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Abstract: With the increasing engineering applications of geothermal borehole heat exchangers
(BHEs), accurate and reliable mathematical models can help advance their thermal design and
operations. In this study, an analytical model with a time-dependent heat flux boundary condition
on the borehole wall is developed, capable of predicting the thermal performance of single, double,
and multiple closed-loop BHEs, with an emphasis on solar- and waste-heat-assisted geothermal
borehole systems (S-GBS and W-GBS) for energy storage. This analytical framework begins with a
one-dimensional transient heat conduction problem subjected to a time-dependent heat flux for a
single borehole. The single borehole scenario is then extended to multiple boreholes by exploiting
lines of symmetry (or thermal superposition). A final expression of the temperature distribution
along the center line is attained for single, double, and multiple boreholes, which is verified with
a two-dimensional finite-element numerical model (less than 0.7% mean absolute deviation) and
uses much lesser computational power and time. The analytical solution is also validated against
a field-scale experiment from the literature regarding the borehole and ground temperatures at
different time frames, with an absolute error below 6.3%. Further, the thermal performance of S-GBS
and W-GBS is compared for a 3-by-3 borehole configuration using the analytical model to ensure its
versatility in thermal energy storage. It is concluded that our proposed analytical framework can
rapidly evaluate closed-loop geothermal BHEs, regardless of the numbers of boreholes and the type
of the heat flux on the borehole wall.

Keywords: borehole heat exchanger (BHE); geothermal energy; solar-assisted geothermal; waste-
heat-assisted geothermal; thermal energy storage; analytical model; superposition; multiple boreholes

1. Introduction

The use of fossil fuels has profound environmental consequences. In 2020, approxi-
mately 35 billion tonnes of carbon dioxide were produced worldwide, despite the global
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pandemic and economic downturn. A rapid transformation from the fossil-fuel-dependent
energy system towards a more sustainable one based on renewable energy sources is one
of the most important challenges facing humankind. Geothermal energy is a renewable
energy source with great potential in lowering environmental impact and greenhouse gases
emissions [1]. Unlike other renewable energy sources (e.g., solar, wind, tidal), geothermal
energy can be extracted regardless of meteorological conditions, thus rendering it a stable
source of energy [2]. Worldwide applications of direct use of geothermal energy was
recently reviewed in [3,4]; some of the new trends in various kinds of geothermal systems
were listed in [5].

Numerous studies on geothermal technology have been investigated: from straight
pipes [6] to helical loops [7], from ground-based to phase-change-materials-based energy
storage [8], from energo- to exergo-technical assessments [9], and from techno-economic
evaluations to policy making [10–12]. Among all geothermal technologies, ground-source
heat pump (GSHP) systems coupled with vertical geothermal borehole heat exchangers
(BHEs) have been recognized to be one of the most energy efficient solutions for space
heating and cooling in residential and commercial buildings [13,14]. Those in a coaxial
closed-loop configuration (a.k.a., coaxial closed-loop heat exchangers) have shown great
promise as a feasible technique in deep geothermal reservoirs [15] because of larger heat
exchanging areas and better performance [16–18]. Since the working fluid is circulated from
the geothermal boreholes to the heat pump, an accurate thermal evaluation of the boreholes
is of great interest in a GSHP. The thermal analysis of geothermal boreholes cannot only
predict the energy performance of a GSHP, but also allows engineers to optimize the GSHP
design, e.g., the number of boreholes used, the depths and layout of boreholes.

There have been considerable modeling approaches to BHEs, traditionally categorized
as numerical, hybrid (or semi-analytical), and analytical methods. With the advancement
of computational technology, many BHE models were conducted by numerical methods,
particularly using the computational fluid dynamics (CFD) approach. Complex tube
design [19] and the influence of groundwater flow [20] could be considered in CFD models.
In addition, the thermal and hydraulic performance of BHEs in different diameter ratios
could be evaluated numerically, which in turn facilitated the optimal design of BHEs [21].
Khalajzadeh et al. [22] also employed a parameter optimization approach using a full three-
dimensional CFD model to find the optimum heat exchanger for a given system. Apart
from the CFD approach, the finite-element method (FEM) had also been used on GSHP
systems. A well-known computationally efficient FEM was formulated in conjunction with
the Petrov–Galerkin and finite difference methods for both steady-state [23] and transient
heat flow problems [24]. Short-term and long-term thermal performances in BHEs were
recently evaluated by a 1-D FEM framework with the internal capacity of the borehole and
the thermal resistance between the two legs of U-pipe [25]. To minimize the computational
costs in 3-D numerical models, Ozudogru et al. [26] tackled such heat flow problems by
firstly solving a 1-D domain and then extending it to a 3-D configuration via FEM.

