
applied  
sciences

Article

Prediction of Ultimate Bearing Capacity of Shallow
Foundations on Cohesionless Soils: A Gaussian Process
Regression Approach

Mahmood Ahmad 1,2,† , Feezan Ahmad 3,†, Piotr Wróblewski 4,5 , Ramez A. Al-Mansob 1,*, Piotr Olczak 6 ,
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Abstract: This study examines the potential of the soft computing technique—namely, Gaussian
process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath
shallow foundations. The inputs of the model are width of footing (B), depth of footing (D), footing
geometry (L/B), unit weight of sand (γ), and internal friction angle (φ). The results of the present
model were compared with those obtained by two theoretical approaches reported in the literature.
The statistical evaluation of results shows that the presently applied paradigm is better than the
theoretical approaches and is competing well for the prediction of UBC (qu). This study shows that
the developed GPR is a robust model for the qu prediction of shallow foundations on cohesionless
soil. Sensitivity analysis was also carried out to determine the effect of each input parameter.

Keywords: cohesionless soil; machine learning; Gaussian process regression; shallow foundation;
ultimate bearing capacity

1. Introduction

Ultimate bearing capacity (UBC) and allowable settlement are two important criteria
to consider when designing shallow foundations. The UBC is governed by the shear
strength of the soil and is estimated by theories proposed by Terzaghi [1], Meyerhof [2],
Hansen [3], Vesic [4], etc. However, the various bearing capacity equations reveal a wide
range of variations. Furthermore, the proposed bearing capacity theories include a number
of assumptions that contribute to simplifying the problems [5].

Numerous studies proposed numerical approaches for estimating bearing capacity in
addition to semi-empirical solutions for determining the bearing capacity of foundations,
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e.g., [6,7]. Models are usually validated using the model-scale footing test. A number
of researchers have investigated that how to reduce scale effects when extrapolating
experimental results to full-scale footings (e.g., de Beer [8]; Yamaguchi et al. [9]). In model-
scale footing experiments, Tatsuoka et al. [10] studied how particle size affects the UBC. The
shearing strains vary significantly along the slip line, according to the results of large-scale
footing tests on dense sand. As a result, bearing capacity formulas that use the maximum
value of friction angle, (φmax) tend to overstate prototype bearing capacities [11]. Therefore,
the actual model-scale footing test findings differed from theoretical equations, and special
consideration should be given when comparing model-scale footing test results with full-
scale foundation behavior. For this reason, a new approach is needed to ensure more
accurate predictions of actual bearing capacity.

Intelligent systems are typically used to model complex interactions between inputs
and outputs or to explore patterns in available data. Artificial intelligence (AI)-based meth-
ods are capable of capturing the problem’s inherent nonlinearity and complex interaction
between the involved variables in various domains, e.g., [12–21]. These approaches can be
trained to learn the relationship between soil mechanical properties and foundation geom-
etry with foundation bearing capacity, and no prior knowledge of the relationship’s form.
Different forms of AI-based techniques have recently been used by different researchers to
address the UBC problem of shallow foundations. Artificial neural networks (ANNs), fuzzy
inference systems (FISs), adaptive neuro-fuzzy inference systems (ANFISs), ant colony
optimization (ACO), genetic programming (GP), weighted genetic programming (WGP),
soft-computing polynomials (SCP), support vector machine (SVM), random forest (RF),
and relevance vector machine (RVM) have all been used to successfully estimate the UBC
of shallow foundations on soil [11,22–26]. Soft computing methodologies are more accurate
than analytical formulas, according to all of these studies. The findings revealed that the
ML models mentioned above are capable of obtaining the experimental observations with
acceptable accuracy. However, this field continues to be further explored.

The Gaussian process regression (GPR) approach has been successfully applied in
many domains, e.g., [27–29], but its application in geotechnical engineering is limited based
on literature surveys. Considering the improved performance of GPR, it is, however, used
for the first time in this study to predict the UBC of shallow foundations on cohesionless
soils. To demonstrate the efficacy of the proposed GPR-based model, the results were
compared with various well-known classical formulas for calculating the UBC.

