robustness, meaning the system
can still recognize users even they are experiencing trivial fluctuations psychologically
or physically, like fatigue. The distinguishable feature indicates the varying reactions of
different subjects to EEG signals [14,15]. According to the analysis results, the paper takes
a Delta pattern to analyze the state of the subjects, which contains the most stable and
unique information of the user’s brain activity state recognition.

2.2. Attention-Based RNN Model

After EEG pattern decomposition, constructed Delta pattern is input into the attention-
based Encoder-Decoder RNN structure [16] for acquiring more representative features
in brain activity recognition. The attention-based model is a method to free the encoder-
decoder structure from a fixed-length internal representation, by maintaining the encoder
pair input in the RNN model. The attention-based system enables the RNN model to
allocate weight to various parts at input layer, thereby providing a new solution for
clarifying the correspondence between the input layer and the output layer. Attention-
based RNN models have been widely used in speech recognition, NLP (natural language
processing), as well as computer copyright management [17].

2.3. XGBoot

XGBoost is a gradient boosting algorithm with a residual decision tree. The basic
idea is to add a decision tree to the model one by one. When a decision tree is added,
the overall effect of the model (the objective function is reduced) is improved . The XGBoot
classifier combines a set of classification and regression trees (CART) and attempts to make
use of the information from the input data as much detail as possible [18]. Multiple trees
are built with their own leaves and corresponding score. Compared with the gradient
boosting algorithm, XGBoost proposes a more regularized model formalization to prevent
overfitting, with the engineering goal of pushing the limit of computation resources for
boosted tree algorithms to achieve better performance. Here, XGBoost uses the idea of
random forest for reference and adds a regular term to the cost function to control the
complexity of the model. The regular term includes the number of leaf nodes of the tree
and the square sum of L2 modules of score output on each leaf node. From the perspective
of bias variance trade-off, the regular term reduces the variance of the model and makes
the learned model simpler, so as to prevent overfitting.

2.4. Brain–Computer Interface (BCI)

BCI refers to a communication control system which can directly connect with external
devices without relying on nerves and muscles around the brain. BCI technology involves
the cross fusion of multiple disciplines such as electronic signal detection, signal processing,
and pattern recognition [11]. At present, the main purpose of BCI is to provide a new
way of communication with the outside world for people with normal thinking but with
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impaired physical function. The mainstream research direction is to obtain the patient’s
EEG and control the external equipment, so as to replace the impaired physical function of
the patient, or to assist the patient’s missing function [19].

3. The Proposed Method

In the proposed method, subjects’ brain wave information is gathered from portable
brain wave equipment. Subjects are requested to stay in the relaxing environment to ensure
stability and reliability of the EEG signal. First, the collected EEG samples should receive
preprocessing for erasing DC offset impact on normalizing. δ-band data are then divided
from preprocessed data with EEG mode decomposition. Moreover, δ-band data are fed
into attention-based RNN model for classification. Finally, the current state of subjects is
recognized according to the classification result. Table 1 lists the parameters involved in
this paper.

Table 1. Notation.

Parameter Explanation

E EEG raw data
E′ Preprocessed EEG data
Xi Data in the i-th layer in attention-based RNN
I The number of layers in attention-based RNN

Ni The number of dimensions of Xi

Y The one-hot label of emotion
Y′ The predicted status form attention-based RNN
K The number of categories of subject status

f (•) The linear function
C The intermediate code

T(•) The output calculation procedure of LSTM cell
T′(•) The final hidden state calculation procedure of LSTM cell
W ′a The unnormalized attention weights
Wa The normalized attention weights
Ca The attention-based intermediate code
XD The feature of deep learning
SD The final status of subject