The second methodology is the hybrid or semi-analytical approach, which removes
some restrictions in the analytical method and reduces the computational power and
time in the numerical model. g-Functions, introduced by Eskilson [27], offered a non-
dimensional relation between the heat extracted from the ground at the borehole wall
and the borehole wall temperature, thus making it fast-to-compute and practical in GSHP
analyses. A few new contributions to the original g-function were made to adapt short-
time responses [28], various boundaries [29,30], and the effect of natural convection in the
groundwater [31]. Another type of hybrid model couples analytical solution with numerical
algorithm. Recently, Cimmino and Baliga [32] developed a relatively cost-effective hybrid
method for vertical BHEs along with groundwater flow, where the numerical results
from a co-located FEM and finite volume method were marched with thermal resistance
models. The hybrid approach can also march two spatial dimensions (so-called “1+1D
algorithm”) to greatly increase the computational efficiency compared with solving a
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full-scale model. This method has been employed in solar-assisted geothermal borehole
systems for evaluating conjugate heat transfer [33].

While the numerical schemes in the numerical and hybrid models often require high
computational power and time, the analytical solution is generally easy-to-compute and
the developed closed-form final expression could be calculated instantaneously, thus
gaining a significant amount of practical interest. Most analytical models assumed an
infinite/finite line source or infinite cylindrical source as the borehole, and then exact
solutions could be found in a transient cylindrical heat conduction problem [34]. Another
type of analytical model took the assumptions of coaxial borehole heat exchangers, where
the computational domain was considered as an annular space. Several scenarios subjected
to heat flux boundaries were resolved analytically by Lamarche and Beauchamp [35,36].
As for multiple boreholes, these analytical solutions for a single borehole could be added
into a multiple boreholes configuration [37,38]. Recently, Ghoreishi-Madiseh et al. [39]
solved a one-dimensional transient heat equation in the cylindrical coordinate subjected to
a constant heat flux at the borehole and extended the solution from a single borehole to
N-by-N boreholes by the method of superposition (i.e., the use of symmetry).

This paper fills the research gaps by extending Ghoreishi-Madiseh et al.’s work [39]
to a transient heat conduction problem with a time-dependent boundary to facilitate the
engineering utility of modeling seasonal changes in thermal energy storage systems, e.g.,
solar- and waste-heat-assisted geothermal borehole systems (S-GBS and W-GBS). Such a
problem, to our knowledge, has not yet been solved analytically with an exact solution
in the literature; this work tackles such a problem by applying the Duhamel’s theorem
and superposition principle to establish a closed-form analytical solution. In this work,
we present a novel, computationally efficient, accurate, reliable analytical framework,
capable of solving transient heat transfer in N-by-N coaxial closed-loop geothermal BHEs,
with an emphasis of S-GBS and W-GBS. The analytical solution is verified with a 2D FEM
numerical model and validated against a field-scale experiment from the literature. This
paper also makes comparisons between our analytical solution and the conventional FEM
model regarding the computational time and power as well as between S-GBS and W-GBS
regarding the temperature profile.

The paper is organized as follows. In Section 2, we present our novel analytical frame-
work by outlining assumptions, formulating the problem, applying analytical treatments,
and summarizing the final expressions. Modeling procedures for S-GBS and W-GBS along
with the numerical model used for verification are explained in Section 3. We present and
discuss our results in Section 4, including model verification, validation, and comparisons
between S-GBS and W-GBS. Lastly, we conclude with our main findings and suggest some
future works in Section 5.

2. Analytical Methods

In a conventional geothermal borehole system (GBS), the BHEs are installed vertically
under the ground extracting thermal energy into a heat storage tank, which is then used
for spacing heating or other usages. However, in a S-GBS or W-GBS, solar power or waste
heat also generates heat and the heat is transported into the heat storage tank as an energy
input. In the summer, excess heat can be stored in the ground using the BHEs; in the
winter, the stored heat can be extracted for energy use. This process is schematically
demonstrated in Figure 1a). When considering a geothermal system with coaxial closed-
loop heat exchangers, several borehole arrangements can be categorized: single borehole,
double boreholes, and multiple boreholes (including 3-by-3 and N-by-N configurations), as
schematically shown in Figure 2. For mathematical simplification and engineering utility,
the following assumptions are undertaken:

(1) The distance between neighboring boreholes, d [m], are equal in each scenario.
(2) The boreholes are symmetrically located at the center of the domain (i.e., coaxial heat

exchangers).
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(3) The effect of the axial direction in the geothermal system is ignored, which reduces
the model to a two-dimensional system in the x- and y-coordinates.

(4) The conductor pipe in the casing usually has a high thermal conductivity, thus
making its thermal resistance negligible.

(5) The cement/grout filled in the casing assumes to have the same order of magnitude
as the ground in terms of thermophysical properties, so there is no need to consider
the cement separately from the ground.