The main contributions of this paper are as follows:

• To examine the capability of the GPR model for the prediction of qu of shallow foun-
dation on cohesionless soil;

• To undertake a comparative study with the commonly used bearing capacity theories;
• To conduct sensitivity analyses for the determination of the effect of each input

parameter on qu.

The structure of the paper is as follows: In Section 2, the theoretical background of ulti-
mate bearing capacity is presented. The numerical model and verification are described in
Section 3. Section 4 presents the construction process of the prediction model. In Section 5,
results and discussion are described. Finally, the concluding remarks are presented.

2. Theoretical Background of Ultimate Bearing Capacity

Prandtl [30] and Reissner [31] developed plastic theory-based methods for determin-
ing the ultimate bearing capacity of shallow strip footings. Over the years, other researchers
significantly improved the formulation [1,2,4,22,32,33]. Terzaghi [1] improved Prandtl’s
theory [30] by using the principle of superposition to account for the soil weight. Taylor [32]
incorporated the effect of the overburdened soil surcharge at the foundation level into
Prandtl’s formulation. Meyerhof [2] extended Terzaghi’s bearing capacity equation by
incorporating different shape and depth factors. Hansen [3] later updated the Meyerhof
model. Vesic [4] provided a bearing capacity prediction equation that was similar to
Hansen’s equation. Table 1 summarizes the general forms of the classical equations. The
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form of the equations presented by the other researchers remained the same as Terzaghi’s,
as can be seen in this table. Meyerhof [2], Hansen [3], Vesic [4], and other researchers
proposed different shape, depth, inclination, ground, and base factors for the bearing
capacity equations after thorough in situ and laboratory tests. However, one of the primary
shortcomings of these traditional formulations is that they are based on some simpli-
fying assumptions. As a result, they do not always produce accurate bearing capacity
estimates [22,34].

Table 1. General forms of the classical prediction equations for the bearing capacity of shallow
foundations.

Reference Equation

Terzaghi [1]

qu = cNcsc + γDNq +
1
2 γBNγsγ

Nc =
(

Nq − 1
)

cot φ

Nq = a2

a cos2(45+φ/2)
a = e(0.75π−φ/2) tan φ

Nγ =
tan φ

2

(
Kpγ

cos2 φ
− 1
)

Meyerhof [2]

qu = cNcscdc + γDNqsqdq +
1
2 γBNγsγdγ

Nq = eπ tan φ tan2
(

45 + φ
2

)
Nγ =

(
Nq − 1

)
tan(1.4φ)

Nc =
(

Nq − 1
)

cot φ

Hansen [3]

qu = cNcscdcicgcbc + γDNqsqdqiqgqbq +
1
2 γBNγsγdγiγgγbγ

Nq = same as Meyerhof above
Nc = same as Meyerhof above

Nγ = 1.5
(

Nq − 1
)

tan φ

Vesic [4]

Same as Hansen’s equation
Nq = same as Meyerhof above
Nc = same as Meyerhof above

Nγ = 2
(

Nq + 1
)

tan φ

Notes: qu: ultimate bearing capacity of footing; c: cohesion; γ: average effective unit weight of the soil below
and around the foundation; B: width of footing; D: depth of footing; Nc, Nq, and Nγ: non-dimensional bearing
capacity factors as exponential functions of φ; φ: internal friction angle; sc, sq, and sγ: non-dimensional shape
factors; ic, id, and iγ: non-dimensional inclination factors; dc, dq, and dγ: non-dimensional depth factors; gc, gq,
and gγ: non-dimensional ground factors (base on slope); bc, bq, and bγ: base factors (tilted base).

