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Abstract: For the assumed bale volume, its dimensions (diameter, height), minimizing the con-
sumption of the plastic film used for bale wrapping with the combined 3D method, depend on
film and wrapping parameters. Incorrect selection of these parameters may result in an optimal
bale diameter, which differs significantly from its height, while in agricultural practice bales with
diameters equal or almost equal to the height dominate. The aim of the study is to formulate and
solve the problem of selecting such dimensions of the bale with a given volume that the film con-
sumption is minimal and, simultaneously, the bale diameter is equal or almost equal to its height.
Necessary and sufficient conditions for such equilibria of the optimal bale dimensions are derived
in the form of algebraic equations and inequalities. Four problems of the optimal bale dimension
design guaranteeing assumed equilibrium of diameter and height are formulated and solved; both
free and fixed bale volume are considered. Solutions of these problems are reduced to solving the sets
of simple algebraic equations and inequalities with respect to two variables: integer number of film
layers and continuous overlap ratio in bottom layers. Algorithms were formulated and examples
regarding large bales demonstrate that they can handle the optimal dimensions’ equilibria problems.

Keywords: 3D bale wrapping method; equal bale dimensions; mathematical model; minimal film
consumption; optimal bale dimensions; round bales

1. Introduction

Currently, the demand to limit consumption of the film used to wrap bales of agri-
culture materials has been receiving increasing attention to reduce both costs and damage
to the environment caused by plastic waste [1–4]. For this purpose, both experimental
studies comparing film usage for different wrapping conditions and methods [5–9] and
model-based analytical approaches useful for estimation of the film usage [10–14] and its
minimization [15–18] were used. In the last few years it has been shown that by appropriate
optimal selection of the film width [15,16], overlaps between adjacent film strips [17], and
film width and overlaps, together, [18] it is possible to reduce film consumption by up to
20%. The model-based optimization research concerned mainly conventional [15,17,18]
and IntelliWrap [16] wrapping methods. The monograph [19] comprehends the issues of
modelling of the film consumption for wrapping round bales and related optimization
problems solved in the last few years.

Also, an appropriate choice of bale size dimensions (diameter, height) may guarantee
decreasing film consumption [11,19]. In [11], where the dependence of the film consump-
tion on the bale diameter for the conventional wrapping technique was investigated, the
analytical analysis showed that the larger the bale diameter is, the lower is the film con-
sumption per unit of bale volume, which led to the conclusion that the use of the bale with
the largest permissible diameter ensures the smallest film consumption. These studies
were based on a rough model which describes film usage as a continuous function of bale
dimensions, film width and a number of wrapped film strips; however, the model did not
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take into account mechanical properties of the stretch film and the direct relation between
the number of wrapped film strips and bale and film parameters.

The concept of optimal (from the point of view of film consumption) selection of bale
dimensions for the assumed bale volume was first introduced in [15] for the conventional
wrapping method. A more accurate model was used that describes the consumption
of the film as a function of the bale and film dimensions, mechanical parameters of the
film (Poisson ratio, unit deformation), overlap ratio and the number of bale rotations [12].
The film consumption per unit of the bale volume is used as a measure of film usage.
Since it is very difficult to find the optimal bale dimensions minimizing the original exact
film usage index due to the discontinuity of this index, near-optimal parameters, being as
important as optimal parameters for engineering applications, are sought. It was shown
in [15] that in the case of using the conventional wrapping method, the optimal bale height
is twice its optimal diameter. This optimality rule, which holds also for the IntelliWrap
method [19], has only a theoretical character and is a consequence, among others, of
multiple overlapping segments on the bale cylinder top and bottom, where there are
2–16 times more film layers than on the bale’s lateral surface [10,19]. However, in the case
of the combined 3D wrapping method [6,14], the optimal bale dimensions turn out to be
useful and applicable from the engineering practice point of view.

In the 3D wrapping method, which offers the potential to minimize film usage [6,14,20]
as well as to enhance the quality of silage [6], biaxial rotation of the film applicators results
in two types of film layers wrapped perpendicularly: the bottom layers are wrapped around
the bale’s lateral surface and the upper layers are wrapped along the bale’s longitudinal
axis. For a detailed description of the wrapping process, see [6] and the producer’s
documentations [21–23]. The problem of the choice of the best bale dimensions to guarantee
the minimal film consumption was solved in [20], where the optimality conditions were
established in the form of algebraic cubic equations, which can easily be solved using both
analytical and numerical methods. Analytical and numerical studies [19,20] have shown
that the relation between the optimal diameter and height is not evident. The optimal
diameter can be larger than the bale height [19] (Figure 6.5b), [20] (Figure 11c) or can be
smaller than the bale height [19] (Figure 6.5d), [20] (Figure 11a), depending on the bale
volume as well as film and wrapping parameters. But the optimal bale diameter can also
be equal to its height [19] (Figure 6.5a,c), [20] (Figure 11b). The last case corresponds to
typical large bales of 1.2 m diameter and height [10,24,25]. However, in agricultural practice
typical bales are 1.2 to 1.3 m diameter and height [6,10,19], where diameter is equal [26–30]
or almost equal [9,31,32], but not much bigger, than bale height. Other dimensions of large
round bales, for example 1.2 m × 1.6 m Ø [33], or 1.2 m × 1.5 m Ø [34] or 1.5 m Ø [35],
are used less frequently. Although round bales of the height greater than the diameter are
also being investigated, for example 1.2 m × 0.9 m Ø [36], they are much less common in
agriculture practice [37]. Standard 3D bale wrappers are designed to wrap cylindrical bales
up to 1.6 m in diameter and up to 1.2 m in height [22], or up to 1.5 m diameter and 1.2 m
height [21,23].