(6) Thermophysical properties of the grout are assumed to be constant, since the tem-
perature variation gives minimal influences on the properties.

Further, a step-by-step summary of the analytical framework is demonstrated in
Figure 3a), which will be thoroughly explained in the following subsections.

Solar

Waste
Heat

Heat Storage
Tank

Space Heating

Geothermal 
Boreholes

𝑟

−𝑘 ቤ
𝜕𝑇

𝜕𝑟
𝑟=𝑎

= 𝑞0𝑓(𝑡)

𝑇 𝑟 = 𝑏, 𝑡 = 𝑇0

𝑇 𝑟, 𝑡 = 0 = 𝑇0

A single borehole configuration with boundary and initial conditions.

a)

b)

Heat storage (summers)

Heat extraction (winters)

Figure 1. Schematic diagram of (a) a S-GBS or W-GBS; and (b) a single borehole system with boundary
and initial conditions.
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𝑁

Figure 2. Schematic diagram of different scenarios of borehole systems: (a) single borehole; (b) double
boreholes; (c) 3-by-3 boreholes; and (d) N-by-N boreholes.

2.1. Problem Formulation

We begin with solving a single borehole scenario, as schematically shown in Figure 1b).
In this case, a one-dimensional cylindrical heat conduction model can represent the problem
with a governing equation as follows:

∂2T
∂r2 +

1
r

∂T
∂r

=
1
α

∂T
∂t

, (1)

where T is the ground temperature (K), r is the radial coordinate (m), t is the time (s), and
α is the thermal diffusivity of the ground (m2/s). Here, the spatial and temporal domains
are a < r < b and t > 0, respectively. a is the inner radius (m) and b is the outer radius (m).
This heat conduction problem is subjected to the following boundary conditions and initial
condition:

−k
∂T
∂r

∣∣∣∣
r=a

= q0 f (t),

T(r = b, t) = T0,

T(r, t = 0) = T0,

(2)

where k and T0 are the thermal conductivity (W/(m·K)) and temperature at the initial and
outer boundaries (K), respectively. The initial (and outer) temperature T0 is also seen as
the undisturbed temperature of the ground (K). The heat flux boundary is expressed as
q0 f (t) that can be any function of time t, where q0 represents a constant heat flux (W); if f
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does not depend on time (i.e., f (t) = 1), then the boundary reduces to a constant heat flux
condition, −k(∂T/∂r)r=a = q0.

a) Analytical framework b) Computation

Step 1: Formulate a 1-D 
transient heat conduction 
problem (see Eqs. (1-2))

Step 2: Non-dimensionalize the 
problem by Eq. (3)

Step 3: Find the exact solution 
via the method of superposition 
and Duhamel’s theorem (see 
Eqs. (9-10))

Step 4: Extend the single 
borehole solution to a multi-
borehole case via thermal 
superposition (see Eqs. (11-14))

Start

End

Input parameters (incl., 
𝑎, 𝑏, 𝑑, 𝑘, 𝑐𝑝, 𝜌, 𝛼, 𝑇0, 𝑞0, 𝑓(𝑡))

Compute the exact solution to a 
single borehole (incl., 𝜆𝑛, 𝐶𝑛)

Compute the multi-borehole 
solution (e.g., Eqs. (13-14))

Figure 3. Flow chart of: (a) the presented analytical framework and (b) its computation.

2.2. Dimensionless Analysis

Prior to conducting mathematical treatments, it is essential to bring the dimensional
problem to a non-dimensional form for the purpose of generalization and simplification.
We introduce the following dimensionless variables and parameters:

ξ =
r
a

, β =
b
a

, θ =
T − T0

q0a/k
, τ =

αt
a2 . (3)

The dimensionless problem is therefore expressed as:

∂2θ

∂ξ2 +
∂θ

∂ξ
=

∂θ

∂τ
,

∂θ

∂ξ

∣∣∣∣
ξ=1

= − f (τ) = F(τ),

θ(β, τ) = 0,

θ(ξ, 0) = 0.

(4)

Note that f (τ) is the dimensionless form of f (t) and the negative sign carries from the
left-hand side; together, they are denoted as F(τ) for simplicity. Since one of the boundary
conditions depends on time, the method of separation of variables cannot be directly
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applied. Alternative approaches are required to convert the time-dependent boundary to a
constant one.

2.3. Use of Duhamel’s Theorem

A remedy to deal with linear partial differential equations (e.g., heat equations) sub-
jected to a non-homogeneous time-dependent boundary and/or heat generation is the use
of Duhamel’s theorem. The main thrust of this theorem is to solve an auxiliary problem
with a time-independent condition reduced from the original formulation, and then inte-
grate it over a desired time interval. This integration term is also known as the Duhamel’s
superposition integral. The exact solution to our problem by using the Duhamel’s theorem
is expressed as:

θ(ξ, τ) =
∫ τ

τ̃=0
F(τ̃)

∂Φ(ξ, τ− τ̃)

∂τ
dτ̃, (5)

where Φ(ξ, τ) is the temperature function in the auxiliary problem and τ̃ is the time
integration variable.

