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Abstract: This paper contributes toward research on the control of the magnetic levitation plant,
representing a typical nonlinear unstable system that can be controlled by various methods. This
paper shows two various approaches to the solution of the controller design based on different
closed loop requirements. Starting from a known unstable linear plant model—the first method is
based on the two-step procedure. In the first step, the transfer function of the controlled system is
modified to get a stable non-oscillatory system. In the next step, the required first-order dynamic is
defined and a model-based PI controller is proposed. The closed loop time constant of this first-order
model-based approach can then be used as a tuning parameter. The second set of methods is based
on a simplified ultra-local linear approximation of the plant dynamics by the double-integrator plus
dead-time (DIPDT) model. Similar to the first method, one possible solution is to stabilize the system
by a PD controller combined with a low-pass filter. To eliminate the offset, the stabilized system is
supplemented by a simple static feedforward, or by a controller proposed by means of an internal
model control (IMC). Another possible approach is to apply for the DIPDT model directly a stabilizing
PID controller. The considered solutions are compared to the magnetic levitation system, controlled
via the MATLAB/Simulink environment. It is shown that, all three controllers, with integral action,
yield much slower dynamics than the stabilizing PD control, which gives one motivation to look for
alternative ways of steady-state error compensation, guaranteeing faster setpoint step responses.

Keywords: magnetic levitation; stabilization; modeling

1. Introduction

The magnetic levitation system represents a typical nonlinear unstable system. Since
it presents several interesting problems for control, there exists numerous educational
laboratory models that can be used for verifying control algorithms, demonstrating their
properties. The most used are products from Quanser [1], Humusoft [2], Googol [3], LD
Didactic Group [4], and Inteco [5].

For controlling the position of the ball in the magnetic field created by the solenoid,
the system enables using a wide variety of methods, such as:

• polynomial approach [6–8];
• LQR PID tuning [9];
• constrained control [10,11];
• robust control [12];
• model predictive control; [11,13,14];
• state space control [15,16];
• direct synthesis method for stable and unstable systems [17,18];
• fuzzy control [19,20].

The paper presents and compares two possible solutions to the magnetic levitation
plant control problem.

The first method is based on the knowledge of the transfer function of the linearized
system (1) derived, considering parameters given by the manufacturer [21]. It starts with
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stabilizing the given unstable system. In the next step, the dynamics of compensation of the
emerging disturbances are specified. By neglecting the fast stable mode of transients, the
design procedure can be made simple and robust, similar to model-based PI control [22].
The controllers designed by the first approach make it possible to measure the input–output
steady-state characteristic (IOSSCH) of the system, expressing the dependence of the output
variable of the system on the input in steady states (Figure 2). While the analytically derived
transfer function of the system results in a linear dependence of the output from the input
at steady states, the measured dependence shows non-linear properties of the system.
It indicates that, in an effort to accelerate transients by this approach, we would have to
deal with the limited accuracy of the linear model. Although the proposed control meets
most of the above requirements, it will be relatively slower in terms of transient speed.

Therefore, to verify the plant dynamics, the second group of possible approaches
begins with identifying the system. The authors of [10] have already pointed out several
aspects that are important in the effort to achieve the fastest possible (and sufficiently
smooth) transients at the input and output of the system. In view of the non-linearity of
the system, in the second set of approaches, it is preferred to approximate the system’s
dynamics by means of the simplest second-order transfer function of a double integrator
with a transport delay (DIPDT, double integrator plus dead time). Such an ultra-local
model, typical of today’s popular robust control approach with active disturbance rejec-
tion control (ADRC) [23–27], avoids the need to approximate nonlinear system feedback.
A similar simplification is used by another method working with finite impulse response
(FIR) filters. Due to omitting identification of internal plant feedback, it is also called
model-free-control (MFC). Its application can lead to an intelligent proportional-derivative
(iPD) controller [28–31]. After determining the DIPDT plant model, simple proportional-
derivative (PD) controllers can be used for the stabilizing controller design [31,32]. When
supplemented by low-pass filter design and combined with static feedforward (using
inversion of the measured IOSSCH), it is possible to get control processes that are already
very close to the performance limits given by the available hardware. To deal with possible
disturbances (including the model imperfections), the proportional-integral-derivative
(PID) controllers (supplemented again by the design of low-pass filters [33]), or internal
model control (IMC) controllers may be added to the basic loop with a stabilizing PD
controller [34]. However, the achieved controllers with integral (I) action again show much
slower dynamics than the simple stabilizing PD controller with the offset compensation by
static feedforward.