Therefore, the question becomes how to choose such film and wrapping process
parameters for a round bale with a given volume wrapped using the 3D method so that
the bale diameter minimizing film consumption is equal to or almost equal to its height.
The aim of the paper is to solve the problem of the selection of the film and wrapping
parameters (overlaps, numbers of bottom and upper film layers, etc.) that for a given
bale volume, i.e., a given bale weight, its diameter and height are equal or near-equal and,
at the same time, they minimize the film consumption. It is, in essence, the inverse problem
in which the film and wrapping parameters are determined that the equilibria of optimal
dimensions are guaranteed, while in the direct problem considered in [20] the optimal
dimensions for a given parameters are sought. The thesis is that for any given bale volume
and number of global film layers there exist film and wrapping parameters for which
the optimal bale dimensions are equal or near-equal, with the pre-assumed proportions
diameter/height. To prove the above, the necessary and sufficient conditions of equilibrium
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and near-equilibrium of the optimal bale dimensions were derived in the form of algebraic
equations. The equilibrium conditions are dichotomous, as some depend on the given
bale volume and others apply to any bale volume. Then, the problems of selecting such
bale wrapping parameters for which the optimal bale dimensions are equal or near-equal
were formulated and solved, separately, for a given and an arbitrary bale volume. Suitable
design algorithms were proposed and numerically verified for large bales.

2. Materials and Methods

In this section, the notions of equal and near-equal optimal dimensions of a round
bale are introduced and the related necessary and sufficient conditions are derived. The
research methodology is also described.

2.1. Equal and Near-Equal Optimal Bale Dimensions

A complete mathematical model describing stretch film consumption for wrapping
a bale with pb bottom and pu upper film layers using the combined 3D technique was
derived in [14]; the main formula describing film usage is recalled in Appendix A with the
corresponding assumptions. Symmetry of the bale is assumed. Mechanical properties of
the plastic film are described by the Poisson’s ratio v f and unit deformation ε l f ; thickness
of the film is ignored, e.g., polyethylene film is 25 µm thick [38]. The main symbols are
summarized in Nomenclature, Appendix C.

The problem of the choice of bale dimensions (diameter, height) minimizing the
consumption of the film used to wrap a cylindrical bale by 3D method has been stated
and solved for the first time in [20], where the necessary and sufficient condition of the
existence of the unique optimal bale diameter D∗b of the bale of pre-assumed volume Vb0
was derived in the form of cubic equation with zero linear term coefficient [20]:

2πpu

Ω
(

k f

) (D∗b )
3 +

πpb
1− k f b

(
2δ− b f rk f b

)
(D∗b )

2 − 4Vb0

 pb
1− k f b

+
pu

Ω
(

k f

)
 = 0, (1)

where b f r is the width of stretched film described by Equation (A1), δ denotes the overlap
of the extreme film strips in bottom film layers at the bases of the bale, k f b and k f are the
overlap ratios determining the width of the contact between adjacent film strips in bottom
and upper film layers; function Ω

(
k f

)
is defined by Equation (A3). The coefficients in the

first and second terms and the free term of Equation (1) depend on the pre-assumed bale
volume as well as all the film and wrapping parameters. Based on the optimality condition,
Equation (1), analytical and numerical analysis of the influence of film width, pre-assumed
bale volume and numbers of bottom and upper film layers on optimal bale dimensions
and optimal film consumption were carried out in [20], where many detailed conclusions
regarding the impact of these parameters were formulated. Additionally, the influence of
the bottom layers overlaps was studied in [19].

Equation (1) has one real positive root [20]. The corresponding optimal bale height
H∗b is [20]

H∗b =
4Vb0

π
(

D∗b
)2 . (2)

For given Vb0 the optimal D∗b and H∗b depend on film and wrapping parameters, they
are linearly dependent and the difference between them is described by

D∗b − H∗b =
1
2

H∗b

 pbΩ
(

k f

)
pu

(
1− k f b

) − 1

− pbΩ
(

k f

)
2pu

(
1− k f b

)(2δ− b f rk f b

)
. (3)
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From a quick inspection of Equation (3) it can be seen that the relation between the
optimal diameter D∗b and height H∗b is not evident. The conducted research [19,20] has
shown that the relations D∗b > H∗b and D∗b < H∗b , as well as D∗b = H∗b are possible, de-
pending on the values of the film and wrapping parameters and volume Vb0; compare [20]
(Figure 11), where the proportions diameter/height are depicted for large bales. Only the
relation D∗b ≥ H∗b , desirable from the point of view of baling systems engineering, will be
considered. The proportion diameter/height do not exceed 1.25 [22] (RW 1819, 150/120),
or 1.2 [21] (BW 1850, 150/125), or [23] (WM 1851, 150/125); however, predominantly, it is
of 1.05 order [21–23].