3.1. EEG Signal Preprocessing

Primitive EEG samples are preprocessed for erasing DC offset. Different EEG acquisi-
tion devices will introduce constant noise components when recording signals. Thus, in
the preprocessing stage, a constant DC offset should be subtracted from primitive signal
E. Data normalization generates a significant impact on data processing at each unit and
feature scale.Normalization is a linear operation, which makes EEG data more in line
with independent and identical distribution conditions, and reduces the offset caused by
internal corvariate shift, so that the input data of (0, 1) standard normal distribution is
converted into slightly deviated (0, 1) standard normal distribution data. This operation
can ensure that the input data basically maintain a normal state, and the input is nonlinear,
which keeps the data away from the saturation region of the activation function and speeds
up. Z-score normalization will be used in this paper. Preprocessed brain wave data E’ is
computed as below(1),

E′ =
(E− DC)− µ

σ
(1)

where DC is direct current noise offset, µ suggests E-DC average, and σ represents standard
deviation of E-DC.

The EEG signal belonging to the delta band (0.5–4 Hz) is the most stable and accurate
for emotion recognition. In order to separate the signals in the delta band, we use a filter,
in which the order is set to 3, the low cut-off is 0.5 Hz and the high cut-off is 4 Hz. All
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dimensions of the preprocessed data are sent to the band-pass filter in turn, and finally the
decomposed delta mode is obtained δ.

Since human consciousness is naturally related to the mental and physical state of each
person, and the delta band contains the most stable EEG consciousness record, the features
here refer to the data frequency corresponding to the EEG signal in the delta band under
different reactions.

3.2. Attention-Based RNN

The decomposed EEG data are inputted into an RNN model that introduces an atten-
tion mechanism to obtain more information about the subject’s brain activity. The general
encoder-decoder RNN ignores the importance of the feature dimension to the output se-
quence and defaults to the weight of entire feature dimensions of input sequence. Feature
scales of EEG data are matched with the EEG device’s sensor nodes. In order to assign dif-
ferent weights to different dimensions of EEG data, the attention mechanism is introduced
into an encoder-decoder RNN model, which is composed of three parts: encoder module,
attention mechanism module and decoder module. The encoder module should compress
input delta-band data into over-encoded C. The attention module enables the encoder to
compute a better intermediate code Ca through creating weight W at various dimensions.
The decoder module illustrates attention-based code Ca into an EEG recognizable signal.

Suppose that the data at the i-th layer are stated as Xi = Xi
j; i ∈ [1, 2, . . . , I], j ∈

[1, 2, . . . , N j] in which is denoted the j-th dimensional data of Xi, I represents the number
of neural network layers, and Ni represents the number of dimensions in Xi. . At the first
layer, in case of =δ, input sequence containsδ-band data. Output sequence as represents
the subject’s current status, in which K is the number of subject state category. Operation
f (•) is defined as below:

f (Xi) = Xi ∗W + b (2)

f (xi−1
j , Xi

j−1) = Xi−1
j ∗W

′
+ Xi−1

j ∗W
′′
+ b

′
(3)

where W, b, W ′, W ′′ denote the corresponding weights and deviation parameters. The
encoder contains several nonrecursive fully connected neural network layers and one Long
Short-Term memory (LSTM) layer. The nonrecursive layer is used to construct and fit a
nonlinear function to filter the input δ-band data. The data for non-recursive layers can be
calculated as (4),

Xi + 1 = f (Xi) (4)

The LSTM layer compresses the output of the nonrecurrent layer into a fixed-length
sequence as the transfer code C. Assuming that the LSTM model is located in the i

′
-th

layer of the encoder, the code C is the output of the LSTM model, C = Xi′
j , and Xi′

j can be
measured by

Xi
′

j = T(ci
′

j−1, Xi−1
j , Xi

′

j−1) (5)

where ci′
j−1 denotes the hidden state of the (j− 1)-th LSTM cell, the operation T(•) denotes

the calculation of LSTM,which can be inferred from the following equations:

Xi
′

j = fo � tanh(ci
′

j ) (6)

ci
′

j = f f � ci
′

j−1 + fi � fm (7)

fo = sigmoid( f (Xi′−1
j , Xi′

j−1)) (8)

f f = sigmoid( f (Xi′−1
j , Xi′

j−1)) (9)

fi = sigmoid( f (Xi′−1
j , Xi′

j−1)) (10)
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fm = tanh( f (Xi′−1
j , Xi′

j−1)) (11)

where represent the output gate, forget gate, input gate and input modulation gate, respec-
tively, and � denotes the element multiplication. The attention-based module receives the
state of the hidden layer as a nonstandardized attention weight, which can be measured by

