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Abstract: AIS (Automatic Identification System) is an effective navigation aid system aimed to realize
ship monitoring and collision avoidance. Space-based AIS data, which are received by satellites,
have become a popular and promising approach for providing ship information around the world.
To recognize the types of ships from the massive space-based AIS data, we propose a multi-feature
ensemble learning classification model (MFELCM). The method consists of three steps. Firstly, the
static and dynamic information of the original data is preprocessed and features are then extracted in
order to obtain static feature samples, dynamic feature distribution samples, time-series samples,
and time-series feature samples. Secondly, four base classifiers, namely Random Forest, 1D-CNN
(one-dimensional convolutional neural network), Bi-GRU (bidirectional gated recurrent unit), and
XGBoost (extreme gradient boosting), are trained by the above four types of samples, respectively.
Finally, the base classifiers are integrated by another Random Forest, and the final ship classification
is outputted. In this paper, we use the global space-based AIS data of passenger ships, cargo ships,
fishing boats, and tankers. The model gets a total accuracy of 0.9010 and an F1 score of 0.9019.
The experiments prove that MFELCM is better than the base classifiers. In addition, MFELCM
can achieve near real-time online classification, which has important applications in ship behavior
anomaly detection and maritime supervision.

Keywords: space-based AIS; ship classification; integrated learning; data mining

1. Introduction

Maritime transportation represents approximately 90% of global trade by volume [1],
and more than 50,000 ships are sailing in the ocean every day [2]. As the number of ships
continues to grow, the safety of maritime traffic is becoming an increasingly important issue.
To strengthen maritime traffic supervision, the International Maritime Organization (IMO)
has required the Automatic Identification System (AIS) to be fitted to all Class A ships [3].
AIS is a new type of navigation aid system that is used to achieve identification, positioning,
and collision avoidance among ships, and has 27 types of messages (from message1 to
message27) covering dynamic information, static information, voyage information, and
safety information [4]. The traditional shore-based AIS covers about 40 nautical miles
and the inter-ship communication range is about 20 nautical miles [5]. To achieve global
coverage of AIS data, AIS receivers have been put onto satellites, creating space-based AIS.

Among all of the messages in AIS data, message5 contains the ship type field, but
the type file can be missing, either because it has been set to the default value or filled
in incorrectly. There are many ships with unknown types in space-based AIS data. For
instance, after matching the type field in the static data (i.e., message5, which contains the
static information of ships) received by four satellites (i.e., the ocean satellites HY1C/D
and HY2B/C) with the dynamic data received by HY-2B (i.e., message1, which contains
the dynamic information of ships) from 1 November 2019 to 21 April 2020, approximately
33% of the ships in message1 have unknown types, the distribution of which are shown
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in Figure 1. Furthermore, these ships broadcast few message5, which makes it difficult
to identify their types through message5. Except for the problem of the types of ship
being unknown, the types of ships may be mislabeled for various reasons [6,7], which
often relate to violations, such as smuggling and illegal fishing [8]. These security and law
enforcement issues put forward higher requirements for maritime traffic supervision. If
ship types can be obtained from historical AIS data, the corresponding prior knowledge
of a certain type of ship can be used for maritime traffic management. Thus, accurate
identification of ship type is helpful in enhancing the maritime situational awareness of the
related departments and is of great value in various areas, such as maritime surveillance,
camouflage identification, ship behavioral pattern mining, and anomaly detection.
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Existing ship classification methods, based on AIS data, generally consider static and
dynamic information.

For static information, Damastuti et al. [9] use KNN (K-NearestNeighbor) to classify
ships based on tonnage, length, and width in Indonesian waters and achieved an accuracy
of up to 0.83 on six categories. Zhong et al. [10] use Random Forest for static information
and achieve an accuracy of 0.865 on a three-classification task.

For dynamic information, Hong et al. [11] study the ships near the Ieodo Marine Re-
search Station, and infer ship types by comparing the flag state of ships and the distribution
of their corresponding trajectories with those of type-unknown ships. David et al. [12] use
decision trees to identify fishing boats and achieve an accuracy of 0.8 and an F1 score of 0.7.
Moreover, through conducting comparative experiments, they attempt to extract motion
features as possible data. Sheng et al. [13] extract the COG (course over ground), ROT (rate
of turn), and global features of vessels in the sea near Shantou, China, and use logistic
regression to distinguish fishing and cargo vessels, achieving an accuracy of 0.923. Liang
et al. [14] propose a multi-view feature fusion network that combines the CAE (convolu-
tional auto-encoder) and the Bi-GRU (bidirectional gated recurrent unit) network to classify
ships. They realize an accuracy of 95.51% and 94.24% in Luotou Channel and Qiongzhou
Strait, respectively. Ginoulhac et al. [15] extract the statistical features from each temporal
variable of AIS data, and the features are then input into a Gradient Boosting classifier; their
method has an accuracy of 0.86. Xiang et al. [16] use p-GRUs (Partition-wise Gated Recur-
rent Units) to achieve the recognition of trawlers with an accuracy of 0.89. Another similar
approach is presented in [17], which uses RNN (recurrent neural network) to classify five
types of ships, with an accuracy of 0.783. In addition, some methods combine dynamic and
static features. Kraus et al. [18] extract geographical distribution features, motion features,
time of start/stop, and the static shape features of vessels from AIS data from German
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Bight and achieve an accuracy of 0.9751 on a five-classification task—however, the method
has a data leakage problem. Kim et al. [19] integrate the vessel’s course change, speed, and
environmental information (i.e., tide, light, and water temperature) to identify six types of
fishing vessel activities in the waters around Jeju Island, achieving an accuracy of 0.963.

However, there still exists some disadvantages in the methods mentioned above, and
they are summarized as follows.

• In some studies, only dynamic or static features are used for ship classification. As
such, the utilization of multiple characteristics of ships is lacking, and the dynamic
features are mainly set manually and empirically.

• Most of the existing studies use shore-based data which is usually distributed in a
small area, for which the ship trajectories and motion features are restricted. For
example, in inland rivers or ports, the ships’ position, speed, and direction are subject
to limitations associated with the navigation channels, leading to an insufficient
generalization ability of the classifier. Moreover, there is a lack of methods applicable
to worldwide ship classification.

• The characteristics of space-based AIS data are different from those of shore-based
data. Due to the limited number of satellites and the AIS signal conflict, global real-
time coverage of AIS cannot currently be achieved. The continuity of space-based AIS
data is weak, and there are few long-term ship trajectories with high continuity. The
existing ship classification method may not be suitable for space-based AIS data.

• The classification number of ships in some researches is few, the differences between
ships of different types are obvious, and the binary classification methods have limited
application value.

• When splitting the sub-trajectories set, some researchers do not specifically distinguish
the sources of sub-trajectories, which causes data from the same ship to appear in the
training sets, validation sets, and testing sets. This data leakage problem will lead to
the performance of the classifiers being overestimated.

To solve the problems outlined above, this paper proposes a multi-feature ensemble
learning classification method (MFELCM) that integrates ships’ static and dynamic infor-
mation. The method applies to the global range of satellite-based AIS data. The detailed
process of MFELCM is shown in Figure 2, which consists of three steps. In the first step, the
original data are preprocessed, and the cleaned static and dynamic data are then converted
into static feature samples, dynamic feature distribution samples, time-series samples,
and time-series feature samples. In the second step, four base classifiers, namely Random
Forest [20], 1D-CNN (one-dimensional convolutional neural network) [21], Bi-GRU, and
XGBoost (extreme gradient boosting) [22], are trained by the samples above. In the third
step, another Random Forest is applied in order to integrate the base classifiers as MFELCM.
The main contributions of this paper are as follows.

• A multiple-perspectives method of ship feature description is proposed in order to
extract the dynamic and static features of ships from space-based AIS data.