The goal of this paper is to study the selection of equal and nearly-equal optimal bale
dimensions, therefore, the respective precise definitions are given.

Definition 1. (equal optimal dimensions). Bale diameter D∗b and height H∗b of bale with a volume
Vb0 are called equal optimal dimensions, if D∗b accomplishes Equation (1) and H∗b , given by
Equation (2), is equal to D∗b , i.e., D∗b = H∗b .

Definition 2. (near-equal optimal dimensions). Bale diameter D∗b and height H∗b of bale with
a volume Vb0 are called near-equal optimal dimensions, if D∗b accomplishes Equation (1), H∗b is
given by Equation (2), and

D∗b
H∗b

= 1 + ε0, (4)

where a sufficiently small ε0 > 0. Then D∗b and H∗b are called nearly-equal with order ε0.

2.2. Methodology

In this paper, a model-based analytical approach was applied, which addressed the
goals (derivation of the conditions for equal and near-equal optimal bale dimensions and
solving the problems of wrapping parameter design guaranteeing such equilibria) by using
mathematical tools. The solutions of the optimality conditions for the bale diameter were
obtained by applying numerical tools.

Firstly, the necessary and sufficient conditions under which for the given bale volume
the optimal bale diameter is near-equal to its optimal height with order ε0 were derived
using the optimality conditions expressed by Equations (1) and (2); Proposition 1 abstracts
these results (Section 2.3.1). The conditions for optimal bale dimensions equilibria are
given by algebraic equations. One of them uniquely relates bale volume to order ε0 and
film and wrapping parameters, i.e., this condition is satisfied for a given volume. The
complementary condition determined by two simple equations relating only to ε0 and
film and wrapping parameter applies regardless of the bale volume. Based on these
conditions, using differential calculus, the relationships between the volume of the bale
with near-equal optimal dimensions and the order ε0, width of the film and overlaps
were analyzed (Section 2.3.2). Next, laying ε0 = 0 the conditions for exact equilibrium
of the optimal bale dimensions was obtained directly from the conditions of their near-
equilibrium (Section 2.3.3).

Knowing the conditions of equilibrium and near-equilibrium of optimal bale dimen-
sions, the tasks of designing the wrapping process in such a way that these conditions
would be satisfied were formulated and solved. Due to the dichotomous nature of the equi-
librium conditions, design tasks for a given bale volume and those in which the bale volume
is arbitrary were considered separately; these are covered in Section 3.1 and Section 3.2,
respectively. Consequently, four design problems were solved; however, the solutions
for equal optimal bale dimensions resulted directly from those for near-equilibrium by
substituting ε0 = 0 (Sections 3.3 and 3.4). It was assumed that the film parameters (width,
mechanical parameters v f , ε l f ) are known, i.e., a practically available plastic film can be
used, e.g., a commercial PE film used traditionally due to its mechanical properties and
low costs [26,27,39]. Also the global number of film layers pl wrapped on the bale’s lateral
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surface was taken as a given. Many studies have investigated the number of desired
film layers for baled silage preservation, for example [7,29,40,41]. Mostly, four, six or
eight layers of film are applied [6,24,35]; however, ten, twelve, and even sixteen film layers
in which the silages are wrapped are also considered [7,22,23,29]. Therefore no specific
assumptions were taken concerning the number of global film layers; the numerical studies
were conducted for pl from four to sixteen. The standard overlaps 50%, 67% or 75% result-
ing in uniform film coverage [17] were assumed for upper film layers. Thus, the bottom
layers overlaps δ, k f b and film layers decomposition pl = pb + pu had to be selected. The
upper and lower limits were taken for the overlaps, the selection of which should take into
account the knowledge and experience of baling as well as the possibilities of the wrappers
available. Consequently, the considered design problems consisted in solving a set of
algebraic equations (resulting from the conditions of the equilibria of optimal bale dimen-
sions) and inequalities (the constraints of variables) with respect to three decision variables.
Two variables—the overlaps δ, k f b—were continuous, while the third—the number of
bottom film layers pb—was integer. These mixed (hybrid) sets of equations and inequal-
ities were solved analytically, separately for fixed and free bale volume. The solutions
are abstracted by Propositions 4–7. For volume-free problems the solution is given by
two inequalities directly related to the integer pb and simple rules for computing the
overlaps δ, k f b. In the case of fixed bale volume the solution was derived in the form of two
inequalities related to the overlap ratio k f b, which must be verified for every considered
pb and unique algebraic rule for the determining of the overlap δ. If equal optimal bale
dimensions are sought then these inequalities and formulas take particularly simple forms
which are obtained by substituting ε0 = 0. Computational algorithms were developed
which enable designation of the sought wrapping parameters in a few steps. The examples
illustrated how to use them (Excel is enough) as well as the effectiveness for optimal bale
dimensions selection for a standard large bale.

In sum, in the multistage process several problems of optimal equal and near-equal
bale dimensions design for cylindrical bales of a given volume were formulated and solved.
The research framework is graphically shown in Figure 1, which also illustrates the relations
between these problems.
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Figure 1. Schematic framework for the tasks of designing optimal equal and near-equal
bale dimensions.