Wa
′ = T′(ci′

j−1, Xi−1
j , Xi′

j−1) (12)

W ′a is further normalized to obtain

Wa = so f tmax(W
′
a) (13)

The softmax function normalizes attention weights within [0, 1]. Consequently, atten-
tion weight is considered as the probability estimate investigating if there is a correlation
between code C and output. In attention mechanism, connection code C will be converted
to Ca after being weighted.

Y′ = X I = T(Ca) (14)

Both connection code C and standardized attention weight can be used in real-time
training. Decoder is used to receive attention-based code C for predicting the subject’s
present status. denotes the predicted status trained by attention-based RNN model.

Ultimately, crossover function is adopted to compute the predicted cost of Y′ and real
status of Y. L2-norm (with parameter λ) is selected for preventing overfitting. Iteration
threshold of attention-based RNN is set to be niter. The Weighted code Ca is in a linear
correlation with output layer and prediction result. Suppose the model is well-trained and
low-cost, weighted coding can be considered a high-quality manifestation of user brain
activity information. Depth feature XD of RNN model is Ca which can be mapped as
ultimate subject brain activity.

3.3. Brain Activity Recognition

Extreme XGBoot is used in learned depth feature XD classification for determining the
present brain activity status of subjects. XD is taken for training classification regression
tree and predicting subject information. Suppose there is m CART, and xd ∈ XD refers to a
single sample of depth feature, ultimate recognition results are:

ym = l(xd) (15)

SD = L(
M

∑
1

ym), m = 1, 2, . . . , M (16)

where l is a single tree’s classification function, ym is the m-th tree’s predicted status, L is
the mapping from single tree prediction space to final prediction space, and SD reflects
ultimate recognition results.

4. Experiments and Analysis

In this section, we evaluate the feasibility and accuracy of the proposed method on a
common EEG dataset.

4.1. Datasets and Tasks

PhysioNet eegmmidb (EEG motor movement/imagery database) database, as a com-
mon EEG database, has been used for the assessment of proposed method. Data collection
is finished with BCI 2000 system, including 64 channels and a 160 Hz sampling rate. Dur-
ing data collection, various categories of test scenarios are played in a cycle to record the
corresponding EEG data of subjects. Each test corresponds to a task as below.

Task 1 (Relaxed): In cases in which the screen exhibits blue sky and white clouds,
subjects imagine they are relaxing in a quiet grassland.
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Task 2 (Excited): In cases in which the scenario is switched to the concert, subjects
imagine they are at their favorite concert in an excited state.

Task 3 (Tired): In cases when the scenario is switched to the sports field, subjects
imagine they are in exhausted and performing strenuous exercises.

Task 4 (Anxiety): When the screen shows a test, subjects imaging they are in an anxious
state in an exam.

Task 5 (Feared): When a horror image is exhibited on the screen, subjects imagine they
are staying in the terrible environment.

560,000 EEG samples (28,000 samples per subject) are selected from 20 subjects for
follow-up experiments. Every sample is one vector comprising 64 elements in 64 channels,
and corresponds to one of the above tasks, which are marked as a class (from 0 to 4).

4.2. Evaluation

The recognition in the experiment is a two-point problem that includes the four cases
in Table 2.

Table 2. Different cases of recognition.

Instance Predict Positive Predict Negative

Positive class True Positive (TP) True Negative (TN)
Negative class False Positive (FP) False Negative (FN)

Based on the above cases, we define the following criteria.
(1) Accuracy: the proportion of all correctly predicted samples. Accuracy is a measure

of how good a model is

Accuracy =
TP + TN

FP + FN + TP + TN
(17)

(2) Precision: the proportion of all positive samples with the correct number of positive
samples divided by the classifier.