The rest of the paper is structured as follows. Section 2 briefly describes the mag-
netic levitation system. In Section 3, a simplified controller design is presented that, after
stabilizing the system and neglecting the fast stable mode of transients, can be denoted
as a model-based PI controller design. In Section 4, three different controllers are pre-
sented, based on the simplest plant approximations by the time-delayed double-integrator
plus dead-time (DIPDT) model.The achieved results are discussed and summarized in
the Conclusions. The main contribution of the article can be considered the analysis and
experimental verification of several possible features of the design of the rapid nonlinear
and unstable process of magnetic levitation, with regard to the most frequently placed
requirements. It follows that, all used controllers with I action finally give dynamics,
which is significantly slower than with simple stabilizing PD controllers. This provides an
incentive for further work to explore new alternatives, to eliminate permanent control-error
without significantly reducing the dynamics of the setpoint responses.

2. Magnetic Levitation Plant

The paper deals with the control of the magnetic levitation plant CE152, provided by
Humusoft ([2], see Figure 1). This educational laboratory model enables demonstrating
control problems associated with nonlinear unstable systems. The aim is to stabilize and
control the ball position. The company originally supported communications via the MF624
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A/D card [35]. To get new degrees of freedom, the MF624 card was substituted by the low
cost solution based on the Arduino Due board [36].

Figure 1. CE 152 Magnetic Levitation.

The plant is controlled via the MATLAB/Simulink simulation environment that
enables running simulations in an external mode. The support for Arduino Due is available
thanks to third-party add-ons, called Simulink Support Package for Arduino Hardware.

The literature offers several models that describe the dynamic behavior of the magnetic
levitation system. In addition to nonlinear models [37], simplified linear models could also
be found.Very often, they are described by the third order system with three time constants
(see, e.g., [12,38–40]). However, after a more detailed analysis, it can be found that one
time constant (electrical) can be neglected in comparison to other two time constants,
which are approximately the same in its value, but one pole is positive and one negative.
This can be confirmed by the second order models of the Humusoft magnetic levitation
plant, published in [6,41] or [13]. Therefore, the magnetic levitation model can be replaced
practically in the whole controlled range (approximately 0.1–0.9), which is given by the
used sensor (its range is transformed to the so-called 1MU), by the transfer function

G(s) =
K

T2s2 − 1
(1)

The correctness of this model is also confirmed by the comparison of the measured
input–output characteristic and the characteristic corresponding to the model (1) (Figure 2).
Both shapes are very close to each other. Their displacement is due to the asymmetry of
the gravitational force not taken into account by the transfer function of the system (1).

As mentioned, the electrical time constant considered in other publications is ne-
glected, because it is small enough compared to the mechanical time constant.
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Figure 2. Input–output steady state characteristics (measured values—blue color, calculated values—
red color).

3. Weighted PID Controller Design

As it is possible to see, the transfer function describing the ball movement (1) is
unstable. The first step in designing the controller is to stabilize the system. Its desired
closed-loop behavior can be expressed using the second order transfer function

M(s) =
1

β(τ1s + 1)(τ2s + 1)
(2)

The considered structure of the control scheme is shown in Figure 3.

+

−
C2(s)

+

− +

+

Magnetic levitation plant

Qn(s)

C1(s)

r(t) e(t) y(t)

di(t)

Figure 3. Weighted pId control structure.