First, the corresponding auxiliary problem is given by:

∂2Φ
∂ξ2 +

∂Φ
∂ξ

=
∂Φ
∂τ

,

∂Φ
∂ξ

∣∣∣∣
ξ=1

= 1,

Φ(β, τ) = 0,

Φ(ξ, 0) = 0.

(6)

As can be seen, the time-dependent boundary condition is now a constant flux con-
dition. An exact solution is available by the method of superposition consisting of a
transient homogeneous partial differential Equation (PDE) and a steady-state second-order
ordinary differential Equation (ODE). In fact, this is the same problem as the one sub-
jected to a constant heat flux studied in [39]. Employing the method of superposition, we
let Φ(ξ, τ) = ΦH(ξ, τ) + ΦSS(ξ), where ΦH(ξ, τ) is the transient part and ΦSS(ξ) is the
steady-state term. Consequently, we can obtain the solution to the auxiliary problem as
follows:

Φ(ξ, τ) =
∞

∑
n=1

Cn

[
J0(λnξ)Y0(λnβ)− J0(λnβ)Y0(λnξ)

]
× exp(−λ2

nτ) + ln
ξ

β
, (7)

where the eigenvalues λn and the corresponding eigencoefficients Cn are found as:

J1(λn)Y0(λnβ)− J0(λnβ)Y1(λn) = 0, n = 1, 2, 3, ...

Cn =

∫ β
ξ=1− ln(ξ/β)ξ[J0(λnξ)Y0(λnβ)− J0(λnβ)Y0(λnξ)]dξ∫ β

ξ=1 ξ[J0(λnξ)Y0(λnβ)− J0(λnβ)Y0(λnξ)]2dξ
.

(8)

Last, the exact solution of θ by the Duhamel’s theorem is calculated by substituting Φ
into Equation (5). The final expression of θ is

θ(ξ, τ) =
∞

∑
n=1
−Cnλ2

n exp(−λ2
nτ)×

[
J0(λnξ)Y0(λnβ)− J0(λnβ)Y0(λnξ)

]

×
∫ τ

τ̃=0
F(τ̃) exp(λ2

nτ̃)dτ̃,

(9)

where the eigenvalues λn and eigencoefficients Cn are given in Equation (8). It is worth-
while mentioning the computation of λn and Cn, since the number of terms and precision
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computed can affect the computational cost and accuracy. The choice of the number and
precision of eigenvalues is an iterative process and depends on the problem geometry β.
Generally, a rule-of-thumb procedure is to compute more eigen-terms and higher precision
and to ensure that the overall temperature solution remains the same.

Another remark is the computation of the integration term,
∫ τ
τ̃=0 F(τ̃) exp(λ2

nτ̃)dτ̃. If
the prescribed boundary f (t) is a smooth function, e.g., sinusoidal functions, then this
integration term can be simplified analytically; however, if f (t) is taken as discrete data
points over time, then a numerical integration is required, which can be seen as a versatile
approach for engineering applications. With modern programming environments, such
numerical integration costs very little computational time and power. The final expression
of dimensionless temperature θ(ξ, τ) in Equation (9) can also be readily transformed into
its dimensional form T(r, t) as follows:

T(r, t) = T0 +
q0a
k

θ(ξ, τ). (10)

2.4. Use of Symmetry: From Single to Multiple Boreholes

Our developed solution for a single borehole can be extended to multiple boreholes
by summing up each and every borehole (a.k.a., thermal superposition), as long as the
borholes are placed in a symmetrical configuration, as seen in Figure 2. Note that “thermal
superposition” should not be confused with the “method of superposition” in Section 2.3: the
former is to add the thermal contribution of each borehole, and the latter is the summation
of transient and steady-state parts of a PDE to remove its non-homogeneity. The thermal
superposition is generally expressed as:

Ttotal =
Ntotal

∑
i=1

Ti = T1 + T2 + T3 + ... + TNtotal , (11)

where Ttotal is the temperature distribution for a total of Ntotal boreholes. Ti represents the
temperature of the i-th borehole; the determination of each borehole is based on both the
general solution, Equation (10), and its location. In this way, the 1D radial temperature
solution for a single borehole builds up a 2D solution for multiple boreholes.

Recall that a few arrangements of boreholes are studied as shown in Figure 2: single
borehole, double boreholes, and multiple boreholes (3-by-3 and N-by-N configurations.
Setting 3-by-3 boreholes as an example here). In this study, we are particularly interested
in calculating the temperature profile along the center line at y = 0, which is equivalent
to the line at x = 0 due to its symmetry. That is, Ttotal(x, y = 0, t). Ttotal is denoted as the
temperature profile of all boreholes in the domain.