• We propose the method to segment trajectories and split the data set by MMSI (Mar-
itime Mobile Service Identity). The latter avoids the data leakage problem during the
classifier training process.

• The proposed MFELCM, fusing the static and dynamic information, is suitable for
the global wide space-based AIS data, which can update the type prediction with
the continuous input of AIS data and achieve near real-time online classification.
MFELCM can be applied in detecting the abnormal behaviors of ships and, thus, can
enhance the capability of maritime supervision.

• The model parameters of MFELCM are determined by experiments, and it is verified
that MFELCM outperforms the base classifiers. Moreover, when there are insufficient
samples for a certain base classifier (e.g., dynamic feature distribution samples), the
degraded MFELCM, integrated with the remaining base classifiers, can also achieve
acceptable classification accuracy, which extends the application scope of MFELLCM.
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The rest of this paper is organized as follows. In Section 2, the data from the ocean
satellite HY-2B is taken as an example to present a basic introduction of space-based AIS
data, including data pre-processing, data volume, and ship type distribution. Section 3
illustrates the detailed implementation of MFELCM, including static and dynamic features
extraction, samples construction for different base classifiers, data set splitting, and the
implementation of base classifiers. In Section 4, MFELCM is applied to the real AIS data,
and the performance of the model is evaluated. In addition, we discuss the effectiveness
of degraded MFELCM without a certain base classifier. Section 5 concludes the full paper
and presents an expectation for future work.

2. AIS Data Pre-Processing
2.1. Data Preprocessing

Some fields in AIS messages are key information for classification. Considering that
the dynamic features (from message1) should fully reflect the kinematic information of
the ship at a specific moment, and the static features (from message5) should reflect the
ship’s dimensions, draft, and type, we filter the key fields, as listed in Table 1, from the AIS
message for ship classification. MMSI is the unique identification of a ship. The Time field
in message1 is the time flag that is automatically injected by the space-based AIS receiver
every minute [23], and it is accurate to a minute. Time Stamp is the UTC second when the
AIS message is broadcasted. The exact time when the AIS message is sent can be obtained
by combining the Time and Time Stamp. A, B, C, and D reflect the overall dimensions of
the ship, which, respectively, represent the distances from the reference point O to the bow,
stern, port side, and starboard of the ship, as shown in Figure 3. The ship length and width
are calculated by Equation (1). {

length = A + B
width = C + D

(1)

Table 1. Fields selected from dynamic and static data.

Data Fields Used

Dynamic (message1)
MMIS, Time, TimeStamp, Longitude, Latitude, SOG

(Speed over ground), COG (Course over ground),
ROT (Rate of turn)

Static (message5) MMSI, A, B, C, D, Draught, Type
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Raw AIS data may contain bad data, duplicate data, and missing data. In addition,
the data format may be not convenient to analyze [24,25]. We perform the following data
preprocessing operations on the fields in Table 1.

• If the field does not conform to the standards in [4], the message to which the field
belongs is defined as an error message and should be removed.

• If all fields of several messages are the same, remove all but one message. For dynamic
messages, if the duplicate fields are only MMSI, Time, and Time Stamp, all messages
should be removed because we cannot determine the authenticity of these messages.

• In creating the Type field for message1, the values of Type are obtained from message5
by matching MMSI in mesage1 and message5.

• Replace the value seconds in the Time field of message1 with TimeStamp to obtain the
exact moment the messages were sent.

• If there exists empty fields in a message, the message is defined as missing data. For
dynamic messages, remove the missing data. For static messages, fill the empty fields
with 0.

Equation (2) defines the preprocessed static and dynamic data. For a ship whose
MMSI is im, dim

j is the jth dynamic data of this ship in time order, and sim is the static data

of this ship. Moreover, Equation (3) defines the trajectory of this ship as a time series Tim .{
dim

j = [timeim
j , lngim

j , latim
j , SOGim

j , COGim
j , ROTim

j , typeim ]
T

sim = [Aim , Bim , Cim , Dim , draughtim , typeim ]
T (2)

Tim = [dim
0 , dim

1 , · · · , dim
k ] · · · · · · k >= 1 (3)

2.2. Data Volume and Ship Distribution

The dynamic data used in this paper are extracted from message1 (noted as DYM1)
received by the ocean satellite HY-2B from 1 November 2019 to 21 April 2020, and the ship
distribution is shown in Figure 4. The static data are extracted from message5 (noted as
STM5) received by ocean satellite HY-1C/D and HY-2B/C. The detailed information of
DYM1 and STM5 is shown in Table 2.

In the literature [4], the value in the Type field of passenger ships, cargo ships, tankers,
fishing boats, and tugs are 60 to 69, 70 to 79, 80 to 89, 30, and 52, respectively. The ships with
code 0, 90, and a code larger than 99 have no specific type definition, and these ships are
not considered in ship type statistics of space-based AIS data. Figure 5a,c show the number
and cumulative percentage of the top 20 types of vessels in DYM1, counted by message
quantity and ship (MMSI) quantity, which account for 96.62% and 95.37% of message1. In
Figure 5b,d, four major categories of ships (i.e., passenger ships, tankers, fishing boats, and
cargo ships) are used for type statistics, which account for 90.65% and 88.98% of message1
by message quantity and ship quantity. In this paper, these four kinds of ships are selected
as the research object, and their global distribution is shown in Figure 4.
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Table 2. Information of message1 and message5.

Satellite Data Period Number of Messages

HY-2B Message1 1 November 2019~21 April 2020 10,875,328
HY-2B Message5 1 November 2018~18 June 2021

113,472
HY-2C Message5 24 September 2020~18 June 2021
HY-1C Message5 1 November 2018~18 June 2021
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3. Methodology

MFELCM integrates dynamic and static features of AIS data for ship classification.
To realize MFELCM, the static feature dataset SF and the dynamic feature datasets, i.e.,
DFD (dynamic feature distribution dataset), TS (time-series dataset), and TSF (time-series
feature dataset) are firstly constructed. The four base classifiers (i.e., Random Forest, 1D-
CNN, Bi-GRU, and XGBoost) are then trained by SF, DFD, TS, and TSF, respectively.
Finally, the MFELCM model is obtained by integrating the output of base classifiers using
another Random Forest.

3.1. Static Feature Samples Construction

MFELCM integrates dynamic and static features of AIS data for ship classification.
To realize MFELCM, the static feature dataset SF and the dynamic feature datasets, i.e.,
DFD (dynamic feature distribution dataset), TS (time-series dataset), and TSF (time-series
feature dataset) are as follows.

For the static data sim , five features, i.e., ship length, ship width, aspect ratio (ldivw),
area, and ship girth, are added into sim according to Equations (1) and (4). The static data
sim is redefined as Equation (5). In addition, the missing features in si are filled with 0.

ldivw = length/width
area = length ∗ width
grith = length + width

(4)

sim = [Aim , Bim , Cim , Dim , draughtim , lengthim , widthim , ldivwim , grithim , typeim ]
T

(5)
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As ship static information can be entered artificially, we should remove the unrea-
sonable data before training classifiers. The distribution of static data is variable between
the different types of ships, which makes it difficult to identify unreasonable data by a
uniform standard for all categories. To filter the outliers, we first calculate the upper
quartile (Qu), the lower quartile (Ql), and the interquartile (IQR) of a certain type of ship
(e.g., passenger ships). If a feature in sim (e.g., sim belongs to a passenger ship) is outside
[Ql − 3IQR, Qu + 3IQR], then sim is recognized as an outlier and should be removed. We
use this approach because it has no mandatory requirements on data distribution and
is robust to outlier identification. A violin plot is the combination of box plot and KDE
(kernel density estimation), and it can show the distribution of the variables. To illustrate
the changes in the static features before and after removing outliers, we use a violin plot
to visualize the static data, as shown in Figure 6. It should be noted that the data in
Figure 6 is the static data after being standardized in accordance with the whole data set.
Figure 6a,b are the distribution of original static data and the data having removed outliers
of passenger ships, respectively. Figure 6c,d are the distribution of original static data and
the data having removed outliers of four types of ships. Take Figure 6a as an example: the
green part inside the red rectangle reflects part of the probability density function (PDF)
of feature A, which takes the maximum value near the value where standardized A takes
−2. The black part inside the blue rectangle represents the potential outliers judged by
feature ldivw; the more the data is biased to both ends of the feature (i.e., ldivd) value,
the more likely it is to be an outlier. By comparing Figure 6a–d, some obvious outliers are
removed effectively.

