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Abstract: Despite advances in autonomous driving technology, traffic accidents remain a problem
to be solved in the transportation system. More than half of traffic accidents are due to unsafe
driving. In addition, aggressive driving behavior can lead to traffic jams. To reduce this, we propose
a 4-layer CNN-2 stack LSTM-based driving behavior classification and V2X sharing system that
uses time-series data as an input to reflect temporal changes. The proposed system classifies driving
behavior into defensive, normal, and aggressive driving using only the 3-axis acceleration of the
driving vehicle and shares it with the surroundings. We collect a training dataset by composing a
road that reflects various environmental factors using a driving simulator that mimics a real vehicle
and IPG CarMaker, an autonomous driving simulation. Additionally, driving behavior datasets are
collected by driving real-world DGIST campus to augment training data. The proposed network has
the best performance compared to the state-of-the-art CNN, LSTM, and CNN-LSTM. Finally, our
system shares the driving behavior classified by 4-layer CNN-2 stacked LSTM with surrounding
vehicles through V2X communication. The proposed system has been validated in ACC simulations
and real environments. For real world testing, we configure NVIDIA Jetson TX2, IMU, GPS, and
V2X devices as one module. We performed the experiments of the driving behavior classification
and V2X transmission and reception in a real world by using the prototype module. As a result of
the experiment, the driving behavior classification performance was confirmed to be ~98% or more
in the simulation test and 97% or more in the real-world test. In addition, the V2X communication
delay through the prototype was confirmed to be an average of 4.8 ms. The proposed system can
contribute to improving the safety of the transportation system by sharing the driving behaviors of
each vehicle.

Keywords: CNN-LSTM; driving behavior classification; driving safety

1. Introduction

In the past decade, remarkable advances have been realized in various fields such as
object detection [1,2], tracking [3,4], control [5], and Vehicle-to-Everything (V2X) communi-
cation [6,7] to achieve the goal of autonomous driving. Object detection uses sensors such
as cameras, lidar, and radar to detect objects that affect driving. Intelligent driving assis-
tance systems are being proposed through object tracking and control algorithms based on
detected objects. Driving applications including adaptive cruise control (ACC) that assists
driving is a representative example [8,9]. V2X provides not only vehicle-to-vehicle, but
also vehicle-to-infrastructure connectivity, providing safety applications such as construc-
tion section warnings, stop sign violations and curve speed warnings [10]. These driving
applications and safety applications have helped reduce the stress on many drivers [11,12].

Despite advances in autonomous driving technology, traffic accidents remain a prob-
lem to be solved in the transportation system [13,14]. According to the World Health
Organization, statistics are reported that ~1.3 million people die in traffic accidents each
year [15]. In the US alone, an average of 6 million traffic accidents occurs each year [16],
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and a study has reported that aggressive driving is more than 56% of the causes of traffic
accidents [17]. Aggressive driving behavior can cause traffic accidents or adversely affect
the driving of adjacent vehicles, resulting in traffic congestion [18,19]. Advances in commu-
nication, intelligent transportation systems and computer systems provide opportunities to
provide traffic safety, convenience, and efficiency. Along with deep learning, the V2X sys-
tem is an effective approach that can collect information from a variety of sources, broaden
driver awareness and prevent potential accidents [20]. V2X communication is one of the
key elements to increase both the safety and efficiency of driving vehicles by expanding
the vehicle network, which aims to increase the safety and efficiency of the transportation
system by sharing information between vehicles, pedestrians, and infrastructure.

We aim to improve traffic safety by predicting aggressive driving behavior using only
low-cost sensor data and sharing it with the surrounding vehicles to reduce the cycle of
adverse impacts. Therefore, we propose a 4-layer CNN-2 stacked LSTM-based approach
for aggressive behavior classification and a V2X-based driving behavior sharing system.
The proposed system reduces cost by using time series data of only 3-axis accelerations to
classify aggressive behavior. In addition, we use the traffic simulator IPG CarMaker [21] to
build a road that mimics the real-world environments, and generate a training dataset by
repeatedly human driving vehicles with various driving behaviors. The training dataset is
supplemented by adding real road driving data as well as simulators. The vehicle’s driving
behavior is shared with nearby vehicles [22], pedestrians or traffic light systems through
V2X communication. We built a prototype module including an NVIDIA Jetson TX2 board
and a V2X device. Vehicles equipped with the prototype module transmit driving behavior
in real time to the surrounding vehicles via V2X communication. The proposed system has
been verified in the simulation and a real vehicle, and can be configured at low cost with
only an IMU, V2X device, and a mini PC. In addition, traffic safety can be improved by
notifying the surrounding vehicles of aggressive driving behavior, and there is a possibility
of applying various applications through V2X communication.

The structure of this paper is as follows. In Section 2, the conventional researches to
detect driving behaviors are discussed. A deep learning-based driving behavior detection
and V2X system are described in Section 3. The proposed system has been validated in
Section 4, and the remaining challenges and conclusions are discussed in Section 5.

2. Related Works

Effective and reliable driving behavior analysis and early warning systems are re-
quired for the purpose of reducing traffic accidents and improving road safety [23]. For
the classification of driving behavior, techniques using an in-vehicle camera [24,25], and
sensors that measure the movement of the vehicle [26–28] have been proposed. A tech-
nique using an in-vehicle camera detects unsafe driving by observing the movement of the
driver’s eyes. Unsafe driving includes driver distraction, driver fatigue, and drowsy driv-
ing. The Inertial Measurement Units (IMU) sensor has been used in a number of studies to
greatly improve the detection accuracy of driving events [10]. In conventional approaches,
data from the IMU are used to detect the vehicle’s driving behaviors through algorithms
such as pattern matching, principal component analysis (PCA), and dynamic time warping
(DTW). A MIROAD system that detects and recognizes driving events by fusion of the
accelerometer, gyroscope, magnetometer, GPS, and the video sensor of a smartphone has
been proposed [27]. The MIROAD system uses a rear camera, accelerometer, gyroscope,
and GPS to classify only aggressive and non-aggressive behaviors based on multi-sensor
data fusion and DTW algorithms. Standard driving events were collected from normal
city driving, and aggressive driving events were collected in a controlled environment for
safety. Aggressive driving was set with a hard left and right turns, swerves, and sudden
braking and acceleration patterns. MIROAD showed an aggressive event detection per-
formance of ~97% by combining the smartphone’s gyroscope value, accelerometer value,
and Euler angle rotation value. Conventional approaches using camera sensors may have
problems with recognition performance due to environmental changes such as weather
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and illuminance [29]. In addition, some of the previous studies do not reflect various road
environments or have not been verified in actual vehicles [30]. Specifically, aggressive
driving on a curve is a factor that causes a crash accident, so it is necessary to predict
driving behavior on a curve [10]. Additionally, the conventional method of detecting ab-
normal driver behavior by capturing and analyzing the driver’s face and vehicle dynamics
through image and video processing cannot capture the complex temporal features of
driving behavior [31].