When there is only one borehole in the system, the total temperature profile along the
center line is mirrored at x = 0. Our previously calculated 1-D radial transient temperature
solution can be readily implemented as follows:

Ttotal(x, y = 0, t) = T1(r = x, t), (12)

where the subscript 1 indicates the first and the only borehole in this scenario.
The case of double boreholes means that two boreholes are placed at the center of the

domain with a distance of d apart. The total temperature profile along the center line can
be calculated by summing the 1D radial transient temperature solution for each borehole:

Ttotal(x, y = 0, t) = T1(r = x +
d
2

, t) + T2(r = x− d
2

, t). (13)

When more than two boreholes are present in the system (e.g., four or nine boreholes),
there will be boreholes above and below the center line contributing Ttotal . Consequently,
the Pythagorean theorem needs to be applied for examining the correct radial distance
from the upper and lower boreholes. In the case of nine boreholes, we find:
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Ttotal(x, y = 0, t)

=T1(r =
√

d2 + (x + d)2, t) + T2(r =
√

d2 + x2, t) + T3(r =
√

d2 + (x− d)2, t)

+ T4(r = x + d, t) + T5(r = x, t) + T6(r = x− d, t)

+ T7(r =
√

d2 + (x + d)2, t) + T8(r =
√

d2 + x2, t) + T9(r =
√

d2 + (x− d)2, t)

=2×
[

T1(r =
√

d2 + (x + d)2, t) + T2(r =
√

d2 + x2, t) + T3(r =
√

d2 + (x− d)2, t)
]

+ T4(r = x + d, t) + T5(r = x, t) + T6(r = x− d, t).

(14)

The boreholes are labeled from the top left corner to the bottom right corner, one
row after another. Since the top boreholes (No. 1, 2, 3) and bottom boreholes (No. 7, 8, 9)
contribute to the center-line temperature in the same manner, we can double the top ones
for simplicity, as expressed in Equation (14).

It is rather clear to observe that the closed-form analytical solutions to single, double,
and multiple GBS have simple algebraic expressions, without any requirement of temporal
and spatial iterations that usually appear in numerical models. As seen in Equation (13)
and Equation (14), increasing the number of boreholes only adds more terms in the thermal
superposition, which can be rapidly computed and do not add much computational time
or power.

3. Model Development
3.1. S-GBS Models

Solar-assisted geothermal borehole systems (S-GBS) were modeled by using the MAT-
LAB R2021b programming language. The code followed closely with the analytical meth-
ods developed previously in Section 2 and summarized in Figure 3. In particular, the
computation of a S-GBS was shown as follows:

(i) Prescribe geometry, thermophysical properties, and time-dependent heat flux bound-
ary of S-GBS;

(ii) For a single borehole case, compute the exact solution, as expressed in Equation (10),
to a 1-D radial transient cylindrical heat conduction problem subjected to a time-
dependent heat flux boundary; and

(iii) For the multiple boreholes case, compute the thermal superposition solution based on
Equation (11) after step (ii). The scenarios of double and 3-by-3 boreholes at the center
line were given in Equations (13) and (14), respectively.

The geometrical and thermophysical parameters required in the model were listed
in Table 1, consistent with the values in [39]. On the other hand, the time-dependent
boundary for the S-GHS was typically seen as a sinusoidal function varying from 20 (W/m)
to −10 (W/m) over a year period. For one unit depth, this boundary was graphed by the
red solid line in Figure 4 and it was expressed as

q = −k
∂T
∂r

= q0 f (t) = A0 +
2

∑
n=1

(
An cos(nwt) + Bn sin(nwt)

)
, (15)

where q0 = 1 and the constants in the Fourier series were: A0 = 3.574, A1 = 14.95,
B1 = −1.389, A2 = 1.478, B2 = −0.2771, w = 1.96× 10−7. Note that all the variables are
in SI units for consistency.
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Table 1. Prescribed geometrical and thermophysical parameters of the ground. The listed values of
parameters are consistent with the work [39].

Parameter Value Unit

Inner radius, a 0.05 m
Outer radius, b 50 m
Distance between neighboring boreholes, d 10 m
Specific heat, cp 1000 J/(kg·K)
Thermal conductivity, k 1.5 W/(m·K)
Mass density, ρ 2500 kg/m3

Thermal diffusivity, α 5× 10−7 m2/s
Undisturbed temperature, T0 283.15 K

0 50 100 150 200 250 300 350 400

Time, t (d)

-10

-5

0

5

10

15

20

H
e

a
t 

tr
a

n
s
fe

r 
ra

te
, 

q
 (

W
)

Figure 4. Heat transfer rate q (W) over a year period t (d) for seasonal energy storage in: solar-assisted
geothermal borehole systems (S-GBS) and waste-heat-assisted geothermal borehole systems (W-GBS).