So far, we have obtained the static feature sample sim . Let the set of all static feature
samples be the static dataset SF, which is defined as Equation (6)

SF =
{

si1 , si2 , . . . , sim
}

(6)

3.2. Dynamic Feature Samples Construction

For dim
j+1 in Tim , add the features in Equation (7) into dim

j+1, then dim
j is redefined as

Equation (8). For di
0 in Ti, the supplementary features of dim

0 defined by Equation (7) take
the same value as those in dim

0 except that δtim
0 , δlngim

0 , δlatim
0 , δCOGim

0 , and δSOGim
0 take the

value zero. 

δtim
j+1 = timeim

j+1 − timeim
j

δlngim
j+1 = lngim

j+1 − lngim
j

δlatim
j+1 = latim

j+1 − latim
j

δCOGim
j+1 = COGim

j+1 − COGim
j

ROTim ′
j+1 = δCOGim

j+1/δtim
j+1

δSOGim
j+1 = SOGim

j+1 − SOGim
j

accelerateim ′
j+1 = δSOGim

j+1/δtim
j+1

speedlngim ′
j+1 = δlngim

j+1/δtim
j+1

speedlatim ′
j+1 = δlatim

j+1/δtim
j+1

speedim ′
j+1 =

(
speedlngim ′

j+1
2
+ speedlatim ′

j+1
2
)−2

(7)

dim
j = [timeim

j , lngim
j , latim

j , SOGim
j , COGim

j , ROTim
j , δtim

j , δlngim
j , δlatim

j , δCOGim
j , ROTim ′

j ,

δSOGim
j , accelerateim ′

j , speedlngim ′
j , speedlatim ′

j , speedim ′
j ]T

(8)

We add the features above into di
j+1 for the following reasons. The time interval δt

is associated with ships’ motion state [4] in Table A1. Sang et al. [26] and Kim et al. [19]
pointed out that AIS equipment installed on different types of ships is of various cost and
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performance (e.g., fishing boats tend to install AIS equipment with low cost and accuracy),
which may lead to the deviation of COG, SOG, ROT and other kinematic information.
Considering the situation mentioned above, we calculate ROT′, accelerate′, speedlng′,
speedlat′, and speed′. Although the supplementary dynamic features may be redundant for
ship motion state description, they can improve the anti-noise capability of the classifier.
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As shown in Figure 7, we describe the trajectory Tim from three aspects, which are
DFDim , TSim , and TSFim . DFDim is the distribution of the dynamic feature of Tim , which
can reflect the overall motion characteristics of Tim . TSim is the set of sub-trajectories
(e.g., TSim

n ) obtained from Tim , which reflects the short-term time series characteristics of
Tim . [x1, x2, . . . , xk]

im
n

T in TSFim is a feature vector extracted from TSim
n , which reflects the

short-term characteristics of Tim . Each element in [x1, x2, . . . , xk]
im
n

T is a different feature
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calculated from TSim
n , e.g., x1 can be the average longitude of TSim

n . TSim and TSFim are
defined as Equations (9) and (10). TSim =

{
TSim

1 , TSim
2 , . . . , TSim

n

}
TSim

n = [dim
j , dim

j+1, . . . , dim
j+k]

(9)

{
TSFim =

{
TSFim

1 , TSFim
2 , . . . , TSFim

n

}
TSFim

n = [x1, x2, . . . , xk]
im
n

T
(10)
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3.2.1. Dynamic Feature Distribution Samples Dataset (DFD)

Let DFDim be the dynamic feature distribution of a ship whose MMSI is im, then DFD
is the set of DFDim , which is defined by Equation (11).

DFD =
{

DFDi1 , DFDi2 , . . . , DFDim
}

(11)

Limited by the number of satellites, signal conflicts, or AIS receiver performance [27,28],
the dynamic data dim

j received by satellite is insufficient to describe Tim completely. But in

a longer period, for a trajectory Tim , the feature distribution function of dim
j can describe

the overall motion of the ship (e.g., the distribution of latitude and longitude in Figure 7
describes the area of the ship’s activity). In addition, this description can reduce the
impact of outliers. For the massive amount of space-based AIS data, it is impractical to
calculate the feature distribution function for each Tim , so we use the frequency histogram
to approximate the distribution function, as shown in Figure 8. For feature f of trajectory
Tim , the range of f on the dataset is sliced uniformly into n intervals, on which the frequency
distribution of f (i.e., fd) is calculated. The matrix DFDim in Figure 8 is the combination of
each feature’s frequency distribution. The Time field in DFDim is the number of minutes
from the Time field in dim

j to the zero point of the day. DFDim takes 13 features into
consideration, excluding the fields of speedlng′,speedlat′ and speed′.
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3.2.2. Time-Series Samples Dataset (TS)

TS is defined as Equation (12), where TSim denotes the set of all sub-trajectories of
Tim , as shown in Figure 7. Space-based AIS data has weak data continuity, and there are
data points between which the time interval is large in Tim , which cannot reflect the ship
movement correctly. As such, we break Tim into a series of sub-trajectories TSim

n . For Tim ,
the steps for constructing TSim are as follows.

TS =
{

TSi1 , TSi2 , . . . , TSim
}

(12)

1. Calculate the upper quartile Qδt
u , the lower quartile Qδt

l , and the quartile distance
IQRδt of the field δt on the whole dynamic dataset.

2. Traverse the points on Tim in time order. For dim
j , if δtim

j is outside [Qδt
l − 3IQRδt, Qδt

u +

3IQRδt], break Tim at dim
j−1, then set δtim

j , δlngim
j , δlatim

j , δCOGim
j , and δSOGim

j to zero.

The sequence from the last interrupted point to dim
j−1 constructs the sub-trajectory

STim
n . All sub-trajectories of Tim construct TSim .

3. Apply the second step on all trajectories, and then we obtain TS.

3.2.3. Time-Series Feature Samples Dataset (TSF)

Denote TSFim as all feature vectors of sub-trajectories extracted from Tim , and then the
time-series feature samples dataset TSF is defined by Equation (13), as shown in Figure 7.
Since it demands professional knowledge to point out the relationship between motion
characteristics and the type of ships, we use a python toolkit named tsfresh (Time Series
Feature extraction based on scalable hypothesis tests) [29] to generate [x1, x2, . . . , xk]

im
n

T

from TSim
n automatically.

TSF =
{

TSFi1 , TSFi2 , . . . , TSFim
}

TSFim =
{

TSFim
1 , TSFim

2 , . . . , TSFim
n

}
TSFim

n = [x1, x2, . . . , xk]
im
n

T

(13)

3.3. Dataset Segmentation

After obtaining the static dataset SF and the dynamic datasets (i.e., DFD, TS, and
TSF), the four datasets are split into training, validation, and testing sets. In the dynamic
dataset, there is a correlation between the samples generated from the dynamic data of the
same ship (e.g., [x1, x2, . . . , xk]

im
1

T may be similar to [x1, x2, . . . , xk]
im
n

T). If we randomly split
the dynamic datasets, samples from the same ship can simultaneously appear in training,
validation, and testing sets, which will cause data leakage and the overestimation of the
classifiers’ performance. In this paper, the datasets are split by the MMSI. Taking TSF as an
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example, we divide TSF at the level of TSFim rather than [x1, x2, . . . , xk]
im
n

T , i.e., once the
TSFim is assigned to the training set, the feature vectors belonging to Tim can only appear
in the training set.