Recently, a technique for predicting driving maneuver through input of vehicle speed,
acceleration, and steering wheel angle using deep learning has been proposed [32]. As
the driving behavior of a vehicle can change with time, it is advantageous to use time
series information rather than instantaneous information. Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), and the Gated Recurrent Units (GRU), which
are deep learning networks that utilize time series data for driver behavior profiling, have
been used. For the comparison of the aggressive behavior classification performance
of RNN, LSTM, and GRU, an evaluation based on data collected from a smartphone
accelerometer has been proposed [33]. The proposed evaluation method constructed a
dataset with 69 samples by driving a car on four different routes, and then classified
seven types of driving events through RNN, LSTM and GRU. GRU and LSTM showed a
classification accuracy of ~95% or better, whereas RNN was evaluated with a classification
accuracy of ~70%. A driver behavior classification approach through CNN alone has
also been proposed [34]. Information from the smartphone’s accelerometer, gyroscope,
and Engine Control Unit (ECU) was collected to distinguish driver behavior. The ECU
information used is the vehicle’s RPM, speed, and throttle, and is collected from an On-
Board Diagnostic (OBD II) adapter. After that, a time-window applies to the nine signals
collected to transform the temporal dependence of the signals into spatial dependence,
and an image is generated through the recurrence plot technique. The generated image is
trained by CNN, and has its own performance evaluation result of up to 99.99%. Despite
the high classification performance of the introduced method, it requires a prior work to
convert the signal into an image. The deep learning method using the accelerometer of a
smartphone is being applied to Human Activity Recognition (HAR) in addition to driver
behavior classification [35,36]. In the state-of-the-art approaches, a combined network
of CNN-LSTM is applied rather than one kind of network of CNN or LSTM. The CNN-
LSTM network extracts the features of the input signal through the CNN and uses it
as the input of the LSTM. The combination of CNN and LSTM improves recognition
performance by utilizing both spatial and temporal information. A 4-layer CNN-LSTM
network has been proposed as the latest approach to improve the recognition performance
in CNN-LSTM networks [35]. The 4-layer CNN-LSTM is a CNN-LSTM network with four
one-dimensional convolutional layers and a maxpooling layer to summarize the feature
map and reduce the computational cost. The 4-layer CNN-LSTM network showed about
99.39% of classification performance in HAR.

To classify aggressive driving behaviors using deep learning, a dataset for training
a neural network is required. However, the actual road environment is very wide and
the behavior of drivers is very diverse, so it is difficult to construct the dataset. For the
generation of datasets for neural network training, simulators are an efficient alternative.
IPG’s TruckMaker-based driver model was used to train LSTM to classify the truck driver
model [37]. The proposed technique categorizes the truck driver model into six types based
on longitudinal and lateral acceleration, engine speed, vehicle speed, throttle, and pitch
angle. TruckMaker was used to create a vehicle model with five different trailer loads of
0, 5, 10, 15, and 20 tones for the LSTM’s training data generation. As a result, it classifies
drivers by approximately 82% and 74% classification accuracy on the training and test set.
However, the training model of this method has not been validated in a real environment.
In addition, the proposed method only performs the classification of the driver model and
does not detect aggressive driving behaviors or driving events.
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The proposed system combines a classifier that classifies the driving behavior of
individual vehicles as de f ensive, normal, or aggressive, and a V2X system that shares
driving behavior. The driving behavior classifier is extended based on a 4-layer CNN-LSTM
network with high behavior classification performance without requiring pre-processing
of input data such as signal to image converting. As the input of the proposed network
uses only 3-axis acceleration representing vehicle movement, the system cost is low and
it is robust in the environment changes. In addition, we present the comparison results
of the classification performance of the proposed network and the networks presented
in other literature. We include not only driving behavior classification, but also behavior
classification results in Basic Safety Message (BSM) to form a prototype of a system that
shares with surrounding vehicles through V2X communication. Finally, we contribute to
improving driving safety by providing an example of an advanced ACC system through
sharing driving behavior.

3. Driving Behavior Classification and Sharing System

Figure 1 shows the structural diagram of the proposed system. The proposed system
can measure the 3-axis acceleration of each vehicle in 10 ms cycle through IMU. Four-
layer CNN-2 stacked LSTM is performed to predict the behavior of the vehicle using
measured information from time series data as input. The vehicle’s behavior is predicted
to be defensive, normal or aggressive behavior. After that, the predicted behavior of the
driving vehicle is inserted into the BSM. The BSM containing the driving vehicle’s behavior
information is transmitted to nearby vehicles through the V2X module. Nearby vehicles
can drive more safely by sharing the driving behavior of other vehicles.

Figure 1. The proposed 4-layer CNN-2 stacked LSTM-V2X system for driving behavior classification
and transmission.