3. Materials and Methods
3.1. Dataset

The data used in this study were adopted from Padmini et al. [11]. The five input
parameters used for model development in this study were width of footing (B), depth of
footing (D), footing geometry (L/B), unit weight of sand (γ), and internal friction angle (φ).
Ultimate bearing capacity (qu) was the single output. The data thus compiled comprised a
total of 97 datasets, which consisted of results of load test data of square, rectangular, and
strip footings of different sizes tested in sand beds of various densities.

The data were divided into training and testing sets, which is a method that has
a substantial impact on the results when using data mining techniques [35,36]. In this
case, the entire database was divided into multiple random combinations of training and
testing sets until both training and testing sets had a robust representation of the entire
population. A statistical analysis of the input and output parameters of the randomly
selected training and testing sets was carried out to identify the most robust representation.
The purpose of this analysis was to assure that the statistical properties of the data in
each of the subsets were as close as possible, indicating that they represented the same
statistical population. This was achieved using a trial-and-error method in this work. For
the construction and testing of the GPR model, the best statistically consistent combination
was selected. The data division was performed in such a way that 78 (80%) were used for
training, and 19 (20%) were used for testing in all the experiments considered in this study.
The parameters used in the statistical analysis included maximum, minimum, mean, and
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standard deviation. The results of the statistical analysis of the finally selected combinations
are shown in Table 2. It should be mentioned that due to the fact that the data contained
singular, rare events that could not be replicated in all cases of the dataset, there may still
have been some minor inconsistencies in the statistical parameters for the training and
validation sets. The descriptive statistics (such as minimum and maximum values, mean,
and standard deviations) of the selected UBC parameters with the established GPR model
are provided in Table 2 (the complete database is available in Table A1).

Table 2. Statistical aspects of the dataset.

Dataset Statistical Parameter B (m) D (m) L/B γ (kN/m3) φ (◦) qu (kPa)

Training

Minimum 0.0585 0 1 9.85 32 58.5
Maximum 3.016 0.889 6 17.1 44.8 2847

Mean 0.398 0.156 3.126 14.279 38.492 407.899
Standard deviation 0.543 0.195 2.192 2.642 3.308 511.870

Testing

Minimum 0.0585 0 1 10.2 32 91.5
Maximum 1.492 0.762 6 17.1 44.8 2033

Mean 0.420 0.204 2.995 13.777 38.800 569.826
Standard deviation 0.361 0.221 1.964 2.573 3.225 600.020

3.2. Correlation Analysis

The strength of the correlation between the various factors was verified using correla-
tion coefficients (ρ) (see Table 3). The following formula for ρ is given a pair of random
variables (x,y):

ρ(x, y) =
cov(x, y)

σxσy
(1)

where cov is the covariance, σx is the standard deviation of x, and σy is the standard
deviation of y. |ρ| > 0.8 indicates a strong correlation between x and y, values between 0.3
and 0.8 indicates a moderate connection, and |ρ| < 0.30 indicates a weak correlation [37].
A correlation is regarded as “strong” if |ρ| > 0.8, according to Song et al. [38]. Table 3
shows the correlations between B, D, L/B, γ, φ, and qu, in order of moderate to weakest. As
a result, no factors were removed from the UBC of the cohesionless soil estimation model.
Table 3 shows that the maximum absolute value of the correlation coefficient is 0.710, and
there is no “strong” correlation between the various pairs of factors.

Table 3. Correlation coefficients between various factors.

Parameter B D L/B γ φ qu

B 1.000
D 0.710 1.000

L/B −0.351 −0.249 1.000
γ −0.269 −0.125 0.340 1.000
φ −0.378 −0.286 0.124 0.076 1.000
qu 0.452 0.671 −0.248 −0.238 0.258 1.000

3.3. Gaussian Processes Regression

Gaussian processes regression (GPR) is a suitable and recently proposed method
that has been used in a variety of machine learning applications [39]. The GPR model’s
probabilistic solution leads to the identification of generic regression problems using
kernels. The applied regressor’s training process can be categorized as Bayesian framing,
and the model relations are presumed to follow a Gaussian distribution to encode the
previous information about the output function [40]. The Gaussian process is defined
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by a set of variables for which each one has a joint Gaussian allocation [41]. The overall
structure of the Gaussian process is described by the following equation:

g(x) ∼ GP
(
w(x), k

(
x, x′

))
(2)