Ideally, the trajectory Tim and the static feature sample sim are one-to-one correspon-
dence. Due to the processing of removing outliers from static data in Section 3.1, there
may be no sim corresponding to Tim . Furthermore, the dynamic data used in this paper
is only a part of the whole dataset, which may result in no Tim corresponding to sim . To
solve this problem, the MMSI in AIS data is divided into three parts, which are the MMSI
that only appears in dynamic data (MMSI_D), the MMSI that only appears in static data
(MMSI_S), and the MMSI which exists in both dynamic data and static data (MMSI_C), as
shown in Figure 9. The MMSI_C is then divided into the MMSI training set (MMSI_TR),
MMSI validation set (MMSI_V), and MMSI testing set (MMSI_T) by the stratified sampling
of different types of ships. The static data, which is the MMSI in MMSI_S and MMSI_TR,
forms the training set of static feature samples. The dynamic data, which is the MMSI in
MMSI_D and MMSI_TR, forms the training set of dynamic feature samples. The static
data, which is the MMSI in MMSI_V and MMSI_T, forms the validation set and the test-
ing set of static feature samples, respectively. The dynamic data, which is the MMSI in
MMSI_V and MMSI_T, forms the validation set and the testing set of dynamic feature
samples, respectively.
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For a trajectory Tim , if im in MMSI_C, we can generate one DFDim , n TSim
n , and n

TSFim
n , which corresponds to one sim . The number of static samples and dynamic samples

with the same MMSI is different. To solve this problem, we copy DFDim and sim n times in
DFD and SF, respectively.

3.4. Implementation of MFELCM
3.4.1. Implementation of Random Forest

We use Random Forest to classify the static feature dataset SF. It is an integrated
learning algorithm that is based on decision trees, which has the advantages of low bias,
low variance, and high generalization ability. The method to create Random Forest is
as follows.

1. Select n samples from the training set randomly, which are used to create a decision
tree. The decision tree is trained by the CART (Classification and Regression Tree)
algorithm. In each node of a decision tree, m features of samples are randomly
selected as an alternative set (AS) for node splitting. The feature k in AS and its
threshold tk according to which the samples in this node are split into the left and
the right nodes are then determined by minimizing the cost function, as shown in
Equation (14). In Equation (14), Gle f t/right and mle f t/right is the Gini Impurity and
the number of samples of the left/right node, respectively. Gle f t/right is calculated by
Equation (15), in which pi,j is the proportion of class j samples in the ith node;

J(k, tk) = (mle f t/m) ∗ Gle f t + (mright/m) ∗ Gright (14)
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Gi = 1−
q

∑
j=1

p2
i,j (15)

2. When the decision tree reaches its maximum depth or the cost function cannot be
reduced, stop node splitting and terminate the decision tree creation.

3. Repeat the first step to create a large number of decision trees. We then obtain the
Random Forest. When classifying the ship type, the decision trees vote on the class of
the ship.

3.4.2. Implementation of 1D-CNN

Figure 10 shows the network structure of 1D-CNN. The details of 1D-CNN are shown
in Table 3.
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Table 3. Details of 1D-CNN.

Layers Shape Input Output Activation Function (Padding, Strides)

Conv_1 (Convolutional layer_1) 15 × 30 100 × 13 86 × 30 ELU (Exponential Linear Units) (False,1)
MaxPooling_1 4 × 30 86 × 30 21 × 30 \ (False,1)

Conv_2 5 × 40 21 × 30 17 × 40 ELU (False,1)
Conv_3 5 × 40 17 × 40 13 × 40 ELU (False,1)

MaxPooling_2 4 × 40 13 × 40 3 × 40 \ (False,1)
Flatten layer \ 3 × 40 120 × 1 \ \

FC (Full connection layer) \ 120 × 1 4 × 1 Softmax \

3.4.3. Implementation of Bi-GRU

To solve the short-term memory problem of the original RNN, Hochreiter, et al. [30]
propose the long short-term memory (LSTM) unit. GRU [31] is the simplified version of
LSTM. Figure 11 is the structure of a GRU unit, in which gt is the main layer and rt controls
the reset gate, which resets ht−1 based on ht−1 (from the previous time step) and xt (from
the current time step). The ht−1 which has been reset is submitted to gt. zt controls the
forgetting gate as well as the output gate, which uses a ‘1-’ operation to ensure that the
weight of the forgotten memory must be equal to the weight of the added memory at
the current time step. The weights of ht−1 to forget and that of gt to input into ht−1 are
determined by ht−1 and xt, Equation (16) shows the way to update the paraments of a GRU
unit, where Wxz, Wxr, Wxg and Whz, Whr, Whg are the connection weight matrixes of xt
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and ht−1 to three fully connected layers. In addition, bz, br, bg are the bias terms of three
full connection layers, respectively.

zt = σ(WT
xzxt + WT

hzht−1 + bz)
rt = σ(WT

xrxt + WT
hrht−1 + br)

gt = tanh(WT
xgxt + WT

hg(rt ⊗ ht−1) + bg)

ht = zt ⊗ ht−1 + (1− zt)⊗ gt
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Figure 12 shows the structure of Bi-GRU. The time-series samples in a batch (e.g., TSim
1 ,

TSim
2 , and TSim

3 ) are firstly filled with a value v to the same length. After going through
the mask layer, the network will ignore the time step in which the data are filled with v.
Bi-GRU is composed of a cyclic part and a full connection part. The cyclic part has four
layers, and the hidden state of each layer in the cyclic part is 35 dimensions. The first layer
in the cyclic part uses the bidirectional GRU, which enables the network to understand the
behaviors of the previous time steps with the help of subsequent time steps. In this layer,
for the GRU unit with input dim

j , its output yj is obtained by concatenating hj (output in
the forward direction) and h′j (output in the reverse direction). The second layer and the

third layer are the same unidirectional GRU network. The fourth layer outputs yim
j+k of the

last time step and inputs it to two full connection layers. Finally, the network outputs a
4-dimensional vector, and the value (between 0 and 1) of each dimension in this vector
represents the probability that TSim

n belongs to a certain class of ships.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 35 
 

 
Figure 11. A GRU unit. 

1

1

1

1

( )
( )
tanh( ( ) )

(1 )

T T
t xz t hz t z

T T
t xr t hr t r

T T
t xg t hg t t g

t t t t t

z W x W h b
r W x W h b
g W x W r h b
h z h z g

σ
σ

−

−

−

−

 = + +
 = + +
 = + ⊗ +
 = ⊗ + − ⊗  

(16) 

Figure 12 shows the structure of Bi-GRU. The time-series samples in a batch (e.g., 

1
miTS , 2

miTS , and 3
miTS ) are firstly filled with a value v to the same length. After going 

through the mask layer, the network will ignore the time step in which the data are filled 
with v. Bi-GRU is composed of a cyclic part and a full connection part. The cyclic part has 
four layers, and the hidden state of each layer in the cyclic part is 35 dimensions. The first 
layer in the cyclic part uses the bidirectional GRU, which enables the network to 
understand the behaviors of the previous time steps with the help of subsequent time 

steps. In this layer, for the GRU unit with input 
mi
jd , its output jy  is obtained by 

concatenating jh  (output in the forward direction) and 
'
jh  (output in the reverse 

direction). The second layer and the third layer are the same unidirectional GRU network. 

The fourth layer outputs 
mi
j ky +  of the last time step and inputs it to two full connection 

layers. Finally, the network outputs a 4-dimensional vector, and the value (between 0 and 

1) of each dimension in this vector represents the probability that 
mi
nTS  belongs to a 

certain class of ships. 

 
Figure 12. The framework of Bi-GRU.