2.3. Necessary and Sufficient Conditions of Bale Dimensions Equilibrium and Near-Equilibrium
2.3.1. Near-Equal Optimal Dimensions

By Definition 2, the optimal bale dimensions are such that Equation (4) holds and the
optimality condition expressed by Equation (1) is satisfied. For a given bale volume Vb0
Equations (2) and (4) yield

D∗b =
3

√
4(1 + ε0)Vb0

π
(5)

and

H∗b = 3

√
4Vb0

π(1 + ε0)
2 . (6)

The necessary and sufficient conditions of near-equal optimal dimensions are given
by the following proposition, which is proved in Appendix B.

Proposition 1. For given: bale volume Vb0, width b f of the film and its mechanical parameters v f ,
ε l f , numbers of film layers pb, pu and the overlaps δ, k f b, k f , such that the applicability condition
expressed by Equation (A4) holds, the optimal bale diameter D∗b is near-equal to its optimal height
H∗b with order ε0 in the sense of Definition 2 if and only if one (and only one) of the conditions
is satisfied:
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(i) order ε0 and the bale, film, and wrapping parameters are related by the equation

pbΩ
(

k f

)(
2δ− b f rk f b

)(
3
√

1 + ε0
)2

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0

=
3

√
4Vb0

π
, (7)

(ii) the equations

pbΩ
(

k f

)
= pu

(
1− k f b

)
+ 2pu

(
1− k f b

)
ε0 (8)

and
2δ− b f rk f b = 0 (9)

are satisfied, simultaneously. The optimal bale diameter D∗b and height H∗b are described by
Equations (5) and (6), respectively; in case (i) for a given bale volume, in case (ii) for an
arbitrary volume Vb0.

The necessary and sufficient conditions for near-equal optimal bale dimensions,
case (ii), are independent of Vb0; they are volume–free. However, those from case (i)
hold for given Vb0, i.e., they are volume-fixed.

Note, that the inequality

2δ− b f rk f b

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0

> 0 (10)

must hold to satisfy Equation (7); however, the expression
(

2δ− b f rk f b

)
may be positive

or negative, depending on the sign of the denominator. The necessary condition expressed
by Equation (10) is independent on Vb0, while Equation (7) depends on the particular value
of bale volume Vb0. Both conditions depend on ε0.

2.3.2. Bale Volume of Near-Equilibrium

From Equation (7), provided that inequality from Equation (10) is satisfied, we have

Vb0 =
π

4

 pbΩ
(

k f

)(
2δ− b f rk f b

)(
3
√

1 + ε0
)2

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0

3

, (11)

whence

∂Vb0
∂ε0

=
πpbΩ

(
k f

)(
2δ− b f rk f b

)
2 3
√

1 + ε0
Vb0

2/3

[
pbΩ

(
k f

)
+ 2pu

(
1− k f b

)
+ pu

(
1− k f b

)
ε0

]
[

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0

]2 .

Thus, for given film and wrapping parameters, bale volume resulting in near-equal
optimal dimensions is monotonically increasing function of ε0 whenever

2δ > b f rk f b, (12)

and decreases with ε0, if 2δ < b f rk f b. If inequality from Equation (12) holds, then the
volume Vb0 decreases if the overlap k f b grows, while in the opposite case the influence of
k f b is not so evident and depends on the sign of the expression in the square brackets of
the numerator in the last fraction of the right hand side of the following equation

∂Vb0
∂k f b

=
3πpbΩ

(
k f

)
( 3
√

1 + ε0)
2

4
Vb0

2/3

[
−b f r pbΩ

(
k f

)
+ b f r pu(1− 2δ) + 2puε0

(
b f r − 2δ

)]
[

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0

]2 .
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If condition from Equation (12) holds, then Vb0 given by Equation (11) grows with
the increase of the overlap δ. In the opposite case the larger δ is, the smaller is the volume
resulting in near-equal optimal dimensions. From the analysis of Equation (11) it also
follows that the greater film width is, the smaller is Vb0, provided that inequality from
Equation (12) holds. The influence of the bottom layers overlaps k f and δ is illustrated in
Figure 2a,b, where near-equilibrium volume Vb0 is depicted as a function of ε0 for plastic
film (e.g., polyethylene, PE) characterized by Poisson’s ratio v f = 0.34 [38] and unit defor-
mation ε l f = 0.7(−) [7,12,14] of popular width b f = 0.75 m [21–23,29,42]. Four bottom
and upper film layers pb = pu = 4 and overlap ratio k f = 0.5 are assumed. Figure 3a,b
illustrate the effect of the film width b f for commonly used overlap δ = 0.2 m [21–23]
and two overlap ratios k f b = 0.3, 0.35; other parameters remain unchanged. The vol-
ume Vb0 = 1.357 m3 corresponding to a standard large bale of diameter and height
Db = Hb = 1.2 m [24,25] is also marked on these pictures. Finally, note that for stan-
dard overlap δ = 0.2 m [6,14,20–23], PE film and since k f b < 1

2 , the condition from
Equation (12) holds, in particular, if the film width b f < 1.052 m. For δ = 0.15 m this
requirement is reduced to b f < 0.789 m. For exemplary k f b = 0.4 and δ = 0.2 m inequality
from Equation (12) is satisfied for b f < 1.31 m; if δ = 0.15 m this requirement is sharpened
to b f < 0.99 m.