The mean function of the Gaussian process is denoted by w(x), and the kernel function
is denoted by k(x, x′). The mean function is typically constant, either zero or the mean of
the training dataset. In this study, the mean of the training dataset was used. Consider
a learning dataset with N pairs in the form of S = {(xi, yi)|i = 1, 2, . . . , N} where x is an
N-dimensional input vector, and y is the corresponding target. Using xj as a test sample,
the GPR model utilizes the below formulation in determining the relationship between the
provided inputs and targets [41].

wj = kT
j

[
K(X, X) + σ2

n I
]
y (3)

σ2
j = k

(
xj, xj

)
− kT

j

[
K(X, X) + σ2

n I
]−1

k j (4)

where wj denotes the mean value of the most compatible predicted outputs for the test
input vector (xj). Additionally, K(X, X), k j, σ2

n and y represent covariance matrix, the
kernel distance between training and testing data, the noise variance, and the training
observation, respectively. Furthermore, the produced variance

(
σ2

j

)
by Equation (4) indi-

cates a confidence measure for the acquired results. It is worth noting that this variance is
inversely proportional to the confidence associated with the wj [42]. The formulas above
can be combined in the form of a linear combination of the kernel function and the mean
estimation f

(
xj
)

as follows:

f
(
xj
)
=

s

∑
i=1

(
K(X, X) + σ2

n I
)−1

yk
(
xj, xj

)
(5)

GPR utilizes a number of kernel functions. GPR has a limitation in terms of selecting
a suitable kernel function. Pearson VII kernel function (PUK), a widely utilized kernel
function, was chosen for GPR model construction in this study, as it has shown optimized
results in predicting river discharge [43].

PUK =

(
1/

[
1 +

(
2
√
‖xi − xj‖

2√
2(1/ω) − 1/σ

)2
]ω)

(6)

where ω and σ are kernel parameters.

3.4. Model Evaluation and Comparison

To validate and compare the developed model, four quantitative statistics were used
to assess the performance of the evaluation methods: coefficient of determination (R2),
the ratio of the root-mean-square error (RSR) to the standard deviation of measured data,
Nash–Sutcliffe coefficient (NSE), and mean bias error (MBE). The following equations are
used to express these indices:

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ŷ)2

(7)
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RSR =

√
n
∑

i=1
(yi − ŷi)

2

√
n
∑

i=1
(yi − y)2

(8)

NSE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (9)

MBE =
1
n∑n

i=1(ŷi − yi) (10)

In the equations, n is the number of data, yi and ŷi are the actual and predicted output
of ith sample of the data, respectively; y is the averaged actual output of the data. The
R2 coefficient goes from 0 to 1, with a higher R2 value indicating a more efficient model.
When R2 is larger than 0.8 and nearer to 1, the model is considered effective [44]. The
NSE scale runs from −∞ to 1, with 1 being a perfect match. An NSE value of more than
0.65 indicates a strong correlation [45,46]. The root-mean-square error (RMSE) observations’
standard deviation ratio is calculated as the ratio of the RMSE and standard deviation of
measured data. The RSR varies from an optimal value of 0 to a significant positive value. A
lower RSR signifies a lower RMSE, indicating the higher predictive efficiency of the model.
RSR classification ranges were described as very good, good, acceptable and unacceptable
with ranges of 0.00 ≤ RSR ≤ 0.50, 0.50 ≤ RSR ≤ 0.60, 0.60 ≤ RSR ≤ 0.70 and RSR > 0.70,
respectively [47]. It is self-evident that the lower the RSR criteria is, the better is the model.