3.1. LSTM Cell Structure

LSTM is composed of an input gate, an output gate, and a forget gate that combines
short-term memory and long-term memory, solving the vanishing gradient problem of gen-
eral RNNs [38]. Figure 2 shows the general structure of LSTM. LSTM has four interactive
modules, and learning is performed through the following equations:

ft = σ(W f · xt + U f · ht−1 + b f ) (1)

it = σ(Wi · xt + Ui · ht−1 + bi) (2)

C̄t = tanh(Wc · xt + Uc · ht−1 + bc) (3)

Ct = ft ⊗ Ct−1 + it ⊗ C̄t (4)

ot = σ(Wo · xt + Uo · ht−1 + bo) (5)

ht = ot ⊗ tanh (Ct) (6)

where ⊗ means Hadamard product; W f , Wi, Wo, Wc, U f , Ui, Uo, Uc are the weight parame-
ters; and b f , bi, bo, bc are the bias vectors of corresponding operations. Here, the values of
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the weight and bias vectors are determined through the network training process. Ct is
called cell state or long-term memory. ht is called hidden state or short-term memory. The
LSTM input xt is concatenated with ht−1, the hidden state of the previous time step. The
forget gate ft of (1) is a gate for forgetting past information. The value sent by the forget
gate is the value that takes ht−1 and xt and takes the sigmoid σ. Here, the output range of
the sigmoid function is between 0 and 1, and as it gets closer to 0, the value of the previous
state is not used. On the other hand, if the output of the sigmoid function is close to 1, it
maintains the value of the previous state, affecting the prediction of the current state. The
input gate it ⊗ C̄t is a gate for memorizing the current information. it and C̄t are expressed
in (2) and (3), respectively. it and C̄t affect the update of cell state and hidden state through
the Hadamard product. If the output value of the Forget gate ft is 0, the Hadamard product
result with the previous cell state Ct−1 is also 0. In this case, only the result of the input
gate is used to determine the current cell state Ct in (4). ot in (5) is the value of the input
xt at the current time and the hidden state at the previous time ht−1 passed the sigmoid
function. In the output gate, Ct passes through the hyperbolic tangent and is determined
as a value between −1 and 1, and the Hadamard product with ot is performed. Finally, ht
in (6) is determined the hidden state at the current time and is used the output of the LSTM
cell at the current time.

Figure 2. LSTM structure.

3.2. Base Network for Driving Behavior Classification

Deep learning-based techniques are being studied to address various classification
problems. Here, we describe state-of-the-art behavioral classification networks including
CNN, LSTM, and CNN-LSTM models. Through each network analysis, the base network
of our proposed system is selected and extended to improve performance. Figure 3 is a
1D-CNN network architecture. 1D-CNN is mainly used for classification using timeseries
data with LSTM. Representative applications using 1D-CNN include real-time heart mon-
itoring [39] and abnormality detection for EEG data [40], or classification of movements
such as running and walking from an accelerometer data in HAR researches [41]. 1D-CNN
and 2D-CNN consist of a convolutional layer, a pooling layer, an activation function, and
a fully connected layer. 1D-CNN consists of two 1D convolutional layers and a fully
connected layer. In addition, overfitting was prevented and computation was reduced
through two maxpooling layers and one dropout. The final result is output as one of defen-
sive, normal, and aggressive behaviors through softmax. 2D-CNN is generally applied to
various classification techniques based on image input. Recently, a 2D-CNN technique for
detecting driver behavior has been proposed [34]. The 2D-CNN network [34] uses a total
of 9 signal data: 3-axis acceleration, 3-axis gyroscope, RPM, speed, and throttle information.
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The 9 signal data are converted into 3 images with grayscale size of 150 × 50 using the
recurrence plot function of python. Each of the three images corresponds to an RGB image
channel, and the final network input is an RGB image of size 3 × 150 × 50. However, as we
only use 3-axis acceleration information, we create 50 × 50 images with x-, y-, and z-axis
accelerations as red, green, and blue channels of RGB image, respectively. The 2D-CNN
network consists of a total of three convolutional layers and two fully connected layers,
as shown in the Figure 4. In addition, the computation was reduced and overfitting was
prevented using two dropouts and maxpooling, and one global maxpooling.

Figure 3. 1-Dimensional Convolution Neural Network (1D-CNN) structure [39].

Figure 4. 2-Dimensional Convolution Neural Network (2D-CNN) structure [34].

The configuration of the LSTM network is as shown in Figure 5. The LSTM network
consists of one LSTM layer and one fully connected layer. Overfitting is prevented through
a dropout layer, and driving behavior is finally classified through a softmax.

Figure 5. LSTM structure [37].

The CNN-LSTMs have been applied as an approach to predict text descriptions using
image sequences. The CNN-LSTM architecture uses a CNN layer in the feature extraction
process of the input data integrated with LSTM to support sequence prediction, as shown in
Figure 6. The structure of the network consists of two convolutional layers: one LSTM layer
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and one fully connected layer. In addition, overfitting is prevented with one maxpooling
and two dropouts.

Figure 6. CNN-LSTM structure [35].

A 4-layer CNN-LSTM network, a state-of-the-art method for classifying human activ-
ity, is presented in Figure 7 [35]. The 4-layer CNN-LSTM was applied to the HAR research
area by inputting the smartphone’s 3-axis acceleration and 3-axis gyroscope information.
The basic structure of the 4-layer CNN-LSTM is similar to the CNN-LSTM architecture,
and there are four convolutional layers before the LSTM layer. Then, a max-pooling layer
is added to summarize the feature map and reduce computational cost. Furthermore, two
dropouts are inserted to prevent overfitting. Unlike 2D-CNN, which converts signal data
into an image and uses it as an input, 4-layer CNN-LSTM uses signal data directly as
an input to the network. In addition, the structure combining 1D-CNN and LSTM has
strengths in feature extraction of input data and time series prediction performance, so it is
selected as a base model for behavior classification.

Figure 7. 4-Layer CNN-LSTM structure [35].

3.3. Four-Layer CNN-2 Stacked LSTM for Driving Behavior Classification

We propose a 4-layer CNN-2 stacked LSTM with a stacked LSTM applied with CNN
to improve driving behavior classification performance. The proposed network is extended
based on a 4-layer CNN-stacked LSTM. We created a deeper network by adding LSTMs
to improve driving behavior classification performance. A stacked LSTM structure can
be defined as an LSTM model composed of multiple LSTM layers to utilize the temporal
feature extraction obtained from each LSTM layer [35]. In addition, stacked LSTM has better
prediction performance than Vanilla-LSTM [42,43]. Figure 8 shows the structure of the
proposed 4 layer CNN-2 stacked LSTM network. For the input data, feature extraction and
the summary are performed by repeating two convolutional layers and one maxpooling
layer 2 times. A Maxpooling layer is added in the CNN layer to mitigate the increased risk
of overfitting and the amount of computation by the configuration of stacked LSTM. As
with other networks, two dropouts are inserted to prevent overfitting. The features output
from the stacked LSTM are returned as a classification result for driving behavior through
a fully connected layer and a softmax layer.