Appl. Sci. 2021, 11, 10336 15 of 31

The trajectory Tim contains multiple time-series samples TSim
n , and each TSim

n has its
predicted type. As shown in Figure 13, to obtain the type of Tim , we must first calculate the
mean value of the vectors whose TSim

n belonging to Tim , and we then take the category with
the highest probability as the predicting type. Therefore, the classification performance
evaluation of Bi-GRU includes two aspects. One is the performance of ship classification
according to a single TSim

n , and the other is the performance of ship classification by inte-
grating all TSim

n from Tim . These two standards are also applicable to the based classifiers
and MFELCM mentioned in this paper.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 35 
 

Figure 12. The framework of Bi-GRU. 

The trajectory miT  contains multiple time-series samples 
mi
nTS , and each 

mi
nTS has 

its predicted type. As shown in Figure 13, to obtain the type of miT , we must first 

calculate the mean value of the vectors whose 
mi
nTS  belonging to miT , and we then take 

the category with the highest probability as the predicting type. Therefore, the 
classification performance evaluation of Bi-GRU includes two aspects. One is the 

performance of ship classification according to a single 
mi
nTS , and the other is the 

performance of ship classification by integrating all 
mi
nTS  from miT . These two 

standards are also applicable to the based classifiers and MFELCM mentioned in this 
paper. 

 
Figure 13. Prediction of Bi-GUR. 

3.4.4. Implementation of XGBoost 
XGBoost is an optimized implementation of Gradient Boosting Decision Tree 

(GBDT). The basic idea of GBDT is to build several Classification and Regression Trees 
(CARTs), and each CART fits the residual of the previous CART. The results of all CARTs 
are summed to obtain the prediction. The principle of XGBoost is explained in detail in 
the literature [21]. This article uses Python’s XGBoost toolkit to implement the XGBoost 
method. 

3.4.5. Integration of the Base Classifiers 
Since the base classifiers have extracted features from the samples, to avoid 

overfitting we use the Random Forest method to integrate the base classifiers, as it is 
relatively simple and has good interpretability. Figure 14 illustrates the process of base 
classifier integration. To prevent confusion, the Random Forest in base classifiers is 
denoted as Random Forest1, and the Random Forest in the integrated procedure is 
recorded as Random Forest2. In Figure 14, the output of the four base classifiers on the 
validation set and the real label of the validation set are input into the Random Forest2 to 
integrate the base classifiers. The four base classifiers and the Random Forest2 form the 
MFELCM model, and the performance of MFELCM is evaluated on the testing set. 

1iT 2iT miT

1iT 2iT
Label

miT

Predict 
Label

Class0:0.6
Class1:0.2
Class2:0.1
Class3:0.1

𝑆𝑇
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3.4.4. Implementation of XGBoost

XGBoost is an optimized implementation of Gradient Boosting Decision Tree (GBDT).
The basic idea of GBDT is to build several Classification and Regression Trees (CARTs), and
each CART fits the residual of the previous CART. The results of all CARTs are summed to
obtain the prediction. The principle of XGBoost is explained in detail in the literature [21].
This article uses Python’s XGBoost toolkit to implement the XGBoost method.

3.4.5. Integration of the Base Classifiers

Since the base classifiers have extracted features from the samples, to avoid overfitting
we use the Random Forest method to integrate the base classifiers, as it is relatively simple
and has good interpretability. Figure 14 illustrates the process of base classifier integration.
To prevent confusion, the Random Forest in base classifiers is denoted as Random Forest1,
and the Random Forest in the integrated procedure is recorded as Random Forest2. In
Figure 14, the output of the four base classifiers on the validation set and the real label of the
validation set are input into the Random Forest2 to integrate the base classifiers. The four
base classifiers and the Random Forest2 form the MFELCM model, and the performance of
MFELCM is evaluated on the testing set.
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4. Experimental Results and Analysis

The experiments of MFELCM are carried out on AIS data of four types of ships, i.e.,
passenger ships, tankers, fishing boats, and cargo ships, which are received by HY-1C/D
and HY-2B/C. The experimental environment is Windows 10, Tensorflow 2.5.0, Keras 2.5.0,
CPU is an AMD R7-5800H (3.2GHz), GPU is NVIDIA 3060 Laptop, and the memory is
32 G.

4.1. Overview of Experimental Data

For dynamic data, to reduce category imbalance and obtain effective ship dynamic
features distribution, we select 300,000 pieces of messages from every four types of ships.
Each ship should have more than 500 pieces of messages. Considering that the dynamic
data should reflect ships’ motion features, the messages for which the SOG is lower than
2 knots are removed. The amount of dynamic data used in the experiments is shown in
Table 4, and Figure 15 shows the data distribution.

Table 4. The number of original dynamic data.

Type Number of Messages Number of Ships

Passenger ships 233,131 189
Cargo ships 285,986 2161

Tankers 285,912 738
Fishing boats 213,442 674

Total 1,018,471 3762
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Too short sub-trajectories are insufficient to reflect the short-term motion state of the
ships. When constructing the dynamic feature datasets (i.e., DFD, TS, and TSF), the sub-
trajectories with less than 10 messages are ignored. The dynamic data used for experiments
are shown in Table 5, and the data distribution is shown in Figure 16.

Table 5. The number of dynamic data used in experiments.

Type Number of Messages Number of Ships Number of Sub-Trajectories

Passenger ships 162,351 151 7690
Cargo ships 167,457 1254 9035

Tankers 152,802 611 8555
Fishing boats 117,264 434 6411

Total 599,874 2450 31,691
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For static data, all static data of the four types of ships are extracted from the database.
Table 6 shows the amount of data processed according to the method in Section 3.1. The
number of static data messages is greater than the number of ships corresponding to the
static data because the features in static messages may change sometimes (e.g., draught
and position reference point), and there exists fraudulent use of MMSI.

Table 6. The number of static data.

Type Number of Messages Number of Ships

Passenger Ships 1285 1008
Cargo Ships 61,251 15,866

Tankers 21,094 6984
Fishing 5978 4565

Total 89,608 28,423

There are 2066 MMSI in MMSI_C (see Figure 9), and the dynamic and the static
datasets are split according to the methods in Section 3.3. It should be noted that if one
MMSI in MMSI_C corresponds to several sim , those sim should be replaced by their average
before the datasets are split.

4.2. Base Classifiers and MFELCM

Table 7 shows the evaluation of the base classifiers and MFELCM on the testing set, in
which class 0 to class 3 represent passenger ships, tankers, fishing boats, and cargo ships,
respectively. 

F1− score = (1/4)
4
∑

i=1
wi × F1− scorei

F1− scorei = 2PiRi/(Pi + Ri)
Pi = TPi/(TPi + FPi)
Ri = TPi/(TPi + FNi)

(17)

F1 score is calculated by Equation (17). TPi, FPi and FNi are the number of true
positive, false positive, and false-negative samples of type i ships, respectively. Pi and Ri
are the accuracy and the recall of the model in classifying class i samples, respectively. The
F1 score of a model is the weighted average of F1 scores for each type of ship, and the
weight wi is the proportion of class i samples in the total number of samples. In addition, to
reduce the effect of sample imbalance, the loss of samples is weighted during the training
process, and the weight of the class i samples is set as wi

−1.
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Table 7. Performance evaluation of base classifiers and MFELCM.