4. Construction of Prediction Model

The construction process of the prediction model is shown in Figure 1. First, 80%
and 20% of the UBC data were selected based on statistical consistency as training and
test sets, respectively. Second, using the optimal hyperparameters configuration, the
prediction model was fitted based on the training set using the trial-and-error method.
We adjusted the hyperparameters so as to maximize the likelihood of the training data.
We initialized the hyperparameters to random values (in a reasonable range) and then
used an iterative method to search for optimal values of the hyperparameters. Numerous
trials were carried out to find optimal values of primary kernel parameters—omega (ω)
and sigma (σ)—and the values were 1 in the GPR model. Fourth, the test set was adopted
to judge the performance of the proposed GPR model according to the four standard
statistical measures: R2, RSR, NSE, and MBE. Higher values of R2 and NSE, and lesser
values of RSR, indicate a better estimation accuracy of the proposed model. Last, the
developed model was compared with the commonly used bearing capacity theories by
comparing the comprehensive performance if the prediction performance of this model
was acceptable, then it could be adopted for deployment and made sensitivity analysis. The
entire calculation process was performed in Waikato Environment for Knowledge Analysis
(WEKA) software [48]. In this study, for the GPR model, the Pearson VII function-based
universal kernel [49] was used.
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Figure 1. The flowchart associated with the prediction of ultimate bearing capacity using a data-
driven approach.

5. Results and Discussion

The performance of the GPR model was evaluated using root-mean-square error
(RMSE), coefficient of determination (R2), the ratio of the root-mean-square error to the
standard deviation of measured data (RSR), and Nash–Sutcliffe coefficient (NSE) and
mean bias error (MBE). The results were compared with some popular classical methods
suggested in the literature (i.e., Vesic [4]; Hansen [3]) for determining the UBC of shallow
foundation on cohesionless soil. The GPR model in Section 3.3 was developed by learning
from the 78 data, and the results of the training performance including R2, RSR, NSE,
and MBE are shown in Table 4. In comparison to the theoretical equations, the output
of the GPR model on the testing phase has substantially higher values of coefficient of
determination (R2), Nash–Sutcliffe coefficient (NSE), and lower values of MBE and RSR. In
addition, the equation proposed by Vesic [50] shows the best performance in comparison
to the Hansen [3] theoretical formulas. Figure 2 shows the best-fit line of estimated
versus measured UBC and the associated coefficient of determination (R2). The outputs
of the used theoretical formulas are more scattered than the GPR-based model, as shown
in this Figure 2. From Table 4, it can be inferred that the R2 and NSE are the highest
(0.9404 and 0.8420), and the other criteria such as RSR and MBE are the least (0.8420 and
−69.3268) for the GPR-based modeling in the testing phase. MBE (Vesic [4]: −105.2996 and
Hansen [3]: −161.2911) has the largest negative score (see Table 5), indicating that it is the
most conservative approach. It is clear that the GPR model is more accurate than analytical
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formulas. The model performs better when R2 and NSE values are greater than 0.85. Thus,
it depicts the accuracy of the finalized model.

Table 4. Performance statistics of proposed model.

Performance Index Training Testing

R2 0.9552 0.9404
RSR 0.3428 0.3975
NSE 0.8825 0.8420

MBE (kPa) −10.9661 −69.3268
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Figure 2. Scatter plot presenting the actual UBC values versus the predicted UBC on the testing dataset: (a) in GPR model
(this study); (b) in Vesic [4]; (c) in Hansen [3].

Table 5. Performance statistics of bearing capacity theories.

Performance Index
Testing Set

Vesic [4] Hansen [3]

R2 0.9017 0.8944
RSR 0.4303 0.5227
NSE 0.8149 0.7268

MBE (kPa) −105.2996 −161.2911

Figure 3 shows the comparison results of the training and testing sets to characterize
the difference between the actual and predicted UBC of shallow foundations on cohesion-
less soil. Good agreements can be also observed between the comparison results, except
for the few noise points, but these results are acceptable for the proposed GPR model to
predict the UBC of shallow foundation on cohesionless soil.
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The proposed model was developed and validated using data inside the data range
(see Table 2), but it was not tested outside of this range; hence, it is assumed that the
suggested model will be valid for data inside within the data range.