Figure 8. Four-layer CNN-2 stacked LSTM structure.
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3.4. Dataset Generation

A training dataset is needed to train a network that classifies driving behavior by
inputting only 3-axis acceleration. Time series data are selected to explore temporal rela-
tionships in the input data. Furthermore, the training dataset needs labels that correspond
to the time series inputs. Unfortunately, collecting data from only real vehicles with various
driving behaviors to construct a dataset is difficult and risky. Therefore, we safely collect
various driving data using the autonomous driving simulator IPG CarMaker together with
driver data in real road environments to build a training dataset in various environments.

Figure 9 is an example of CarMaker simulation for data set creation. Figure 9a is a
map generated for data collection. This map was created to mimic the real road, DGIST
campus. However, the actual driving lanes on the DGIST campus are one-lane or two-lane.
To collect a lot of traffic and various behavioral data, the lanes were extended to three
lanes in the simulation map. Furthermore, roundabouts were not created smoothly in the
simulation, so we replaced the roundabouts with straight lanes. The driving distance of
the vehicle in the campus driving simulation is 2.5 km, and it consists of straight lines and
curves. Because roundabout is not taken into account, the driver’s behavior may differ
from the actual driving behavior on the DGIST campus. To supplement this, highway
and urban scenarios were added to collect various driver behaviors in straight and curve.
Figure 9b is the highway driving environment. The highway driving section is about
5.5 km straight and includes merging and splitting sections. The highway consists of
a three-lane road, reducing to two lanes at 2.79 km. After this, at 3.02 km, it expands
back to three-lane. The composition of the urban road environment is shown in Figure 9c.
All roads in the urban environment consist of one lane, and there are straight lines and
curves including uphill and downhill. The total distance of urban road using dataset is
approximately 4.15 km. Table 1 shows the configuration and speed limit of the simulated
road for dataset generation. The speed limit in the campus road is set at 30 km/h. The
speed limit in highway conditions is 100 km/h. Urban roads have various speed limits set
according to the driving distance.

(a) (b) (c)

Figure 9. CarMaker simulation roads for dataset generation: (a) DGIST Campus environment. (b) Highway environment. (c) Urban
environment.

To collect the driving behavior dataset through simulation, we built a simulation
driving environment as shown in Figure 10a. To mimic the real driving environment, we
utilized a driving simulator. The compact driving simulator is composed of real vehicle
parts, and the steering reaction force that feels the same as the real one is reproduced. We
connected the driving simulator and CarMaker to perform simulation driving as shown
in the Figure 10b. Each simulated road environment has one driver-driven vehicle and
more than 200 traffic vehicles that mimic real drivers. In this environment, the simulated
driving was repeated 3 times for a total of 3 driving behaviors by 3 drivers along each
road environment to generate 27 driving profiles, which were used as datasets. At each
iteration, the location of the lane change event of all traffic vehicles except the control
vehicle, the number of lane changes, and the initial target speed is randomly reassigned.
Each traffic vehicle uses Adaptive Cruise Control (ACC) to avoid collisions with other
vehicles. Thus, interaction with surrounding vehicles occurs. For example, in Figure 10c,
Vehicle B decelerates rapidly under the influence of Vehicle A making a lane change. The
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target speed of the traffic vehicle changes to a random value in the range of 10% of the
speed limit every 1.5 s. In addition, each driving vehicle performed a lane change event in
a random section, creating a complex environment similar to real roads.

Table 1. Predefined driving environment variables in CarMaker.

Environment Variable

Types Total Road
Length Road Section Limit Speed # of Lanes

DGIST Campus 2256.3 m 0∼2256.3 m 30.0 km/h 1

Highway 5509.0 m
0∼2790 m

2790∼3020 m
3020∼5509 m

100.0 km/h
3
2
3

Urban 4154.5m

0∼280 m
280∼315 m

315∼1470 m
1470∼1530 m
1530∼1855 m
1855∼1930 m
1930∼2175 m

2175∼4154.5 m

30.0 km/h
50.0 km/h
70.0 km/h
50.0 km/h
80.0 km/h
70.0 km/h
50.0 km/h
70.0 km/h

1

(a) (b) (c)

Figure 10. CarMaker simulation environments for dataset generation: (a) Driving environment.
(b) Simulation driving. (c) Simulation scenario.

Driving datasets in real road environments were collected from real DGIST campus.
Figure 11 is a vehicle used for real road dataset collection and algorithm testing. Real road
driving data were collected from one driver repeating three driving with three driving
behaviors under a speed limit of 30 km/h. Through the simulation and real-world driving,
we obtained 3-axis acceleration information when passing a speed bump as well as going
straight, curve, left turn, right turn, uphill, and downhill according to driving behaviors.
In addition, real-world and simulation drivers themselves labeled driving aggression. As a
driver’s self-definition can be subjective, we followed the behavior of aggressive driving as
defined by the AAA Foundation [44]. Among the aggressive driving behaviors, speeding in
heavy traffic, cutting in front of another driver and then slowing down, and blocking cars
attempting to pass or change lanes were performed. Defensive behavior was performed
following the guidelines of the New York Department of Motor Vehicles (DMV) [45], such
as maintain the correct speed, allow space. Normal behavior was determined to be between
aggressive and defensive behavior. The driver performed sufficient practice driving for
about 10 h or more according to the guidelines, and then data for each driving behavior
were collected. All processes for dataset generation and labeling were performed under
the supervision of a supervisor. The supervisor has a clear understanding of the guidelines
for driving behavior and is a veteran driver with over 10 years of driving experience. If
the driver selects the defensive behavior label but does not match the guidelines, such as
exceeding the speed limit, data and labels are excluded. In addition, unrealistic driving
data and intentional collision data with vehicles or pedestrians are also excluded. Table 2
represents the standard deviation and median for each collected driving behavior. The
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standard deviation of the x-axis acceleration represents an indicator for the acceleration and
deceleration of the vehicle, and the larger the standard deviation, the larger the amount of
change in acceleration and deceleration. The standard deviation of the y-axis acceleration
represents an indicator of the vehicle’s rotation, and the larger the standard deviation,
the greater the amount of change in steering. As the z-axis acceleration is changed by
the rolling and pitching of the vehicle, the standard deviation increases as the x-axis and
y-axis accelerations change larger. Therefore, driving with aggressive behavior increases
the standard deviation of the 3-axis acceleration. The median of the 3-axis acceleration
for each driving behavior collected is close to zero, indicating that the collected data are
not biased.