The transfer function C1(s) represents a controller providing stabilizing feedback

C1(s) =
1

M(s)
− 1

G(s)
(3)

that for (2) can be written in general form

C1(s) = a2s2 + a1s + a0 (4)

Considering a2 = 0, we get a PD controller, whereby the parameter β can be expressed as

β =
T2

Kτ1τ2
(5)

Transfer function M(s) can be reduced to the 1st order by the suitable choice of time
constants τ2 � τ1, when

M(s) ≈ 1
β(τ1s + 1)

(6)
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This can be achieved, e.g., by defining τ1 = ρT and τ2 = T/ρ where ρ is a sufficiently
big value. Then,

β =
1
K

(7)

a0 = β +
1
K

=
2
K

(8)

a1 =
T
K

ρ2 + 1
ρ

(9)

After stabilizing the system, it is possible to proceed to the design of the controller
C2(s), which will ensure the required behavior of the entire control structure under impact
of disturbances.

Since the transfer function (6) is first order, the desired closed loop transfer function
F(s) can also be selected as a first order function

F(s) =
1

λs + 1
(10)

Correspondingly, in such a model-based design, the transfer function of the controller

C2(s) =
F(s)

1− F(s)
1

M(s)
(11)

remains feasible. Considering (10) a (6),

C2(s) =
ρT
Kλ

+
1

Kλs
=

ρT
Kλ

(
1 +

1
ρT s

)
(12)

It is obvious that this is the structure of the PI controller

C2(s) = KC

(
1 +

1
TI s

)
; KC =

ρT
Kλ

; TI = ρT (13)

the gain of which can be influenced by the choice of λ. For λ = ρT je KC = 1/K.
The considered control structure (Figure 3) still contains one block and it is the first

order filter Q(s)

Q(s) =
1

Tf s + 1
(14)

Its aim is to ensure filtering of the measured signal.

Experimental Results

The whole design was accomplished considering parameters in Table 1.

Table 1. Model and controller parameters.

Variable Value Unit

Gain of the model K 1.7 -
Time constant of the
model

T 0.018 s

Controller parameter ρ 2 -

These parameters lead to the following values β = 0.588, a0 = 1.177 a, a1 = 0.027 s.
For λ = ρT = 0.036 s, the controller parameters are KC = 0.588 a, TI = 0.036. In the
experiment, the sampling period was 1 ms and the time constant of the filter Q(s) was
equal to the sampling period. A corresponding transient and control signal is shown
in Figure 4.
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Figure 4. Output and control signal of the controller based on the plant model (2), stabilizing
controller (3)–(6), and the feedforward PI controller (13).

The advantages of this approach are its simplicity, high robustness, and low sensitivity
to measurement noise.

4. Multiple Real Dominant Pole Controller Design

The multiple real dominant pole (MRDP) controllers rely on the DIPDT model of the
magnetic levitation plant F(s)

F(s) =
Ks

s2 e−Tds (15)

with parameters identified in [10], by means of step responses, as

F(s) =
Km

s2 e−Tms; Km = 7000; Tm = 0.002 s (16)

4.1. PD Controller Design by the Triple Real Dominant Pole Method

The considered control structure is shown in Figure 5. In this case, the stabilizing
PD controller

C0(s) = Kp + Kds (17)

will be combined with a second order low-pass filter

Q2(s) =
1(

Tf s + 1
)2 . (18)

Then
C(s) = C0(s)Q2(s) (19)
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+ −
C1(s)

+

−
C(s)

+ +

−

+

+

Magnetic levitation plant

K1

K2

+

−
C2(s)

C3(s)

r(t) y(t)

di(t)

Figure 5. General control structure for MRDP design.

In the controller tuning, its two time constants Tf will be considered by the modified
half-rule method [33,42], as an amendment to the total dead-time by an equivalent filter
dead-time Te

Td = Tm + Te; Te = 2Tf /2 = Tf . (20)

Thus, it can be omitted from further derivations. The control structure segments with
the transfer functions C1(s), C2(s), and C3(s) will be omitted by choosing C1(s) = 1 and
C2(s) = C3(s) = 0.