Figure 2. The volume Vb0, Equation (11), yielding the near-equal optimal bale dimensions as a function of the order ε0

of near-equilibrium for pb = pu = 4 bottom and upper film layers, film width b f = 0.75 m and wrapping parameters:
(a) overlaps δ = 0.2 m and k f b = 0.25, 0.3, 0.32, (b) k f b = 0.3 and δ = 0.15, 0.2, 0.25 m.

Figure 3. The volume Vb0, Equation (11), yielding the near-equal optimal bale dimensions as a function of the order ε0

of near-equilibrium for pb = pu = 4 bottom and upper film layers, overlap δ = 0.2 m and parameters: (a) overlap ratio
k f b = 0.3 and film widths b f = 0.5, 0.75, 0.85 m, (b) overlap ratio k f b = 0.35 and film widths b f = 0.5, 0.75, 0.85 m.

Since in practically used wrapping systems the condition expressed by Equation (12)
is usually satisfied and the near-equilibrium bale volume increases with the order ε0,
a question arises about the conditions to be met by the film and wrapping parameters
to guarantee for any 0 ≤ ε ≤ ε0 the existence of a bale volume such that the optimal
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dimensions D∗b , H∗b are near-equal with order ε. The following result, derived in Appendix B
based on Proposition 1, answers this question. The notation Vb0(ε), D∗b (ε), and H∗b (ε) is
introduced, locally, for near-equal bale parameters to emphasize the relationship between ε
and Vb0, D∗b , and H∗b .

Proposition 2. For given film parameters b f v f , ε l f , numbers of film layers pb, pu and the
overlaps δ, k f b, k f , such that the applicability condition expressed by Equation (A4) holds, for any
0 ≤ ε ≤ ε0, where a sufficiently small ε0 > 0, there exists bale volume Vb0(ε) > 0 such that the
optimal bale diameter D∗b is near-equal to its optimal height H∗b with order ε not greater than ε0, i.e.,

1 ≤
D∗b
H∗b

= 1 + ε ≤ 1 + ε0,

if and only if
pbΩ

(
k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0 6= 0 (13)

and one of the following conditions is satisfied:

(a) inequality from Equation (12) holds,
(b) two inequalities

2δ− b f rk f b < 0, (14)

pbΩ
(

k f

)
− pu

(
1− k f b

)
< 0, (15)

hold, simultaneously. Then, for any 0 ≤ ε ≤ ε0 and volume Vb0(ε) Equation (7) holds for
ε0 = ε. The optimal bale dimensions D∗b (ε), H∗b (ε) are expressed by equations:

D∗b (ε) =
pbΩ

(
k f

)(
2δ− b f rk f b

)
(1 + ε)

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε

, (16)

H∗b (ε) =
pbΩ

(
k f

)(
2δ− b f rk f b

)
pbΩ

(
k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε

. (17)

In case (a), Vb0(0) ≤ Vb0(ε) ≤ Vb0(ε0) and D∗b (ε), H∗b (ε) are monotonically increasing for
0 ≤ ε ≤ ε0. In case (b), Vb0(0) ≥ Vb0(ε) ≥ Vb0(ε0) and D∗b (ε), H∗b (ε) are monotonically
decreasing for 0 ≤ ε ≤ ε0. If inequalities from Equations (13) and (14) hold, but inequality
expressed by Equation (15) not, then there exists positive ε such that 0 < ε < ε0 and

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε = 0. (18)

For any ε < ε ≤ ε0 bale volume Vb0(ε) satisfying Equation (7) and optimal bale dimensions
D∗b (ε), H∗b (ε) are near-equal in the sense of the inequalities

1 + ε <
D∗b (ε)
H∗b (ε)

= 1 + ε ≤ 1 + ε0.

Both Vb0(ε) and D∗b (ε), H∗b (ε) are monotonically decreasing for ε < ε ≤ ε0.

Inequality expressed by Equation (12) holds for narrow films, while inequality form
Equation (14) is satisfied for wider films.
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2.3.3. Equal Optimal Dimensions

In this case the optimal bale diameter is equal to bale height, i.e., by Equation (2)

D∗b = H∗b =
3

√
4Vb0

π
, (19)

and the optimality condition expressed by Equation (1) is satisfied, simultaneously. The nec-
essary and sufficient conditions for the equilibrium are given by the following proposition,
which results directly from Proposition 1 for ε0 = 0.

Proposition 3. For given: bale volume Vb0, width of the film b f and its mechanical parameters v f ,
ε l f , numbers of film layers pb, pu and the overlaps δ, k f b, k f , such that the applicability condition
expressed by Equation (A4) holds, the optimal bale diameter D∗b is equal to its optimal height H∗b if
and only if one (and only one) of the conditions is satisfied:

(i) the bale, film and wrapping parameters are related by the equation

pbΩ
(

k f

)(
2δ− b f rk f b

)
pbΩ

(
k f

)
− pu

(
1− k f b

) =
3

√
4Vb0

π
,

(ii) the equation

pbΩ
(

k f

)
= pu

(
1− k f b

)
and Equation (9) are satisfied, simultaneously. The optimal bale dimensions are given directly
by Equation (19) for fixed volume Vb0 in case (i) or for arbitrary volume in case (ii).