The GPR model’s sensitivity results were evaluated using Yang and Zang’s [51]
technique to assess the influence of input parameters on qu. This method has been utilized
in a number of studies [14,52–54], and it is stated as follows:

rij =
∑n

m=1(yim × yom)√
∑n

m=1 yim
2∑n

m=1 yom2
(11)

where n is the number of data values (this study used 78 data values); yim and yom are
the input and output parameters. The rij value ranges from zero to one for each input
parameter, and the highest rij values suggested the most efficient output parameter (which
was qu in this study). The rij values for all input parameters are presented in Figure 4.
Figure 4, shows that the depth of foundation, D

(
rij = 0.817

)
has the greatest effect on the

UBC. The sensitivity results match well with the result of the investigations by Meyerhof [2]
and Kohestani et al. [26].
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6. Conclusions

In this paper, using the GPR model, values of UBC of shallow foundations on co-
hesionless soil were estimated. Five input variables and one output variable were used
for designing the prediction model. The modeling results reveal that the GPR model has
an appropriate capability for accurate estimation of the UBC of cohesionless soil. The
GPR-based model also provides improved performance compared with the conventional
methods considered in this study. Results of sensitivity analysis conclude that the depth of
foundation is the primary essential parameter when the GPR-based model is selected for
estimation of the UBC of cohesionless soil for this dataset. For this dataset, the Pearson VII
kernel function-based GPR model performs better and can be used in a variety of geotechni-
cal engineering problems with inherent uncertainties and imperfections. Furthermore, the
GPR technique has the advantage of being quickly updated as new data becomes available,
avoiding the requirement for expertise and time to update the old design aid or equation
and/or propose a new equation.
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Appendix A

Table A1. The data used for developing the GPR model.

S. No. B (m) D (m) L/B γ (kN/m3) φ (◦) qu (kPa)

1 0.6 0.3 2 9.85 34.9 270
2 0.6 0 2 10.85 44.8 860
3 0.152 0.075 5.95 17.1 42.5 335.3
4 0.0585 0.058 5.95 16.8 41.5 184.9
5 0.5 0 1 11.7 37 111
6 0.5 0 2 11.7 37 143

7 * 0.5 0.3 1 10.2 37.7 681
8 0.152 0.15 1 16.1 37 182.4
9 0.0585 0.058 5.95 15.7 34 70.91

10 * 1 0 3 11.93 40 630
11 0.152 0.15 5.95 15.7 34 122.3
12 0.152 0.15 1 16.8 41.5 361.5

13 * 0.5 0.5 4 12 40 1140
14 0.5 0.029 4 11.7 37 109
15 0.5 0 1 10.2 37.7 154
16 0.094 0.094 6 17.1 42.5 279.6
17 0.094 0.047 1 16.1 37 98.8
18 0.5 0.5 2 12.41 44 2847
19 0.5 0 4 12.41 44 797
20 0.0585 0.029 5.95 16.1 37 82.5

21 * 0.152 0.075 1 16.1 37 135.2
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Table A1. Cont.

S. No. B (m) D (m) L/B γ (kN/m3) φ (◦) qu (kPa)

22 0.5 0.3 1 12.41 44 1940
23 * 0.152 0.15 1 16.5 39.5 264.5
24 0.5 0 2 10.2 37.7 195

25 * 0.6 0.3 2 10.85 44.8 1760
26 0.991 0.711 1 15.8 32 1773.7
27 0.5 0.3 1 11.7 37 446
28 0.5 0 1 10.2 37.7 165
29 0.5 0 1 11.77 37 123
30 0.5 0.49 4 12.27 42 1492
31 0.152 0.15 5.95 16.8 41.5 342.5
32 0.094 0.094 6 16.5 39.5 185.6
33 0.5 0 1 11.7 37 132
34 0.5 0 2 10.2 37.7 203