The PD control combined with a DIPDT plant yields a closed loop transfer function

Fwy(s) =
Y(s)
W(s)

=
Ks(Kds + Kp)

eTdss2 + Ks(Kp + Kds)
(21)

As shown, e.g., in [31,32], for the characteristic polynomial

APD(s) = eTdss2 + Ks(Kp + Kds), (22)

a triple-real-dominant-pole (TRDP) so corresponds to a tuning, satisfying conditions:[
APD(s);

dAPD(s)
ds

;
dA2

PD(s)
ds2

]
s=so

= 0 (23)

From
dA2

PD(s)
ds2 = (T2

d s2 + 4Tds + 2)eTds = 0 (24)

follows the TRDP as
so = E/Td; E =

√
2− 2 (25)

where appropriate, the triple closed-loop time constant

To = −1/so = 1.707Td (26)

can be used to characterize the speed of the responses. The corresponding optimal PD
controller tuning can then be specified by the gains

Kp0 =
(10E + 6)eE

KsT2
d

=
0.079
KsT2

d
; Kd0 = −2(E + 1)eE

KsTd
=

0.461
KsTd

(27)

To compensate the dominant input disturbance caused by the gravitation force, and
leading to a significant steady-state error, a simple static feedforward can be used based on
the inverse IOSSCH, given as u f f = f−1(r), where yss = f (uss) is IOSSCH. In the simplest
case, it may be approximated by the slope K1 and the offset K2. These values can be found
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after approximating IOSSCH by straight-line dependence and determining its slope (K1)
and y-intercept (K2).

Another alternative is to use static feedforward via inversion of the measured IOSSCH
approximated by a lookup table in MATLAB/Simulink. In such a case, in the control
structure in Figure 5, the block K2 is omitted and the block K1 replaced by the inverse
IOSSCH (see Figure 6).

+

−
C(s)

+

−

+

+

Magnetic levitation plant

1−D Lookup
Table

r(t) y(t)

di(t)

Figure 6. Modified control structure with lookup table.

The corresponding step responses in Figures 7 and 8 show much faster responses than
with the first method. The steady-state control error can be eliminated by a more accurate
inverse IOSSCH approximation for lower reference signal values, extended possibly by
gain-scheduling, modifying the Km value, depending on the reference setpoint r. However,
when the circuit properties change (e.g., by increased coil temperature), the used control
structure is not able to change its properties, and a permanent error may reappear again.

Figure 7. PD controller with IOSSCH, approximated by two linear segments with K1 = 0.65 and
K2 = 1.
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Figure 8. PD controller with inverse IOSSCH approximated in 9 points of IOSSCH in Figure 2.

4.2. IMC Control of the Stabilized Plant

Based on the plant stabilized by the above PD controller, several approaches can be
proposed. From the real dominant pole and the time constant (25) and (26), it is possible to
get a stabilized closed-loop approximation

Sso(s) = −
s3

o
(s− so)3 =

1
(1 + To)3 ; so = E/Td; E =

√
2− 2; To = 1.707Td (28)

which may then be used by the IMC control structure in Figure 5 with C3(s) = 1, with the
plant model and the controller

C1(s) =
(1 + Tos)3

(1 + Tcs)3 ; C2(s) = Sso(s) =
1

(1 + Tos)3 ; To = 1.707Td (29)

represents a filtered inversion of Sso(s) with the required closed-loop time constant Tc.
Since the transfer function (28) represents just an approximation of the loop stabilized with
the PD controller, in order to get reliable results, it is necessary to choose

Tc >> To. (30)

For the model parameters (16) To = Tm/(2−
√

2) = 0.0034 s, and the choice Tc = 0.1 s,
the resulting transients in Figure 9 guarantee zero permanent control error, but with regard
to the requirement (30), they are significantly slower than when using just a stabilizing
PD controller.
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Figure 9. PD controller + IMC for K1 = 0.65 and K2 = 1.