Items

Evaluated on Samples Evaluated on Ships

Random
Forest 1D-CNN Bi-GRU XGBoost MFELCM Random

Forest 1D-CNN Bi-GRU XGBoost MFELCM

A
cc

ur
ac

y class0 0.9931 0.9217 0.7191 0.8548 0.9985 0.8889 0.6667 0.6667 0.7778 0.8889
class1 0.9320 0.7861 0.6052 0.5467 0.9344 0.9237 0.6271 0.6864 0.6102 0.9322
class2 0.9340 0.8879 0.7690 0.8117 0.9332 0.9032 0.7903 0.7419 0.8065 0.9355
class3 0.8244 0.6173 0.5972 0.6839 0.8797 0.8287 0.7315 0.6296 0.7546 0.8750

Total
Accuracy 0.9205 0.7914 0.6566 0.7008 0.9362 0.8696 0.7077 0.6643 0.7222 0.9010

F1 score 0.9196 0.7873 0.6629 0.6991 0.9359 0.8719 0.7127 0.6681 0.7239 0.9019

4.2.1. Random Forest1 Experimental Results

The optimal hyper-parameters of the Random Forest1 are determined by random
search, as shown in Table 8. Figure 17 is the confusion matrixes of the classifier on the
testing set. The model tends to confuse passenger ships with fishing boats, and confuse
tankers with cargo ships.

Table 8. Hyper-parameters used in Random Forest.

Hyper-Parameters Value

max_depth 10
max_leaf_nodes 58

min_samples_leaf 77
n_estimators 1500
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To explain the confusion matrixes, we use t-SNE [32] to visualize the static features.
t-SNE is a method of data visualization which can map data from high-dimensional space
to low-dimensional space. If two samples are similar in high-dimensional space, the
distance between their maps in low-dimensional space will be close. Figure 18 shows the
visual results of static features. There are partial overlaps between the reduced dimensional
distributions of passenger ships and fishing vessels, as well as that of tankers and cargo
ships, which implies that the static information of the misclassified ships is similar.

Figure 19 shows the importance of the static information features. It can be seen
that the ship’s dimensional characteristics, such as A, length, and length-width ratio, can
better describe the ships’ features than draught. In addition, although the features C
and D contribute little to the classifier, these two parameters have been reflected in the
length-width ratio, girth, area, and width, which proves that the static features constructed
in this paper are effective in the ship classification task.
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4.2.2. 1D-CNN Experimental Results

The number and the width of the convolution kernels in the first convolution layer
(Conv_1) in 1D-CNN are optimized using grid search, as shown in Table 9. The model used
an Adam optimizer with a learning rate of 1e-3, a batch size of 2500, and the cross-entropy
loss function. Figure 10 shows the structure of 1D-CNN. 1D-CNN performs best when the
parament of Conv_1 is Conv (30,15).

Table 9. Parameters of the first convolution layer.

Parameters of Conv1
Conv (Number, Width)

F1 Score Accuracy

Evaluated on Samples Evaluated on Ships Evaluated on Samples Evaluated on Ships

Conv (10,5) 0.5758 0.5373 0.6068 0.5169
Conv (10,10) 0.6248 0.5883 0.6530 0.5749
Conv (10,15) 0.6131 0.5533 0.6538 0.5483
Conv (10,20) 0.6385 0.5590 0.6796 0.5580
Conv (10,25) 0.6380 0.5809 0.6759 0.5797
Conv (20,5) 0.6244 0.6010 0.6463 0.5797

Conv (20,10) 0.7218 0.6276 0.7467 0.6232
Conv (20,15) 0.7274 0.6378 0.7451 0.6353
Conv (20,20) 0.7167 0.6844 0.7217 0.6739
Conv (20,25) 0.7660 0.6739 0.7748 0.6715
Conv (30,5) 0.6907 0.6719 0.6973 0.6546

Conv (30,10) 0.6845 0.6342 0.7036 0.6280
Conv (30,15) 0.7873 0.7128 0.7914 0.7077
Conv (30,20) 0.7388 0.7121 0.7398 0.7029
Conv (30,25) 0.7717 0.6754 0.7786 0.6715
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Figure 20 plots the learning curve of 1D-CNN. Figure 21 shows the confusion matrixes
of 1D-CNN on the testing set, where the classifier tends to confuse passenger ships with
fishing boats, as well as tankers with cargo ships.
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Figure 21. (a) Confusion matrix of samples (1D-CNN); (b) Confusion matrix of ships (1D-CNN).

Figure 22a visualizes 30 convolutional kernels of Conv_1, each of which is a 15× 13 matrix.
Figure 22b shows the matrix Q added to by the 30 convolution kernels in Conv_1. Figure 22c
shows the result of taking the absolute value after summing the matrix Q according to
the columns. Convolution realizes the dimension reduction and feature extraction from
the original data. In the first convolution layer, the value of the convolution kernel in
different columns reflects the response intensity of the network to different characteristics.
By summing Q and taking the absolute value, the importance of features for 1D-CNN can
be inferred.

In Figure 22c, the features from 0 to 12 correspond to the features of DFDim in Figure 8.
As we can see from Figure 22c, the four most important features to 1D-CNN are δlat, δt,
δSOG, and δlon. The combination of δlat and δlon can reflect the directional information
of ship motion. According to Table A1, δt is associated with ships motion state, and the
combination of these four features (i.e., δlat, δt, δSOG, and δlon) can reflect the information
of ship’s speed, acceleration, and steering rate. In Figure 4, it is obvious that there are some
routes for cargo ships and tankers around the world, and the ship’s direction within the
routes is usually fixed. However, the movements of fishing boats and passenger ships are
more variable. Based on the above analysis, we speculate that the 1D-CNN network may
learn the movement characteristics of different types of ships on the routes. In addition, the
time feature contributes little to 1D-CNN, which is probably because most of the ships do
not have such features, except for some offshore or inland river ships, which have regular
activity periods in a day. The reason why the classifier confuses the samples (see Figure 21)
may be that the features of interest to 1D-CNN have some similarities between oil tankers
and cargo ships, and between passenger ships and fishing boats.
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4.2.3. Bi-GRU Experimental Results

The number of cells in the hidden layer (NoC) of Bi-GRU is optimized using random
search, as shown in Table 10. The model structure is shown in Figure 12. The model used an
Adam optimizer with a learning rate of 1× 10−3, a batch size of 1500, and the cross-entropy
loss function. In Figure 12, as we prefer to choose the model with better performance on
ship classification, the NoC of Bi-GRU is set to 35. Figure 23 plots the learning curve of
Bi-GRU. Figure 24 shows the confusion matrixes of Bi-GRU on the testing set. In Figure 24a,
part of the sub-trajectories of passenger ships are misclassified into three other categories,
and there is confusion between tankers and cargo ships, and some sub-trajectories of fishing
boats are misclassified into cargo ships. In Figure 24b, the classifier confuses passenger
ships with fishing boats, as well as tankers with cargo ships, and some fishing boats are
mislabeled as cargo ships.

Table 10. Unit number in the hidden layer.

NoC
F1 Score Accuracy

Evaluated on Samples Evaluated on Ships Evaluated on Samples Evaluated on Ships

15 0.6252 0.6158 0.6219 0.6159
20 0.6387 0.6328 0.6335 0.6329
25 0.6496 0.6435 0.6455 0.6425
30 0.6586 0.6370 0.6546 0.6353
35 0.6629 0.6681 0.6566 0.6643
40 0.6726 0.6539 0.6690 0.6521
45 0.6605 0.6381 0.6575 0.6327
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4.2.4. XGBoost Experimental Results

The maximum depth of trees in XGBoost is 20 and the learning rate is 0.03.
The python toolkit named tsfresh can automatically generate a large number of

features from time series, but it requires a lot of computing resources. In addition, many
features are useless for classification, and thus it is necessary to filter the features outputted
by tsfresh, which is done as follows.

1. Step 1. Extract features without filtering using tsfresh on a small dataset M and create
the time-series dataset of M (denoted as TS(M)), and then use TS(M) to train an
XGBoost (denoted as XGBoost1).

2. Step 2. Use XGBoost1 to output the top n important features on dataset M.
3. Step 3. Use tsfresh to extract the n features obtained in Step 2 on the dynamic dataset

(Table 5), and create the time-series dataset (denoted as TS), then use TS to train
another XGBoost (denoted as XGBoost2).