Figure 11. Real-world vehicle for data collection and testing.

Table 2. Three-axis acceleration standard deviation and median according to driving behavior.

Defensive Behavior (m/s2)
Acceleration X Acceleration Y Acceleration Z

Median 0.0209606 0.0041105 −0.0003024
Standard Deviation 0.439897633 0.517115998 0.263576081

Normal Behavior (m/s2)
Acceleration X Acceleration Y Acceleration Z

Median 0.0176545 0.0027567 −0.0005219
Standard Deviation 0.519467419 0.876498761 0.373084299

Aggressive Behavior (m/s2)
Acceleration X Acceleration Y Acceleration Z

Median 0.07252035 0.02170125 −0.00392755
Standard Deviation 0.915436498 1.462502723 0.491320123

We built a dataset from the collected 3-axis acceleration information and labels. The col-
lected data are a total of 93,286 3-axis acceleration data and labels, consisting of 79,052 simu-
lations and 14,234 real vehicle data. Defensive behavior is 32,650, normal behavior is 30,784,
and aggressive behavior is 29,852, which are balanced in proportions of 35%, 33%, and
32% in the total dataset, respectively. We randomly extract 15% of the data from the entire
dataset and use it as a validation set, and use the remaining 85% as a training dataset. The
validation set is used to measure the performance of the model built on the training set. In
general, various parameters and models are used to find out which model best fits the data,
and among them, the model with the best performance is selected as the validation set. For
the construction of the test set, we additionally collected data on three driving behaviors
of one driver each on the simulated and real roads. The test set is used to measure the
performance of the model after the model to be used as the validation set is decided. The
total number of data used in the test is presented in Table 3, divided by scenario.
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Table 3. Number of data assigned to labels in the test dataset.

Environments Behavior (Ground Truth)
Defensive Normal Aggressive Total Data

Simulation
DGIST 4440 3412 3292 11144
Urban 3777 3002 1666 8445

Highway 4257 3271 3124 10652

Real world DGIST 2812 2248 1886 6946

3.5. Prediction Result Sharing via V2X

In order to improve the traffic safety, the driving behaviors classified through 4-layer
CNN-2 stacked LSTM must be communicated to other traffic participants. As a method
for sharing information between vehicles and transportation system, V2X communication
is a useful means. Messages delivered via V2X include BSM, Emergency Vehicle Alert
(EVA), Common Safety Request (CSR), and traveler information as stipulated by Society of
Automotive Engineers (SAE). Among them, BSM is a message that provides the vehicle
information for safety, and is composed of Part I and Part II. Part I contains the vehicle’s
GNSS position, speed, steering wheel angle, acceleration, brake system status and vehicle
specifications, and is an essential component of BSM. On the other hand, Part II is divided
into vehicle safety extension and vehicle status. The vehicle safety extension includes
information on path history and path prediction, and vehicle status is optional. We include
the predicted driving behavior via 4-layer CNN-2 stacked LSTM in vehicle status of BSM
Part II, following the configuration of the BSM. The BSM with predicted driving behavior
through the proposed system is broadcast to the around vehicles, which can assist nearby
traffic participants in making safe driving decisions.

Figure 12 is a prototype of the 4-layer CNN-2 stacked LSTM-V2X system for predicting
and sharing driving behavior. NVIDIA Jetson TX2 is used as a small computing board to
drive the proposed 4-layer CNN-2 stacked LSTM-V2X system. The V2X device for sending
and receiving BSM is Ettifos ETF-DV-02. In addition, the MTi-670 is mounted as an IMU
for measurement of longitudinal and lateral acceleration. The prototype was equipped
with an MRP-2000 GPS to collect the vehicle’s driving trajectory and a battery to power
each device. Jetson TX2 was selected because of its 4-layer CNN-2 stacked LSTM network
operation and compatibility with the used V2X device. The total size of the prototype is
180 × 180 × 95mm, and consists of three layers. The first layer is the battery and V2X
device, the second layer is the computing board, and the third layer is the IMU and GPS.

Figure 12. Four-layer CNN-2 stacked LSTM-V2X module.

4. Performance Evaluation

In this section, we evaluate the proposed driving behavior prediction and sharing
system. The performance of the proposed system is evaluated by 4 layer CNN-2 stacked
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LSTM’s training results, simulations, and real-world test. In addition, the effectiveness of
predicted driving behavior sharing on nearby vehicles is also evaluated in the simulation. In
a real-world test, experimental results of V2X communication for sharing driving behavior
between vehicles are presented.

4.1. Network Training and Comparison

To evaluate the performance of the proposed 4 layer CNN-2 stacked LSTM, we com-
pare it with other conventional networks. In addition, we present performance indicators of
networks according to the length of the input timeseries. For fair comparisons, all networks
were trained for 50 epochs with a batch size of 32. Relu was used as the activation function
and Adam optimizer was applied. As the loss function, categorical cross entropy was used.
Network training was performed on NVIDIA Titan V graphics card, 64 GB RAM, and Intel
i7-7700k CPU environment.