35 * 0.5 0.3 4 11.7 37 322
36 0.094 0.094 1 15.7 34 90.5
37 0.094 0.047 6 16.8 41.5 206.8
38 0.094 0.047 6 16.1 37 104.8
39 2.489 0.762 1 15.8 32 1158
40 0.094 0.094 1 16.5 39.5 191.6
41 0.152 0.075 5.95 15.7 34 98.2
42 0.094 0.047 1 16.5 39.5 147.8
43 0.5 0.127 4 11.7 37 187

44 * 0.5 0.5 4 12.41 44 2033
45 * 0.094 0.094 1 16.8 41.5 253.6
46 0.5 0.3 3 10.2 37.7 402
47 3.004 0.762 1 15.8 32 1019.4
48 0.152 0.075 1 16.8 41.5 276.3
49 0.094 0.047 6 17.1 42.5 235.6
50 0.152 0.15 5.95 16.1 37 176.4
51 0.6 0.3 2 10.2 37.7 570
52 0.5 0.3 1 11.77 37 370
53 0.5 0.3 2 10.2 37.7 530
54 0.094 0.047 1 16.8 41.5 196.8

55 * 0.094 0.094 6 16.8 41.5 244.6
56 0.094 0.094 1 17.1 42.5 295.6
57 0.152 0.15 5.95 16.5 39.5 254.5
58 0.52 0 3.85 10.2 37.7 186
59 0.152 0.15 5.95 17.1 42.5 400.6
60 1 0.2 3 11.97 39 710
61 0.0585 0.029 5.95 15.7 34 58.5

62 * 0.5 0.013 1 11.7 37 137
63 0.5 0.3 1 12.41 44 2266
64 0.0585 0.029 5.95 16.5 39.5 121.5
65 0.5 0.5 4 11.7 37 425
66 0.094 0.094 6 16.1 37 127.5

67 * 0.0585 0.029 5.95 17.1 42.5 180.5
68 0.152 0.075 1 15.7 34 91.2

69 * 0.152 0.075 5.95 16.1 37 143.3
70 0.094 0.047 1 15.7 34 67.7
71 0.152 0.075 1 17.1 42.5 325.3
72 0.094 0.047 1 17.1 42.5 228.8
73 0.5 0.3 2 10.2 37.7 542
74 0.094 0.047 6 15.7 34 74.7
75 0.094 0.047 6 16.5 39.5 155.8

76 * 1.492 0.762 1 15.8 32 1540
77 0.5 0 1 12.41 44 782
78 0.6 0 2 10.2 37.7 200
79 0.152 0.075 5.95 16.5 39.5 211.2
80 0.5 0.5 2 11.7 37 565
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Table A1. Cont.

S. No. B (m) D (m) L/B γ (kN/m3) φ (◦) qu (kPa)

81 0.152 0.15 1 17.1 42.5 423.6
82 * 0.5 0.5 2 11.77 37 464
83 0.152 0.075 5.95 16.8 41.5 285.3

84 * 0.094 0.094 1 16.1 37 131.5
85 0.0585 0.058 5.95 17.1 42.5 211
86 0.152 0.075 1 16.5 39.5 201.2
87 0.0585 0.058 5.95 16.5 39.5 142.9
88 0.0585 0.058 5.95 16.1 37 98.93
89 0.152 0.15 1 15.7 34 124.4

90 * 0.5 0 3 10.2 37.7 214
91 0.0585 0.029 5.95 16.8 41.5 157.5

92 * 0.094 0.094 6 15.7 34 91.5
93 * 0.5 0 4 12 40 461
94 0.52 0.3 3.85 10.2 37.7 413
95 3.016 0.889 1 15.8 32 1161.2
96 0.5 0 2 11.77 37 134
97 0.5 0.3 1 11.7 37 406

Note: * presents the test set.
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