Note, that in case (i) the necessary condition for bale dimensions equilibrium expressed
by Equation (10) takes the form

2δ− b f rk f b

pbΩ
(

k f

)
− pu

(
1− k f b

) > 0.

3. Results and Discussion

In this section four problems of the selection of optimal bale dimensions being equal
and near-equal are formulated, solved and illustrated by related examples.

It is known [17] that any overlap ratio of the form of irreducible fraction in which
dividend is the divisor minus one, i.e.,

k f = k f ,u =
q− 1

q
, (20)

where q ∈ N , N denotes the set of positive integer numbers, results in the uniform film
distribution on the bale’s whole lateral surface and guarantee the same minimal film usage.
An important special case for even pu is q = 2, which means 50% overlap between the
successive film strips [6,17,24,43]. For k f = k f ,u function Ω

(
k f

)
= 1 and since pu = pl − pb,

the applicability condition expressed by Equation (A4) takes the form

pl − pb
q

= m, m ∈ N . (21)

From the practical perspective, only four or five smallest such overlap ratios are useful
[6,17,22,24,43,44], i.e., 2 ≤ q ≤ 5 are worth considering.

Bearing in mind the dichotomous nature of the equilibrium conditions specified by
Propositions 1 and 3, the problems of volume-free and volume-fixed near-equal and equal
bale optimal dimensions design will be considered, separately.
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3.1. Volume-Free Near-Equal Optimal Bale Dimensions Design

Let us consider the following problem of the optimal choice of bale dimensions.

Problem 1. Given film parameters b f , v f , ε l f , upper layers overlap ratio k f , Equation (20), number
of global film layers pl , and the order of near-equilibrium ε0. Find film layers decomposition (pb, pu)
and the bottom layers overlaps

δmin ≤ δ ≤ δmax, (22)

where δmin and δmax are the smallest and largest admissible overlap δ, and

k f b,min ≤ k f b ≤ k f b,max <
1
2

, (23)

where k f b,min and k f b,max are the smallest and largest admissible k f b, such that the applicability
condition, Equation (21), holds and for any bale volume Vb0 the optimal bale dimensions D∗b , H∗b
are near-equal with given order ε0.

In view of Proposition 1, case (ii), the solution to the above problem exists if and only if
there exist integer pb, pu and continuous parameters k f b, δ satisfying Equations (8) and (9),
inequalities expressed by Equations (22) and (23), and the applicability condition,
Equation (21). This set of equations and inequalities is solved in the Appendix B, this
solution is summarized in the next result.

Proposition 4. If inequality

b f r(2 + 2ε0) > 2δmax(1 + 2ε0) (24)

holds, then the solution to the Problem 1 exists if and only if there exists an integer pb such
that inequalities:

pl

(
1− k f b,max

)
(1 + 2ε0)

(2 + 2ε0)− k f b,max(1 + 2ε0)
≤ pb ≤ pl

(
1− k f b,min

)
(1 + 2ε0)

(2 + 2ε0)− k f b,min(1 + 2ε0)
, (25)

pl

(
b f r − 2δmax

)
(1 + 2ε0)

b f r(2 + 2ε0)− 2δmax(1 + 2ε0)
≤ pb ≤ pl

(
b f r − 2δmin

)
(1 + 2ε0)

b f r(2 + 2ε0)− 2δmin(1 + 2ε0)
(26)

are satisfied together with the applicability condition, Equation (21). For any pb solving Problem 1
the overlap radio k f b is given by equation

k f b =
pl(1 + 2ε0)− pb(2 + 2ε0)

(pl − pb)(1 + 2ε0)
, (27)

while by Equation (9) the overlap δ = 1
2 b f rk f b. For the assumed bale volume optimal bale

dimensions D∗b and H∗b are given by Equations (5) and (6), respectively.

Problem 1 is a mixed decision problem with integer variable pb and continuous
variables δ, k f b. From Proposition 4 the following algorithm follows.

3.1.1. Algorithm 1

Assume the inequality expressed by Equation (24) is satisfied and film parameters b f ,
v f , ε l f , upper layers overlap ratio k f , Equation (20), number of global film layers pl , and
the order of near-equilibrium ε0 are given. Take minimal δmin, k f b,min and maximal δmax,
k f b,max values of the overlaps δ, k f b based on the knowledge and experience of baling to
guarantee an appropriate tightness of the wrappings.
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1. Determine the set P1 of all integer pb defined by the inequalities

max

{
pl

1−k f b,max
2+2ε0
1+2ε0

−k f b,max
, pl

b f r−2δmax
2+2ε0
1+2ε0

b f r−2δmax

}
≤ pb≤ min

{
pl

1−k f b,min
2+2ε0
1+2ε0

−k f b,min
, pl

b f r−2δmin
2+2ε0
1+2ε0

b f r−2δmin

}
, (28)

for which there exists 2 ≤ q ≤ 5 satisfying applicability condition, Equation (21).
2. If the set P1 is empty, then the solution to Problem 1 does not exist—go to step 3.