3.2. W-GBS Models

Waste-heat-assisted geothermal borehole systems (W-GBS) were modeled under
the same programming environment and procedure as the S-GBS, except for the time-
dependent heat flux boundary. The charging process W-GBS was driven by regenerative
burner mechanism, providing a constant heat source throughout the cold seasons. Dur-
ing the warm seasons, the W-GBS discharged the stored heat in the same way as the
S-GBS. These charging and discharging processes in W-GBS led to a piece-wise function as
demonstrated in Figure 4 and the piece-wise boundary condition was written as

q = −k
∂T
∂r

= q0 f (t) =

A0 + ∑2
n=1

(
An cos(nwt) + Bn sin(nwt)

)
, t1 ≤ t ≤ t2

20, 0 < t < t1 or t2 < t < t3

(16)

where t1, t2, t3 were time thresholds to separate the charging and discharging processes.
Their values were found to be 8.17× 106, 2.36× 107, 3.15× 107, respectively.

3.3. Numerical Models

To verify the developed analytical solution, a two-dimensional numerical model was
built via a commercial finite-element code (COMSOL Multiphysics 5.6). The transient heat
Equation (1) subjected to the initial and boundary conditions in Equation (2) was solved
by the finite-element method. All the parameters involved in the numerical simulation
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remained the same as the ones in the analytical model, as listed in Table 1; two kinds of
heat flux boundaries were expressed in Equation (15) for S-GBS models and Equation (16)
for W-GBS models. Further, unstructured meshes are used to discretize the computational
domain and a mesh independency study is conducted for the three borehole arrangements.
The details can be found in Appendix A.

All the above-mentioned three scenarios shown in Figure 2 were studied over a one-
year time simulation for demonstrating seasonal changes, i.e., t = 1 (yr), with a uniform
time step of 1 (h). For each borehole scenario, temperature distributions over the line y = 0
were recorded at four seasons. That is, spring at t = 3 (mon), summer at t = 6 (mon), fall
at t = 9 (mon), and winter at t = 12 (mon).

4. Results and Discussion
4.1. Model Verification

The developed analytical geothermal borehole model is verified with the numerical
results computed by COMSOL. A typical yearly sinusoidal function for seasonal energy
storage is prescribed to be the time-dependent boundary condition of an example of
geothermal borehole systems; this boundary condition is written as

q = −k
∂T
∂r

= q0 f (t) = −10× sin
(

π

15,768,000
t− π

2

)
, (17)

where q0 is set to be −10 (W) and f (t) is a sine function. The remaining input parameters,
such as thermophysical and geometrical properties, are listed in Table 1. Three borehole
configurations are computed in both analytical and numerical methods for verification
purposes in the following subsections.

4.1.1. Single Borehole

For the single borehole problem, the temperature distribution over the x-coordinate
over four seasons are plotted in Figure 5. The analytical results have an excellent agreement
with the numerical data; in particular, the mean absolute deviation (MAD) between the
analytical and numerical temperatures (Tanalytic and Tnumeric) over the x-coordinate with a
set of m number of data points can be expressed as:

MAD =
1
m

m

∑
i=1

∣∣∣∣Tanalytic,i − Tnumeric,i

∣∣∣∣. (18)

Based on the four seasons computed in Figure 5, the MAD is found to be minimal
falling within the range of 0.0428% to 0.4677%. Meanwhile, the changes in each season are
captured, which implies the effect of the time-dependent heat flux. Since the undisturbed
temperature (T0) is at 10 ◦C, the temperature above and below T0 near the borehole
represents the heat supply and extraction over the seasons. In other words, the charging and
discharging processes are illustrated in solar-geothermal energy systems. Such temperature
differential can convert into energy quantitatively, thus greatly benefiting the economic
potential of geothermal systems.
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Figure 5. Temperature distribution over the x-coordinate (i.e., the line y = 0) for a single borehole
over four seasons: (a) Spring (t = 3 (mon)); (b) Summer (t = 6 (mon)); (c) Fall (t = 9 (mon)); and
(d) Winter (t = 12 (mon)). The analytical solution is given by the red solid line and the numerical
solution is given by the blue dashed line.

4.1.2. Double and 3-by-3 Boreholes

As per the double boreholes and 3-by-3 boreholes, the temperature profiles are shown
in Figures 6 and 7, respectively. A similar agreement of temperature between the analytical
and numerical data is found: the MAD range is 0.0568∼0.6115% for double boreholes
and 0.0678∼0.6957% for 3-by-3 boreholes. Therefore, there is no significant deviation with
numerical data when analytically extending the single borehole into multiple boreholes.
The same evolution of temperature is also observed in the multiple boreholes case over four
seasons, which leads to a consistent heat supply and extraction processes. It is worthwhile
mentioning that the temperature distributions between the neighboring boreholes are well
predicted in both cases compared with the numerical results. This agreement represents
the success of symmetrical analysis conducted previously in the methodology.