The method could also be modified in such a way that the design of the IMC structure
would be based on the transfer functions of the stabilized circuit identified experimentally,
e.g., by using some step-response-based method.

4.3. Direct PID Controller Design

Approximation of the plant dynamics by the DIPDT model (15) with the parameters (16)
can also be used for a direct PID controller design, yielding

C(s) =
U(s)
Y(s)

= KC

(
1 +

1
TIs

+ TDs
)

(31)

To get a feasible transfer function with a satisfactory noise attenuation, it has to be
combined with a second order filter

C(s)Q2(s) =
KCTI TDs2 + KCTIs + KC

sTI

(
T2

f s2 + 2Tf s + 1
) (32)

To avoid output overshooting in step responses, the controller should be extended by
a pre-filter (see Figure 10)

N(s) =
1

TI TDs2 + TIs + 1
(33)

N(s)
+

−
C(s)Q2(s)

+

+

Magnetic levitation plant
r(t) y(t)

di(t)

Figure 10. Direct PID controller with pre-filter (33).
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To achieve uniform starting points of comparison, we again implement the design of
optimal parameters using the multiple real dominant pole method. Following [33], to get a
four-tuple real dominant closed loop pole so (time constant To)

so = −0.416/Td; To = −1/so = 2.404Td (34)

the controller parameters should be chosen as

KC =
0.125
KsT2

d

TI = 10.324 Td

TD = 4.043 Td (35)

The filter dynamics can again be considered by an equivalent delay (20). The PID
controller proportional gain KC is now significantly higher than Kp0 of PD controller (27),
which, together with increased derivative gain KD = KC ∗ TD = 0.505/(KsTd), lead to
increased sensitivity to the measurement noise and plant model imperfections of the
transients in Figure 11.

Compared to the dominant closed-loop time constant To = 1.707Td of the circuit with
PD controller, the dominant time constant To = 2.404 is now 1.41 times larger and also due
to the increased order of the dominant pole the transients will be significantly slower. Thus,
also in this situation, the comparison with a simple stabilizing PD controller shows that it
might be interesting to examine its use in combination with some alternative permanent
control error elimination, allowing achievement of faster transients, which was not possible
when using existing hardware.

Figure 11. Transients corresponding to the PID controller, according to Figure 10 with a direct PID
design based on the DIPDT model (15) with the parameters (16), and the equivalent dead-time (20)
modified to get a better approximation for lower setpoint values.

Simulation verifications show that, in order to achieve improved performance with
this design method, the sampling period should be significantly reduced.
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5. Conclusions

This paper illustrated two different approaches to the control of the magnetic levitation
plant based on different linear plant models.

The first one, based on the transfer function of the underdamped second order model,
shows a method that is very easy for use. Connection of controllers C1(s) and C2(s) to one
block would result to the weighted PID controller. The output of the presented design
procedure is the resulting controller structure, controller parameters (KC, TI , TD) as weights
of signals. The use of a more complex filter and the use of a PID controller instead of a
PI controller in the direct branch of the scheme could lead to faster transient responses.
Thereby, the position sensor properties (response time ≈ 1 V/1 ms) would act as limiting
factors of the control structure. Under control with integral action, elimination of these
limitations would only be possible by increasing the flow of information from the process
by using a shorter sampling period, which was not experimentally possible with the
existing hardware.

Similar results have been achieved by considering two alternative controllers with
integral action based on the DIPDT model, identified in [10]. Otherwise, the speed of
transients can only be increased by simpler PD control without I-action, at the cost of a
possible permanent steady-state error. Such a conclusion raises the question as to whether
the elimination of the permanent control error cannot be achieved in combination with a
stabilizing PD controller, and some other method that would not lead to such a significant
slowdown of processes.
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