Otherwise, go to step 4.
3. Change the lower k f b,min, δmin or upper k f b,max, δmax bounds of wrapping parameters,

or the order ε0, or the film width b f and repeat the computations starting from step 1.
4. For any pb ∈ P1 compute the overlap ratio k f b according to Equation (27) and, next,

the overlap δ = 1
2 b f rk f b.

5. If a bale volume Vb0 is assumed, then for any pb ∈ P1 compute film usage FC obtained
for optimal D∗b , H∗b , Equations (5) and (6), using Equation (A2) and choose that pb
which yields the minimal film consumption.

Application of Proposition 4 and Algorithm 1 is illustrated by an example.

3.1.2. Example 1

Plastic film of the parameters v f = 0.34, ε l f = 0.7(−) and b f = 0.75 m is assumed.
Even numbers of global film layers 4 ≤ pl ≤ 16 and “uniform” overlap ratios k f , Equation (20),
are considered. Firstly, the following bounds for bottom layers overlaps are assumed:
k f b,min = 0.2, k f b,max = 0.45, δmin = 0.15 m, δmax = 0.3 m. Three orders ε0 = 0.05, 0.1, 0.15
of near-equilibrium are considered. Inequality from Equation (24) is satisfied. Unfortu-
nately, the set P1 of integer solutions pb of the inequalities expressed by Equation (28) is
empty for all ε0 considered. When the lower constraint of δ is changed into δmin = 0.1 m,
then for each ε0 the set P1 is composed of a few pb. They are listed in Table 1 together with
respective overlaps k f b and δ. Bale volume Vb0 = 1.357 m3 is assumed, film usage for the
optimal bale dimensions is computed and given in the last column of Table 1; for all pl for
which the set P1 is nonempty, there is only one pb ∈ P1. Note, that for given pl film usage
obtained for D∗b , H∗b and decomposition (pb, pu) are the same for all ε0 considered. Thus,
the smallest ε0 can be chosen. For example, for Vb0 = 1.357 m3 taking ε0 = 0.05 we obtain
near-equal optimal dimensions D∗b = 1.22 m and H∗b = 1.162 m. The same regularity holds
for wider film b f = 0.9 m, for which the solutions to Problem 1 are given in Table 2.

Table 1. The numbers of global pl and bottom pb film layers and bottom layers overlaps k f b, δ for
which Problem 1 of volume-free near-equal optimal bale dimensions design has solution for the
assumed order of near-equilibrium ε0 and bale from Example 1; film width b f = 0.75 m, the bounds
for constraints from Equations (22) and (23): k f b,min = 0.2, k f b,max = 0.45, δmin = 0.1 m, δmax = 0.3 m,
4 ≤ pl ≤ 16 were considered. Film usage FC, Equation (A2), for the optimal bale dimensions for bale
volume Vb0 = 1.357 m3.

ε0 pl pb kfb [−] δ [m] FC
[
m−1]

0.05
10 4 0.394 0.113 50.815
12 5 0.351 0.100 61.958

0.1

10 4 0.444 0.127 50.815
12 5 0.405 0.116 61.958
14 6 0.375 0.107 71.541
16 7 0.352 0.101 81.124

0.15
14 6 0.423 0.121 71.541
16 7 0.402 0.115 81.124
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Table 2. The numbers of global pl and bottom pb film layers and bottom layers overlaps k f b, δ

for which Problem 1 of volume-free near-equal optimal bale dimensions design has solution for
given order of near-equilibrium ε0 and bale from Example 1; film width b f = 0.9 m, the bounds for
constraints from Equations (22) and (23): k f b,min = 0.2, k f b,max = 0.45, δmin = 0.1 m, δmax = 0.3 m,
4 ≤ pl ≤ 16 were considered. Film usage FC, Equation (A2), for the optimal bale dimensions for bale
volume Vb0 = 1.357 m3.

ε0 pl pb kfb [−] δ [m] FC
[
m−1]

0.05

10 4 0.394 0.135 49.478
12 5 0.351 0.120 59.507
14 6 0.318 0.109 67.664
16 7 0.293 0.100 77.693

0.1

10 4 0.444 0.152 55.360
12 5 0.405 0.139 59.507
14 6 0.375 0.129 67.664
16 7 0.352 0.121 77.693

0.15
14 6 0.423 0.145 67.664
16 7 0.402 0.138 77.693

3.1.3. Effect of the Non-Equilibrium Order ε0

Parameter ε0 influences the constraints expressed by Equations (25) and (26). If ε0
grows, then for given pl both the lower and upper bounds for pb expressed by
Equations (25) and (26) increase provided that the inequality form Equation (24) holds;
however, these changes are not significant (see Table 1).