4.1.3. Computational Efficiency

When computing the analytical and numerical models, we find that the analytical
computational efficiency (including time and power) is significantly less than the numerical
counterpart in all borehole configurations. For the yearly simulation of the geothermal
borehole system, the analytical solution (via MATLAB R2021b) takes approximately 6.74 s,
8.46 s, and 9.05 s for the single borehole, double boreholes, and 3-by-3 boreholes, re-
spectively. This analytical algorithm is implemented in a workstation (laptop) of 4 cores,
8 logical processors, and 8 GB of RAM. In contrast, the numerical model built by COMSOL
needs 171 s, 262 s, and 507 s in each borehole configuration, respectively, for the same yearly
simulation, which is computed under a high performance computing (HPC) workstation
using parallel computing with 32 CPUs and 2 GB memory per CPU (64 GB in total). The
computational comparison between the analytical and numerical models is demonstrated
in Figure 8. It is rather clear to see that our analytical model requires 4∼8 times less of the
computational power (regarding both CPUs and total memory) and 24∼55 times less the
computational time than the conventional numerical approach.
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Figure 6. Temperature distribution over the x-coordinate (i.e., the line y = 0) for double boreholes
over four seasons: (a) Spring (t = 3 (mon)); (b) Summer (t = 6 (mon)); (c) Fall (t = 9 (mon)); and
(d) Winter (t = 12 (mon)). The analytical solution is given by the red solid line and the numerical
solution is given by the blue dashed line.
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Figure 7. Temperature distribution over the x-coordinate (i.e., the line y = 0) for 3-by-3 boreholes
over four seasons: (a) Spring (t = 3 (mon)); (b) Summer (t = 6 (mon)); (c) Fall (t = 9 (mon)); and
(d) Winter (t = 12 (mon)). The analytical solution is given by the red solid line and the numerical
solution is given by the blue dashed line.
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Figure 8. Comparison of computation between the analytical and numerical models.

Another finding is that the computational cost of the numerical model is significantly
greater in going from the single to multiple boreholes, yet the analytical solution is not.
This is credited to the fact that the analytical solution is done by the linear interpolation
in the multiple borehole systems after the exact solution to a single borehole problem is
completed. The 2-D numerical model, on the other hand, requires more mesh elements
as the number of boreholes increases, and the mesh and time independency studies are
needed extensively for each case.

4.2. Model Validation

In addition to the verification with the numerical results, the analytical model is also
validated against the experimental data from the literature. Recently, Pokhrel et al. [40]
conducted a field-scale experiment of a 500 m coaxial borehole heat exchanger system, and
the in situ ground temperature was measured over time. To proceed with the validation
against this field-scale experiment, the properties (related to the geometry and thermal
physics) and the borehole heat flux are both necessary for the input of our developed
analytical model. Firstly, consistent geometrical and thermophysical properties of the
ground and working fluid (i.e., water) are prescribed in the analytical model, as listed
in Table 2. It is noted that the analytical model only requires the specific heat of the
working fluid to calculate the borehole heat flux, and thus there is no need to present
other properties in the table here. Secondly, the borehole heat flux is calculated by q =
ṁcp,water(Toutlet − Tinlet)/L, where ṁ is the mass flow rate of the water (1.66 kg/s here),
L is the depth (using 250 m since the top half of the borehole is covered by the grout
with a relatively high thermal resistance), and Tinlet and Toutlet are the inlet and outlet
temperatures (Tinlet = 70 ◦C and Toutlet is interpolated over time). The borehole heat flux
is, therefore, expressed as q = 7.309× 104t−0.4679 + 713.4.
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Table 2. Prescribed geometrical and thermophysical parameters of the ground and working fluid
(water). The listed values of parameters are consistent with the work [40].

Parameter Value Unit

Inner radius, a 0.0889 m
Outer radius, b 50 m
Specific heat (ground), cp,ground 1100 J/(kg·K)
Specific heat (water), cp,water 4182 J/(kg·K)
Thermal conductivity (ground), kground 2 W/(m·K)
Mass density (ground), ρground 2490 kg/m3

Thermal diffusivity (ground), αground 7.3019× 10−7 m2/s
Undisturbed temperature, T0 463.01 K

Figure 9 shows the validation results regarding the temperature profile at a 400-m
depth for four measuring days: the 6th, 11th, 16th, and 21st days. The field-scale experiment
has two spatial measurements: one at the borehole (x =| a |), and another one at 2.5 m
away (x = ±2.5 m). It is rather clear that the developed analytical solution is capable
of predicting the temperature around the boreholes with a great validation against the
field-scale experiment. The MAD between the analytical solution and the experimental
data (here it can be also called the absolute error) is found to be within the range of
0.4727%∼6.2952%.
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Figure 9. Comparisons between the analytical model and the field-scale experimental data from [40]
regarding the temperature profile at a depth of 400 m.