Figure 13 represents the training accuracy when data with different timeseries lengths
are used as input. The input timeseries length was evaluated as 5 types ranging from
1 s to 5 s. As a result of the comparison according to the length of the input timeseries,
all networks showed the best performance when given a timeseries of 5 s. The training
accuracy of LSTM was ~63%,which was the worst among the compared networks. 1D-CNN
had an average of 24% higher performance than LSTM with a training accuracy of ~83%.
2D-CNN and CNN-LSTM had similar performance at a time series length of 1 s. However,
as the timeseries length increased, the performance of 2D-CNN was superior to that of
CNN-LSTM. In all cases, the 4-layer CNN-LSTM showed the second highest training
accuracy among networks. Our proposed 4-layer CNN-2 stacked LSTM has superior
results compared to other networks in all cases. At 3 s of timeseries input, the performance
was similar to that of the 4-layer CNN-LSTM, but in other cases, it showed an average
performance improvement of 1.75%. In addition, it showed the highest training accuracy
with about 96.5% at a timeseries length of 5 s. Table 4 shows the training time of each
network model. In terms of training time, 1D-CNN with a simple structure is the fastest,
and 2D-CNN is the slowest because it trains images. CNN-LSTM is trained about 4.3 times
faster than LSTM through the process of extracting and summarizing features through
CNN. The 4-layer CNN-2 stacked LSTM with the highest training accuracy trained the
third fastest, and was trained ~18.3% faster than the 4-layer CNN-LSTM with the second
highest training accuracy. Therefore, it has been verified that the proposed 4-layer CNN-2
stacked LSTM has high training accuracy while training faster compared to other networks.

Table 4. The networks training time at 50 epochs.

Networks 1D-CNN 2D-CNN LSTM
Training Time (s) 17.82742023 476.4470894 163.4962823

Networks CNN-LSTM 4CNN-LSTM 4CNN-2LSTM
Training Time (s) 37.72614694 92.75716472 75.77209926

4.2. Simulation Result of Driving Behavior Prediction

The performance of the trained networks is evaluated through the validation data and
the simulation test data. We present the validation results at the input of 5 s, because the
case of 1 to 4 s of input is significantly lower accuracy than the case of 5 s of input. Table 5
is the network performance indicator when the input timeseries is 5 s. The classification
accuracy for the defensive behavior is about 92% or more in all networks, especially the
CNN-LSTM network, the accuracy is improved by about 11% compared to when the
input timeseries is 4 s. For normal behavior, the CNN network has a classification error
of about 29% as defensive behavior. As a result of the aggressive behavior, 2D-CNN had
a classification accuracy of about 78% when the input time series was 4 s, but showed a
steep performance improvement to about 99% when the input timeseries was 5 s. The
4-layer CNN-2 stacked LSTM has an average accuracy of 98.52%, and the performance
improvement is about 0.39% compared to the 98.13% of the 4-layer CNN-LSTM.
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(a) (b) (c)

(d) (e)

Figure 13. Training accuracy input length: (a) Timeseries 1 s. (b) Timeseries 2 s. (c) Timeseries 3 s.
(d) Timeseries 4 s. (e) Timeseries 5 s.

Table 5. Validation confusion matrix at 5 s timeseries input.

Validation Output Label

Input: 5 s Networks Defensive Normal Aggressive

Defensive

1D-CNN 92.87% 6.49% 0.63%
2D-CNN 95.04% 0.29% 4.66%

LSTM 93.02% 4.13% 2.86%
CNN-LSTM 94.24% 5.76% 0.00%
4CNN-LSTM 97.02% 2.91% 0.07%

4CNN-2LSTM 99.52% 0.41% 0.07%

Normal

1D-CNN 29.4% 67.23% 3.37%
2D-CNN 0.32% 91.56% 8.11%

LSTM 62.23% 18.53% 19.24%
CNN-LSTM 19.92% 79.92% 0.16%
4CNN-LSTM 1.78% 97.92% 0.29%

4CNN-2LSTM 3.29% 96.39% 0.32%

Aggressive

1D-CNN 3.39% 6.89% 89.72%
2D-CNN 0.21% 0.07% 99.73%

LSTM 15.83% 9.22% 74.95%
CNN-LSTM 0.65% 4.08% 95.27%
4CNN-LSTM 0.14% 0.41% 99.45%

4CNN-2LSTM 0.16% 0.19% 99.65%
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From the validation process, we select the input of timeseries 5 s that gives the best
performance for classifying driving behavior. The trained networks are evaluated for
performance in each environment through test data collected from DGIST campus, urban
roads and highways in the simulation. Tables 6–8 are the results of network evaluation
based on the test data generated in each simulation environment. The classification accu-
racy of proposed 4-layer CNN-2 stacked LSTM is more about 99% on highways that are
simply composed of straight roads. In addition, on DGIST campuses and urban roads with
various road types, the classification accuracy of the proposed network is relatively reduced
compared to highways, but the classification accuracy is ~97% or higher on average. The
network with the second highest classification performance is a 4-layer CNN-LSTM, which
has a reduced performance of 1.3% in the DGIST campus scenario, 0.31% in the urban
scenario, and 3.08% in the highway compared to our proposed network. The proposed
4-layer CNN-2 stacked LSTM takes a classification time of ~19.7 ms in the real-time evalua-
tion performed on the TX2 board, and classifies driving behaviors about 1.6 ms faster than
the classification time of 4-layer CNN-LSTM, about 21.3 ms. The next high performance
networks are 2D-CNN networks and CNN-LSTM networks. 1D-CNN confuses normal
and defensive behavior in all scenarios, and LSTM has the worst classification performance
of normal behavior. As a result of performance verification based on validation data and
test data, we have proven that the proposed 4-layer CNN-2 stacked LSTM classifies driving
behavior as high performance.

Table 6. Confusion matrix of DGIST campus driving behavior classification results.

Test: DGIST Campus Output Label

Input: 5 s Networks Defensive Normal Aggressive

Defensive

1D-CNN 95.11% 3.68% 0.21%
2D-CNN 91.91% 7.71% 0.39%

LSTM 58.91% 2.02% 39.07%
CNN-LSTM 94.84% 5.13% 0.04%
4CNN-LSTM 97.45% 2.4% 0.14%

4CNN-2LSTM 97.74% 2.12% 0.14%

Normal

1D-CNN 5.58% 90.83% 3.59%
2D-CNN 4.32% 94.79% 0.89%

LSTM 40.05% 2.35% 57.60%
CNN-LSTM 1.95% 94.64% 3.41%
4CNN-LSTM 2.53% 97.03% 0.44%

4CNN-2LSTM 0.97% 97.83% 1.2%

Aggressive

1D-CNN 1.11% 5.91% 92.99%
2D-CNN 1.5% 3.56% 94.95%

LSTM 9.55% 2.53% 87.92%
CNN-LSTM 0.42% 2.8% 96.78%
4CNN-LSTM 0.79% 4.17% 95.04%

4CNN-2LSTM 0.0% 2.22% 97.78%
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Table 7. Confusion matrix of urban road driving behavior classification results in simulation.