4. Step 4. If n is not zero, return to Step 2 and decrease n with a certain interval.
5. Step 5. When n can no longer decrease, choose the XGBoost2 with the best perfor-

mance obtained in Step 3. The features used by this model are the most important
feature that is generated by tsfresh.

We select 50,000 dynamic messages from the four types of ships, and each ship should
have more than 500 pieces of messages. After removing those sub-trajectories which
contain less than 10 pieces of messages, there are 106,169 pieces of dynamic messages
left, which is the dataset M. Table 11 illustrates the amount of M, whose distribution is
shown in Figure 25. The XGBoost1 is trained on TS(M) with 3765 features extracted from
M by tsfresh. Figure 26 shows the importance of the features outputted by XGBoost1.
Table 12 shows the performance of XGBoost2 which trains on TS with a different number
of features. The XGBoost2 performs best when the top 40 important features are considered.
The features’ names and weights are shown in Table A2, and the detailed definition of
these features can be obtained from [33].
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Table 11. The amount of data in dataset M.

Type Number of Messages Number of Ships Number of Sub-Trajectories

Passenger Ships 28,513 135 1197
Cargo Ships 27,984 249 1494

Tankers 28,818 289 1493
Fishing boats 20,854 104 1084

Total 106,169 777 5268
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When using 40 features to complete the classification of ships, the learning curve
of XGBoost2 and the confusion matrix on the testing set are as shown in Figure 27. In
Figure 27b, some sub-trajectories of passenger ships are misclassified into the other three
categories. The classifier tends to confuse tankers with cargo ships, and tankers are more
likely to be mislabeled as cargo ships. In Figure 27c, the confusion of tankers and cargo
ships remains significant. Figure 28 shows the importance score of these 40 features, whose
names and values of importance score are shown in Table A2. The features are mostly
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related to the location, speed, heading, and steering rate information of the ships, and we
infer that the XGBoost2 tends to learn ships’ spatial distribution.

Table 12. XGBoost2 trained by different features.

Number of Features
F1 Score Accuracy

Evaluated on Samples Evaluated on Ships Evaluated on Samples Evaluated on Ships

100 0.7083 0.7136 0.7103 0.7126
80 0.7086 0.7163 0.7107 0.7126
60 0.6986 0.7052 0.7010 0.7029
40 0.6991 0.7239 0.7008 0.7222
20 0.6872 0.6715 0.6906 0.6691

Appl. Sci. 2021, 11, x FOR PEER REVIEW 28 of 35 
 

 

 

(b) 

 

(a) (c) 

Figure 27. (a) Learning curve (XGBoost2); (b) Confusion matrix of samples (XGBoost); (c) Confusion matrix of ships 
(XGBoost2). 

 
Figure 28. Top 40 most important features. 

In addition, we carry out an experiment to illustrate the necessity of splitting the 
dataset by MMSI. The XGBoost trained on the time-series feature dataset TSF  (TSF  is 
split by mi

nTSF  instead of miTSF ) is denoted as XGBoost3. Under the same parameters 
with XGBoost2, the learning curve and the confusion matrixes of XGBoost3 are shown in 
Figure 29. The F1 score and total accuracy of XGBoost3 evaluated on miTSF  are 0.8180 
and 0.8186, respectively, and those evaluated on ships are 0.7996 and 0.7994. It seems that 
the XGBoost3 performs better than the XGBoost2, but this is because the samples ( miTSF
) from the same ship ( miTSF ) appear in the training set and the testing/validation set at 
the same time. This data leakage leads to the performance of XGBoost3 being 
overestimated. 

  

Figure 27. (a) Learning curve (XGBoost2); (b) Confusion matrix of samples (XGBoost); (c) Confusion matrix of ships
(XGBoost2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 28 of 35 
 

 

 

(b) 

 

(a) (c) 

Figure 27. (a) Learning curve (XGBoost2); (b) Confusion matrix of samples (XGBoost); (c) Confusion matrix of ships 
(XGBoost2). 

 
Figure 28. Top 40 most important features. 

In addition, we carry out an experiment to illustrate the necessity of splitting the 
dataset by MMSI. The XGBoost trained on the time-series feature dataset TSF  (TSF  is 
split by mi

nTSF  instead of miTSF ) is denoted as XGBoost3. Under the same parameters 
with XGBoost2, the learning curve and the confusion matrixes of XGBoost3 are shown in 
Figure 29. The F1 score and total accuracy of XGBoost3 evaluated on miTSF  are 0.8180 
and 0.8186, respectively, and those evaluated on ships are 0.7996 and 0.7994. It seems that 
the XGBoost3 performs better than the XGBoost2, but this is because the samples ( miTSF
) from the same ship ( miTSF ) appear in the training set and the testing/validation set at 
the same time. This data leakage leads to the performance of XGBoost3 being 
overestimated. 

  

Figure 28. Top 40 most important features.



Appl. Sci. 2021, 11, 10336 25 of 31

In addition, we carry out an experiment to illustrate the necessity of splitting the
dataset by MMSI. The XGBoost trained on the time-series feature dataset TSF (TSF is
split by TSFim

n instead of TSFim ) is denoted as XGBoost3. Under the same parameters
with XGBoost2, the learning curve and the confusion matrixes of XGBoost3 are shown in
Figure 29. The F1 score and total accuracy of XGBoost3 evaluated on TSFim are 0.8180 and
0.8186, respectively, and those evaluated on ships are 0.7996 and 0.7994. It seems that the
XGBoost3 performs better than the XGBoost2, but this is because the samples (TSFim ) from
the same ship (TSFim ) appear in the training set and the testing/validation set at the same
time. This data leakage leads to the performance of XGBoost3 being overestimated.
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4.2.5. MFELCM Experimental Results

The Random Forest (denoted as Random Forest2) is used to integrate four base
classifiers, and MFELCM is the combination of four base classifiers and Random Forest2.
The weight of class i of samples (i.e., samples in Figure 14) is the ratio of the total number of
samples to the number of class i samples. The best paraments of Random Forest2 are shown
in Table 13, and are obtained by random search. The weights of Random Forest2 to each
base classifier are shown in Figure 30. Figure 31 shows the confusion matrixes of Random
Forest2 on the validation set (which is also the confusion matrixes of MFELCM). Comparing
the performance of MFELCM with the base classifiers in Table 5, MFELCM has higher total
accuracy and F1 score than those of the base classifiers. Specifically, MFELCM reduces
the confusion between passenger ships and fishing boats, as well as that between tankers
and cargo ships. When evaluating the performance of MFELCM by samples, MFELCM
improves the total accuracy by 1.57% and the F1 score by 1.63%, which is equivalent to a
24.61% reduction in misclassification over the best base classifiers (Random Forest1). When
evaluating the performance of MFELCM by ships, MFELCM improves the total accuracy
by 3.14% and F1 score by 3%, which is equivalent to a 24.08% reduction in misclassification
over the best base classifiers (Random Forest1). Different classifiers focus on different ship
features and they have different classification tendencies. By integrating multiple features,
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MFELCM reduces the bias effectively. Furthermore, the classification results of ships can be
refreshed by updating the dynamic information regularly (e.g., using satellites to transmit
and update data regularly), which enables near real-time online classification.

Table 13. Parameters of Random Forest2.

Parameters Value

max_depth 57
max_leaf_nodes 40

min_samples_leaf 9
n_estimators 1500
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4.3. The Degraded MFELCM

In practice, space-based AIS data may not provide the features required by the four
base classifiers at the same time. The classification effect of degraded MFELCM with one
base classifier absence is discussed below.