Precision =
TP

FP + TP
(18)

(3) Recall: the proportion of all correct results being accurately predicted.

Recall =
TP

FN + TP
(19)

(4) F1 Score: a weighted average of the model accuracy and recall rate. Its maximum
value is 1, and the minimum value is 0.

F1 Score = 2 ∗ precision ∗ recall
precision + recall

(20)

(5) ROC (Receiver Operating Characteristic): the relationship between TPR (True
Positive Rate) and FPR (False Positive Rate) at various threshold settings.

(6) AUC (Area Under the Curve): the area under the ROC curve. The value of AUC
drops in the range [0.5, 1].

4.3. Experimental Results
4.3.1. Parameter Settings

In this experiment, the attention-based RNN model is trained with training data,
and test data are input into model for feature extraction through the XGBoost classifier.
In this attention-based RNN model, the encoder is composed of one input layer (64 nodes),
three non-recursive fully connected hidden layers (64 nodes) and one recursive LSTM layer
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(121 units). This decoder comprises one fully connected hidden layer (121 nodes) and one
output layer (64 nodes). The learning rate is 0.001. L-2 norm parameter is set as 0.001.
This training dataset includes 20 batches in a size of 28,000, with the number of training
iterations set to 2000. With the XGBoost classifier, the learning rate η is 0.7, the parameter
associated with minimum loss reduction and number of leaves γ is 0, the maximum depth
of the tree is 6, the subsampling rate of the training instance is 0.9 for overfitting prevention.

4.3.2. Results

560,000 EEG samples were gathered for the experiment, each containing a 64-dimensional
feature vector and a factual correctness label. The raw EEG data are randomly assigned to
form a training data set (532,000 samples) and a test data set (28,000 samples) after normal-
ization by the z-score approach. The attention-based RNN model extracts representative
features from 121 hidden neurons and inputs them into XGBoot classifier. Table 3 presents
the results’ confusion matrix data.

Table 3. Different cases of recognition.

Ground Truth Evaluation

class 0 1 2 3 4 Accuracy Recall F1 Score AUC
0 3753 0 312 238 420 0.8036 0.7759 0.7908 0.9434

Predict
Label

1 392 7903 518 448 492 0.8058 0.9352 0.8532 0.9532
2 238 178 3931 334 209 0.8103 0.7637 0.7724 0.9502
3 132 126 207 3326 162 0.8356 0.7301 0.7795 0.9496
4 357 359 238 206 3402 0.7386 0.7402 0.7458 0.9408

average 0.7987 0.789 0.7883 0.9474

The average accuracy, recall, F1 score and AUC of 28,000 data (5 task categories from
20 subjects) are 0.7987, 0.7890, 0.7883 and 0.94574, respectively. It can be seen that the recall,
F1 score and AUC of class 1 are the highest, which means that class 1 features the most
obvious difference and is the easiest to recognize. On the contrary, the sample of class 4 is
the most difficult to recognize. The same conclusion can be obtained by the ROC curve as
shown in Figure 1. The diagonal lines represent random classifiers in which TPR = FPR.
The classifier will have better performance as long as theROC curve is closer to the upper
left corner. At the same time, the AUC of all categories of samples is above 0.94, indicatings
the stability and high efficiency of chosen classifier.

Figure 1. ROC curves for 5-class classification by XGBoost.

4.3.3. Accuracy Analysis

The experiments corresponding to the 5 tasks are repeated 5 times, with training
data ratios of 60%, 70%, 80%, 90% and 95%. As shown in Figure 2, the training time is
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proportional to the amount of training data, and the training time is acceptable when the
test error reaches the lowest point of 0.206. It can be concluded that the larger the training
data, the higher the test accuracy.

Figure 2. The relationship between the test error and error bars, training time, as well as training
data proportion.

Figure 3 shows the iterative relationship between the test error and the various training
data ratios. All curves tend to converge after 1600 iterations, further demonstrating that a
greater test data ratio may effectively reduce the test error.

Figure 3. The relationship between the test error and error bars, training time, as well as training
data proportion.