Test: Urban road Output Label

Input: 5 s Networks Defensive Normal Aggressive

Defensive

1D-CNN 89.72% 9.8% 0.48%
2D-CNN 92.64% 6.67% 0.69%

LSTM 91.58% 1.72% 6.69%
CNN-LSTM 81.7% 18.19% 1.17%
4CNN-LSTM 94.62% 5.38% 0.0%

4CNN-2LSTM 94.14% 5.82% 0.05%

Normal

1D-CNN 36.52% 60.04% 3.44%
2D-CNN 3.44% 93.86% 2.69%

LSTM 71.54% 6.29% 22.18%
CNN-LSTM 10.87% 87.97% 1.17%
4CNN-LSTM 2.63% 97.1% 0.27%

4CNN-2LSTM 1.5% 97.82% 0.69%

Aggressive

1D-CNN 5.11% 9.88% 85.01%
2D-CNN 1.71% 16.27% 82.01%

LSTM 38.56% 2.84% 58.60%
CNN-LSTM 0.31% 6.67% 93.02%
4CNN-LSTM 0.31% 1.5% 98.19%

4CNN-2LSTM 0.03% 1.12% 98.85%

Table 8. Confusion matrix of highway driving behavior classification results in simulation.

Test: Highway Output Label

Input: 5 s Networks Defensive Normal Aggressive

Defensive

1D-CNN 92.46% 7.02% 0.52%
2D-CNN 97.3% 2.68% 0.02%

LSTM 92.58% 4.56% 2.87%
CNN-LSTM 93.59% 6.41% 0.0%
4CNN-LSTM 95.02% 4.91% 0.07%

4CNN-2LSTM 99.48% 0.45% 0.07%

Normal

1D-CNN 30.91% 65.45% 3.64%
2D-CNN 2.45% 97.28% 0.28%

LSTM 62.86% 19.35% 17.79%
CNN-LSTM 21.28% 78.51% 0.21%
4CNN-LSTM 4.4% 95.17% 0.43%

4CNN-2LSTM 0.73% 99.21% 0.06%

Aggressive

1D-CNN 3.04% 6.95% 90.01%
2D-CNN 0.42% 0.22% 99.36%

LSTM 14.6% 8.8% 76.60%
CNN-LSTM 0.51% 2.88% 96.61%
4CNN-LSTM 0.13% 0.38% 99.49%

4CNN-2LSTM 0.0% 0.06% 99.94%

4.3. Effectiveness of Prediction Result Sharing

The effectiveness of driving behavior sharing to surrounding vehicles was evaluated
via simulation. The simulation environment consists of a straight road of ~5 km, with
a ego vehicle and a target vehicle. A ego driving vehicle is a vehicle that uses ACC to
follow speed while maintaining a safe distance from the target vehicle. A target vehicle is a
vehicle whose driving behavior changes over time into defensive, normal, and aggressive
behaviors. The proposed behavior sharing system is applied to both the ego vehicle and
the target vehicle, and the target vehicle shares its own driving behavior through V2X
communication, and the ego vehicle receives the target vehicle’s driving behavior. The
safe distance must be set so that the ego vehicle does not collide even if the target vehicle
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suddenly brakes [46]. Here, we add a variable called safety factor that serves to change
the safe distance according to driving behavior. The safety factor can be set manually,
and when the safety factor is 1, a safety distance equal to the default safety distance is
assigned. As defensive behavior is the safest driving behavior, a default safety distance is
assigned by setting the safety factor to 1. To provide an additional safety distance as the
aggressiveness increases, we set the safety factor to 1.1 for normal behavior, and 1.3 for
aggressive behavior. Therefore, if the target vehicle drives aggressively, the ego vehicle will
have a desired distance of 30% more than the basic safety distance.

In the simulation, the target vehicle performs 50 s of defensive behavior, 60 s of normal
behavior, and 120 s of aggressive behavior. To clearly show the effect of the target vehicle’s
aggressive behavior to the ego vehicle, the target vehicle was set to perform periodic
acceleration and deceleration. Figure 14a represents the movement of the target vehicle in
the simulation. The target vehicle decelerates at a maximum of 0.2658 m/s2 from 0 to 50 s
in defensive behavior, and accelerates at a constant rate of 0.2 m/s2 in normal behavior
from 50 to 110 s as shown in Figure 14b. Aggressive behavior is expressed an acceleration
of 1.3 m/s2 to −1.3 m/s2 through a sin function at a 15-second cycle from 110 to 230 s. As
shown in Figure 14c, the driving behavior of the target vehicle through the 4 layer CNN-2
stacked LSTM showed high-accuracy classification results.

Figure 14d shows the driving velocity of the target vehicle and the ego vehicle. The
black line represents the velocity of the target vehicle, and the blue and red lines represent
the velocity of the ego vehicle without V2X-based behavior sharing system and with V2X-
based behavior sharing system, respectively. When the target vehicle has defensive and
normal behavior, the velocity of the ego vehicle is similar regardless of the application
of the proposed system. However, the desired distance of the ego vehicle increases with
the target vehicle’s behavior, as shown in Figure 14e. At about 110 s, the target vehicle
accelerates, but the ego vehicle slows down as the desired distance is increased for safety,
as shown in the green area in Figure 14e. The risk of collision with the target vehicle is
reduced while inducing an increase in Time to collision (TTC) of approximately 3 s or more
compared to the case where V2X based behavior sharing system was not applied as shown
in the Figure 14f. As a result of the simulation experiment, we confirmed that the sharing
of driving behavior of a vehicle can have a positive effect on traffic safety.