When the static features are missing, the degraded MFELCM (denoted as MFELCM1)
integrates 1D-CNN, Bi-GRU, and XGBoost. The paraments of Random Forest2 in MFELCM1
are shown in Table 14. The weights of Random Forest2 to each base classifier are shown
in Figure 32. Figure 33 shows the confusion matrixes of MFELCM1 on the testing set.
Table 15 compares the performance of MFELCM1 with the base classifiers, and MFELCM1
is better than the base classifiers in terms of the total accuracy and F1 score. In addition,
MFELCM1 can either refresh the classification results by updating the inputs or can switch
to MFELCM when receiving static features.
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Table 14. Parameters of Random Forest2 (in MFELCM1).

Parameters Value

max_depth 45
max_leaf_nodes 11

min_samples_leaf 41
n_estimators 1000
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Table 15. Performance evaluation of base classifiers and MFELCM1.

Items
Evaluated on Samples Evaluated on Ships

1D-CNN Bi-GRU XGBoost MFELCM1 1D-CNN Bi-GRU XGBoost MFELCM1

A
cc

ur
ac

y class 0 0.9217 0.7191 0.8548 0.9147 0.6667 0.6667 0.7778 0.6111
class 1 0.7861 0.6052 0.5467 0.8316 0.6271 0.6864 0.6102 0.6186
class 2 0.8879 0.7690 0.8117 0.8385 0.7903 0.7419 0.8065 0.7258
class3 0.6173 0.5972 0.6839 0.7526 0.7315 0.6296 0.7546 0.8241

Total Accuracy 0.7914 0.6566 0.7008 0.8331 0.7077 0.6643 0.7222 0.7415
F1 score 0.7873 0.6629 0.6991 0.8334 0.7127 0.6681 0.7239 0.7396

In the case of missing dynamic feature distribution due to insufficient dynamic data,
the degraded MFELCM (noted as MFELCM2) integrates Random Forest1, Bi-GRU, and
XGBoost. The paraments of Random Forest2 in MFELCM2 are shown in Table 16. The
weights of Random Forest2 to each base classifier are shown in Figure 34. Figure 35 shows
the confusion matrixes of MFELCM2 on the testing set. Table 17 compares the performance
of MFELCM2 with the base classifiers. MFELCM2 outperforms the base classifiers in
terms of the total accuracy and F1 score. In addition, MFELCM2 can either refresh the
classification prediction by updating the inputs or can switch to MFELCM after receiving a
sufficient amount of dynamic data.
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Table 16. Parameters of Random Forest2 (in MFELCM2).

Parameters Value

max_depth 37
max_leaf_nodes 9

min_samples_leaf 61
n_estimators 2000
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Table 17. Performance evaluation of base classifiers and MFELCM2.

Items
Evaluated on Samples Evaluated on Ships

Random
Forest Bi-GRU XGBoost MFELCM2 Random

Forest Bi-GRU XGBoost MFELCM2

A
cc

ur
ac

y class 0 0.9931 0.7191 0.8548 0.9892 0.8889 0.6667 0.7778 0.8889
class 1 0.9320 0.6052 0.5467 0.9261 0.9237 0.6864 0.6102 0.9237
class 2 0.9340 0.7690 0.8117 0.9573 0.9032 0.7419 0.8065 0.9677
class3 0.8244 0.5972 0.6839 0.8296 0.8287 0.6296 0.7546 0.8333

Total Accuracy 0.9205 0.9205 0.7008 0.9215 0.8696 0.8696 0.7222 0.8816
F1 score 0.9196 0.9196 0.6991 0.9207 0.8719 0.8719 0.7239 0.8822

5. Conclusions and Future Work

In this paper, we propose a ship classification method named MFELCM which is
suitable for space-based AIS data worldwide. MFELCM integrates four base classifiers,
i.e., Radom Forest, 1D-CNN, Bi-GRU, and XGBoost. The dynamic and static data are
firstly preprocessed and four datasets are constructed (i.e., the static feature dataset SF, the
dynamic feature distribution dataset DFD, the time-series dataset TS, and the time-series
feature dataset TSF), after which the datasets are split by MMSI to avoid the data leakage
problem. Finally, the base classifiers are integrated by another Random Forest. Experiments
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show that MFELCM performs better than the four base classifiers, and MFELCM can
effectively integrate the static and dynamic information of ships. Moreover, in the case of
one base classifier being missing, the degraded MFELCM—which integrates the remaining
base classifiers—still outperforms the base classifiers. As MFELCM integrates multiple
features, it can achieve near real-time online classification, which can be applied to ship
behavior anomaly detection as well as enhancing the supervision of maritime activities.

The methods used to generate the dynamic features are an important factor for classi-
fication performance. In addition, the parameters of the classifiers are obtained by experi-
ments in this paper. In the future, to further improve the performance of MFELCM, we
plan to refine the methods of dynamic features generation as well as develop an automatic
classifier parameter optimization method.
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Appendix A

Table A1. Class A shipborne mobile equipment reporting intervals.

Ship’s Dynamic Conditions Nominal Reporting Interval

Ship at anchor or moored and not moving faster than 3 knots 3 min
Ship at anchor or moored and moving faster than 3 knots 10 s

Ship 0–14 knots 10 s
Ship 0–14 knots and changing course 3 1/3 s

Ship 14–23 knots 6 s
Ship 14–23 knots and changing course 2 s

Ship > 23 knots 2 s
Ship > 23 knots and changing course 2 s

Table A2. Top 40 most important features on global dataset.

Index Feature Name Score

0 latitude__root_mean_square 21,418
1 longitude__maximum 21,263
2 calspeedlat__quantile__q_0.7 15,340
3 calspeed__benford_correlation 15,122
4 calrot__fft_aggregated__aggtype_”skew” 15,120
5 deltaCOG__percentage_of_reoccurring_datapoints_to_all_datapoints 15,027
6 longitude__variation_coefficient 14,711
7 deltaSOG__abs_energy 14,224
8 calspeed__quantile__q_0.7 14,139
9 deltaCOG__fft_coefficient__attr_”abs”__coeff_0 14,042

https://osdds.nsoas.org.cn
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Table A2. Cont.

Index Feature Name Score

10 latitude__max_langevin_fixed_point__m_3__r_30 13,764
11 deltaCOG__partial_autocorrelation__lag_2 13,642
12 longitude__max_langevin_fixed_point__m_3__r_30 12,943
13 latitude__variation_coefficient 12,800
14 SOG__agg_linear_trend__attr_”intercept”__chunk_len_5__f_agg_”min” 12,669
15 SOG__mean_abs_change 12,138
16 calspeed__change_quantiles__f_agg_”mean”__isabs_False__qh_0.4__ql_0.0 12,078
17 latitude__abs_energy 11,825
18 calspeed__last_location_of_maximum 11,161
19 SOG__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) 10,470
20 longitude__root_mean_square 10,373
21 deltaSOG__ratio_value_number_to_time_series_length 9737
22 deltaSOG__change_quantiles__f_agg_”mean”__isabs_True__qh_1.0__ql_0.2 9698
23 longitude__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) 9626
24 latitude__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) 9188
25 rateofturn__root_mean_square 9147
26 deltaSOG__agg_linear_trend__attr_”stderr”__chunk_len_5__f_agg_”max” 9001
27 SOG__change_quantiles__f_agg_”mean”__isabs_True__qh_1.0__ql_0.4 8300
28 rateofturn__binned_entropy__max_bins_10 8090
29 SOG__maximum 7059
30 rateofturn__benford_correlation 6699
31 latitude__minimum 6283
32 rateofturn__cwt_coefficients__coeff_7__w_5__widths_(2, 5, 10, 20) 5829
33 SOG__agg_linear_trend__attr_”intercept”__chunk_len_5__f_agg_”max” 5773
34 deltaSOG__quantile__q_0.9 5344
35 deltaCOG__change_quantiles__f_agg_”mean”__isabs_True__qh_0.2__ql_0.0 4636
36 rateofturn__abs_energy 3891
37 longitude__benford_correlation 2308
38 latitude__benford_correlation 1576
39 latitude__agg_linear_trend__attr_”intercept”__chunk_len_10__f_agg_”min” 513
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