The number of neurons in the hidden layer of the attention-based RNN model rep-
resents the extracted feature dimension, which has a great influence on the quality of the
feature extraction and the classification result. In order to analyze the relationship between
the number of neurons and the classification effect, we set the number of designed neurons
in the range from 30 to 200.

We can see from Figure 4 that in the first stage (0–120), the test error decreases as the
number of neurons increases. While in the second stage (greater than 120), the test error
is around 0.21, and it slightly fluctuates. At the same time, there appears to be a linear
relationship between the training time curve and the number of neurons. Although the
difference between the test error curve and the training time curve reaches a minimum of
about 100 neurons, the test error is still large. The test error reaches the minimum number
of neurons, 121, and the training time is acceptable.
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Figure 4. The relationship between the test error and error bars, training time, as well as training
data proportion.

4.3.4. Comparative Analysis

XGBoost is adopted to classify the fine EEG features generated by the attention-
based RNN model. The proposed method(RNN+AB+XGBoost) is compared with several
widely used classification methods on the same EEG dataset to test the effectiveness.The
comparison of various classification methods is shown in Table 4.

Table 4. Comparison of various classification methods. AB denotes attention-based method; RF denotes Random Forest; DT
denotes Decision Tree; EIG denotes the eigenvector-based dimensionality reduction method used in eigenface recognition;
PCA denotes Principal Component Analysis; DWT denotes Discrete Wavelet Transform.

No 1 2 3 4 5 6 7

Classifier SVM RNN XGBoost CNN RF DT LDA
Acc 0.355 0.674 0.6322 0.524 0.661 0.306 0.342

No 8 9 10 11 12 13 14

Classifier RNN+SVM PCA+
XGBoost

PCA+RNN+
XGBoost

EIG+RNN+
XGBoost

EIG+PCA+
XGBoost

DWT+
XGBoost

RNN+AB+
XGBoost

Acc 0.689 0.723 0.643 0.501 0.63 0.67 0.804

Firstly, we use 7 common classifiers (SVM, RF, DT, LDA, XGBoot, RNN and CNN) to
classify the data and evaluate which classifier is most suitable for the original EEG data.
Then, 4 types of feature extraction methods (PCA, AE, EIG and DWT) are tested to explore
the most suitable EEG feature representation method. The experimental results show that,
in the single-person and single-objective mode, the basic recognition and prediction effect
can be guaranteed through the classifiers such as RNN, LDA and XGBoot. While the
XGBoot classifier can achieve classification accuracy of 0.689 without preprocessing and
feature extraction of EEG raw data. However, when facing the multiperson and multi-
objective scenario, the experiments show that the accuracy of RNN+AB+XGBoost can reach
0.804, which is better than the other models.

Compared with the existing algorithms, our algorithm can initially meet the appli-
cation of real medical scenarios in the recognition accuracy of brain emotional state with
the needs of multiscene and multitask conditions. At the same time, the algorithm can
effectively meet the integration of overall and local features of EEG signals, and is more
suitable for the BCI system. In the next step, we will improve the classification perfor-
mance by establishing a multiview model for multiple types of EEG signals, especially
by establishing multiple models, each of which processes one class. Meanwhile, other
deep learning algorithms such as DNN have been successfully applied to EEG based BCI,
but these methods are mainly applied to a single BCI paradigm. As the focus of future
research, we try to design a CNN architecture to accurately classify EEG signals from
different BCI paradigms. In addition, it is also a direction for follow-up research to learn
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from the algorithm of deep learning in image and language recognition processing and
apply it to EEG signal processing.

5. Conclusions

This paper focuses on the classification and recognition of EEG data under the condi-
tion of multiperson and multi-objective scenarios to find the differences between different
brain wave modes. The normalized method is adopted to preprocess the raw EEG data
and then be inputted into the attention-based RNN model for training. The model is tested
with five different scenarios. Finally, the validity and efficiency of the proposed method are
evaluated on the EEG datasets containing 560,000 samples (belonging to five categories).
As part of future research, we will build different view models of multiclass EEG to further
improve the classification effect.
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