4.4. Real-World Test Results of Driving Behavior Prediction

The 4-layer CNN-2 stacked LSTM-V2X system was installed in two vehicles and
verified in a real road environment. In a real-world test, human drivers select a label for
their driving behavior as one of defensive, normal, and aggressive. Driving behavior is
self-defined, and the guidelines of the AAA Foundation and DMV were followed in the
same way as the dataset generation. The behavior classification accuracy was measured by
comparing the driving behavior received through V2X with the driving behavior labeled
by the driver. Figure 15 shows the path of the vehicle driven for real world test. The red
line indicates the driving path of the vehicle and the arrow indicates the driving direction.
As GPS information is not received in the tunnel section, it is not displayed on the path.
Figure 16a–c shows the 3-axis acceleration information about driving behaviors labeled
by the driver in the behavioral comparison section marked in yellow in Figure 15. The
more aggressive the driver’s driving behavior, the greater the change in 3-axis acceleration.
In addition, the amount of change in the z-axis is large because the aggressive driving
behavior does not reduce the speed sufficiently on the speed bump.

Table 9 shows the classification accuracy of each network based on real world driving
data. Similar to simulation, the proposed 4-layer CNN-2 stacked LSTM has the best results
with over 98% performance. In addition, although ~85% of the dataset used for network
training consists of simulation data, it showed high classification accuracy in the real
environment. The reason that the data set contains about 15% of real-world data is partly
because the simulated road and the real-world environment does not match. For example,
speed bumps are not configured on the simulated road to generate the data set. In addition,
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errors may occur depending on the condition of the road surface, tire and sensor noise
in real world driving environment. From the experimental results, we demonstrate the
possibility of high-performance classification of driving behaviors in various real world
environments from a large number of simulated driving data for general road environments
and some real world data.

(a)

(b)

(c) (d)

(e) (f)

Figure 14. Experimental results of safety improvement of the proposed system in the ACC scenario:
(a) ACC simulation environment. (b) Three-axis acceleration of the target vehicle. (c) Behavior
classification results. (d) Driving velocity. (e) Desired distance. (f) Time to collision.



Appl. Sci. 2021, 11, 10420 18 of 22

Figure 15. Driving path of a vehicle in real-world test.

(a)

(b)

(c)

Figure 16. Comparison of 3-axis accelerations according to driving behavior: (a) Defensive driving.
(b) Normal driving. (c) Aggressive driving.
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Table 9. Confusion matrix of driving behavior classification results in real world DGIST campus.

Test: Real World DGIST Campus Output Label

Input: 5 s Networks Defensive Normal Aggressive

Defensive

1D-CNN 97.51% 2.13% 0.36%
2D-CNN 99.15% 0.64% 0.21%

LSTM 90.58% 6.51% 2.92%
CNN-LSTM 95.8% 4.2% 0.0%
4CNN-LSTM 98.08% 1.53% 0.39%

4CNN-2LSTM 98.65% 0.428% 0.002%

Normal

1D-CNN 2.49% 96.93% 0.58%
2D-CNN 2.7% 96.41% 0.89%

LSTM 54.67% 21.44% 23.89%
CNN-LSTM 2.31% 97.24% 0.44%
4CNN-LSTM 0.62% 98.49% 0.89%

4CNN-2LSTM 0.013% 99.82% 0.04%

Aggressive

1D-CNN 0.64% 1.86% 97.51%
2D-CNN 1.37% 2.37% 96.26%

LSTM 13.47% 14.85% 71.69%
CNN-LSTM 0.37% 8.54% 91.09%
4CNN-LSTM 0.21% 1.11% 98.67%

4CNN-2LSTM 0.0% 0.16% 99.84%

4.5. Prediction Result Sharing via V2X

The proposed system transmits and receives the predicted driving behavior message in
the form of BSM every 100 ms through V2X communication. As a result of the experiment,
the number of transmitted and received BSM packets was measured the same. Figure 17
shows the distribution of communication delay. The average delay of V2X communication
was observed as 4.8 ms, the minimum delay was 1.2 ms, and the maximum delay was
13.3 ms. Therefore, the proposed system has proven to be effective in predicting and
sharing aggressive driving behavior even in real environments.

Figure 17. V2X communication delay distribution.

5. Conclusions

We propose a system that broadcasts the predicted behavior through V2X with a 4-
layer CNN-2 stacked LSTM for driving behavior classification using only 3-axis acceleration.
For 4-layer CNN-2 stacked LSTM training, 15% of real world DGIST campus driving data
and 85% of virtual world driving data were used. The virtual world is similar to the
real world, including about 240 traffic vehicles with randomly assigned driving motions,
such as speeding and lane changes, as well as uphill, downhill and speed limit road
environments. The virtual world driving data was collected by building DGIST campus,
urban road and highway based on the connection between IPG CarMaker and a driving
simulator that mimics real vehicles. The performance of the proposed system showed
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the best performance compared to 1D-CNN, 2D-CNN, LSTM, CNN-LSTM, and 4-layer
CNN-LSTM, which are state-of-the-art techniques. The effectiveness of sharing driving
behavior was evaluated through ACC scenarios constructed in simulations. The desired
distance of the ego vehicle is changed through the assigned safety factor, according to
the driving behavior of the target vehicle. If the target vehicle has aggressive driving
behavior, the ego vehicle increases the desired distance. Compared to the case where the
proposed system was not applied, the TTC increased by about 3 s or more. To evaluate the
proposed system in the real world, we built a prototype, including IMU and Jetson TX2
board. As a result of driving tests on DGIST campus, it had a driving behavior classification
performance of about 97% or more. The classified driving behavior is mounted on the
vehicle BSM conforming to the J2735 standard via V2X communication and transmitted to
nearby vehicles. As a result of the transmission and reception of the BSM, the expected
driving behavior was shared with surrounding vehicles with a small delay of 4.8 ms on
average. Therefore, systems and prototypes that classify driving behavior with only 3-axis
accelerations and share it with the traffic system have been validated. Simulation tests and
real world tests confirmed that the proposed system can help traffic safety. Through this,
the development of various driver support systems, such as a system that warns the driver
when the driver inputs an aggressive driving command, and more intelligent ACC systems,
can be expected. Although a comprehensive classification of driving aggression has been
performed, a more detailed classification may be necessary for driving safety. For example,
there may be a scenario of changing lanes without a signal or changing several lanes at
once. The remaining research task may be to construct a large number of scenarios for
aggressive driving that may occur on the road and to classify driving aggression in detail.
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