4.3. Comparison between S-GBS and W-GBS

For S-GBS and W-GBS, a comparison is made by computing the 3-by-3 boreholes and
the boundary conditions are given by Equations (15) and (16). In this scenario, the charging
process is found to be different between the two systems, as shown during the spring and
winter seasons in Figure 10. The contrast is particularly significant in the spring, where the
near-borehole temperature in W-GBS is around 12% higher than the one in S-GBS. This is
caused by the fact that the prescribed time-dependent boundary in W-GBS maintains at a
constant heat transfer rate, rather than sinusoidal pattern, throughout the charging period.
Although the predefined boundaries are taken in a seasonal resolution (S-GBS at a higher
time resolution can have daytime/nighttime fluctuations in colder seasons [33,41]), this
comparison still views the energy supply and demand in the two systems. As a result, the
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W-GBS can generally require more energy input than the S-GBS in terms of the charging
process.

As for the discharging time of the year, both systems demonstrate similar behaviors.
A slight temperature distribution around the boreholes is observed during summer and
fall in Figure 10, which can be explained by the energy residue after the charging process
for the W-GBS. Such energy residue is accumulated near each borehole, and it takes time to
be distributed to surroundings even after the charging period.
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Figure 10. Temperature distribution over the x-coordinate (i.e., the line y = 0) for 3-by-3 boreholes
over four seasons: (a) Spring (t = 3 (mon)); (b) Summer (t = 6 (mon)); (c) Fall (t = 9 (mon)); and
(d) Winter (t = 12 (mon)). The S-GBS is given by the red solid line and the W-GBS is given by the
green dashed line.

5. Conclusions

The time-dependent boundary condition is of great interest to geothermal borehole
systems (including S-GBS and W-GBS), and the corresponding problem in multiple bore-
holes has profound applications in geothermal borehole systems. This paper proposed an
analytical framework of a transient heat conduction problem subjected to a time-dependent
boundary from a single borehole to multiple boreholes. The following conclusions and
future recommendations were suggested.

(i) The closed-form analytical solution developed here is verified with a 2-D FEM numeri-
cal model (having a mean absolute deviation of below 0.7% in all borehole scenarios) as
well as validated against a field-scale experiment in the literature (having an absolute
error of below 6.3%) to ensure its accuracy and reliability.

(ii) The analytical solution is much more computationally efficient to be computed than
numerical models, requiring 4∼8 times less computational power and 24∼55 times
less computational time.

(iii) The analytical framework is capable of evaluating the ground temperature in GBS
with any time-varying boundary, regardless the number of boreholes. Case studies for
S-GBS and W-GBS are also conducted.

(iv) It was recommended that future studies could consider: the optimal design of borehole
spacing and the number of boreholes used; and the economic assessment of such
system from the energy demand/supply.
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Appendix A. Mesh Type and Mesh Independency Study in the Numerical Models

The unstructured mesh is used to discretize the computational domain, with a re-
finement near the borehole due to its geometry and the prescribed heat flux boundary
condition. The mesh independency study for the 2-dimensional numerical model is also
conducted. To ensure the appropriate number of mesh elements, five different mesh counts
are selected from coarse to fine as listed in Table A1 and demonstrated in Figure A2.

Table A1. Number of mesh elements for various borehole arrangements and mesh refinements.

Single Borehole Double Boreholes 3-by-3 Boreholes

Extra coarse 220 372 1580
Coarse 692 1056 4293

Fine 2012 3162 10,832
Extra fine 9516 12,290 31,578

Extremely fine 33,834 41,244 93,672
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Figure A1. Temperature distribution over the x-coordinate (i.e., the line y = 0) for single, double,
and 3-by-3 boreholes in spring (t = 3 (mon)) for different mesh counts.

Figure A1 shows the temperature distribution over the x-coordinate (i.e., the line y = 0)
for single, double, and 3-by-3 boreholes in spring (t = 3 (mon)) with the five numbers of
mesh elements. As can be seen, inconsistent results are found in the three coarser mesh
counts (that is, extra coarse, coarse, and fine), particularly in the single borehole scenario.
However, the temperature distribution of all the three borehole arrangements remains
the same while discretizing the domain with the two finer meshes (that is, extra fine and
extremely fine). As a consequence, the extra fine option is selected to be the optimal mesh
count for this study.
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Figure A2. Unstructured mesh scenarios used: extra coarse, coarse, fine, extra fine, extremely fine
(from up to bottom); single borehole, double boreholes, 3-by-3 boreholes (from left to right).
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