3.1.4. Effect of the Film Width

Film width b f , or equivalently b f r, influence the inequality from Equation (24); if
b f r grows, then this inequality is still satisfied. Also, the lower and upper bounds from
inequalities expressed by Equation (26) grow with b f r. Thus, the increase of the film
width can extend the set of integer pb which solve Problem 1. If, for example, the width
b f = 0.9 m, then for δmin = 0.15 m the set of solutions to Problem 1 for ε0 = 0.1 is not
empty; for pl = 10 integer pb = 4 and the bottom layers overlaps k f b = 0.444, δ = 0.152 m
solve this task. The solutions to Problem 1 for b f = 0.9 m and δmin = 0.1 m are summarized
in Table 2.

3.2. Volume-Fixed Near-Equal Optimal Bale Dimensions Design

Based on Proposition 1, case (i), the following problem of bale dimensions optimal
design was formulated.

Problem 2. Given: film parameters b f , v f , ε l f , upper layers overlap ratio k f , Equation (20),
number of global film layers pl , bale volume Vb0, and order of near-equilibrium ε0. Find film layers
decomposition (pb, pu) and the bottom layers overlaps δ, k f b satisfying constraints expressed by
Equations (22) and (23) such that the optimal bale dimensions D∗b , H∗b yielding bale volume Vb0 are
near-equal with order ε0 and results in the minimal film usage.

Based on Proposition 1 and the properties of film consumption index FC, Equation (A2),
with non-continuous ceiling function the solution of the above problem is derived in Ap-
pendix B. The next proposition abstracts this solution.

Proposition 5. The solution to Problem 2 exists if and only if there exists an integer pb and k f b
such that inequalities:

ǩ f b(pb) ≤ k f b ≤ min
{

k̂ f b(pb),
=
k f b(pb), k f b,max

}
, (29)
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k f b 6=
(pl − pb)(1 + 2ε0)− pb

(pl − pb)(1 + 2ε0)
= k f b,ne(pb) (30)

are satisfied together with the applicability condition, Equation (21), where

=
k f b(pb) =

2δmax
(

3
√

1 + ε0
)2 − 3

√
4Vb0

π + (1 + 2ε0)
(

pl
pb
− 1
)

3
√

4Vb0
π

(1 + 2ε0)
(

pl
pb
− 1
)

3
√

4Vb0
π + b f r

(
3
√

1 + ε0
)2

, (31)

ǩ f b(pb) = max


2δmin

(
3
√

1 + ε0
)2 − 3

√
4Vb0

π + (1 + 2ε0)
(

pl
pb
− 1
)

3
√

4Vb0
π

(1 + 2ε0)
(

pl
pb
− 1
)

3
√

4Vb0
π + b f r

(
3
√

1 + ε0
)2

, k f b,min

, (32)

and k̂ f b(pb) is given by

k̂ f b(pb) = 1− 2

b f r( 3√1+ε0)
2

3
√

4Vb0
π


3
√

4Vb0
π

[
2

1−ǩ f b(pb)
−
( pl

pb
−1
)
(1+2ε0)

]
b f r( 3√1+ε0)

2

+
(

pl
pb
− 1
)
(1 + 2ε0)

. (33)

For any such pb and k f b the overlap δ is given by equation

δ =

3
√

4Vb0
π

2
(

3
√

1 + ε0
)2

[
1−

(
pl
pb
− 1
)(

1− k f b

)
(1 + 2ε0)

]
+

b f rk f b

2
, (34)

the optimal bale dimensions are described by Equations (5) and (6) and film usage

FC(pb) =
4b f

3
√

1 + ε0(
ε l f + 1

)[
3
√

4Vb0
π

]2

pb


3
√

4Vb0
π

[
2

1−ǩ f b(pb)
−
(

pl
pb
− 1
)
(1 + 2ε0)

]
b f r
(

3
√

1 + ε0
)2

+
2(2 + ε0)

π(1 + ε0)


π 3
√

4Vb0
π (1 + ε0)(pl − pb)

2b f r
(

3
√

1 + ε0
)2


, (35)

where dxe denotes ceiling function [45]. Integer p∗b solving Problem 2 is such that

FC(p∗b) = min
pb

FC(pb). (36)

It may be easily shown that if the following inequality

b f r

1− 1(
pl
pb
− 1
)
(1 + 2ε0)

 < 2δmin (37)

holds, then
k f b,ne(pb) < k f b(pb) (38)

and condition from Equation (30) can be neglected. In all the tested examples the above
inequality has been satisfied, compare Table 3 below. The inequality from Equation (37),
similar to the condition expressed by Equation (12), holds especially if the number of
bottom film layers is such that

pb >
1 + 2ε0

2 + 2ε0
pl .

The inequalities specified in the above proposition must be solved for two variables:
integer pb and continuous k f b. For any fixed pb the overlap δ given by Equation (34)
increases linearly with growing k f b.
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3.2.1. Algorithm 2

Assume film parameters b f , v f , ε l f , overlap ratio k f , Equation (20), number of global
film layers pl , the order of near-equilibrium ε0, and bale volume Vb0 are given. Take
minimal δmin, k f b,min and maximal δmax, k f b,max values of the overlaps δ, k f b to guarantee
the appropriate tightness of the wrappings.

1. Determine the set P2 of all integer pb for which there exists 2 ≤ q ≤ 5 satisfying
applicability condition, Equation (21), and the set of overlap ratios K2(pb) defined by
the inequalities expressed by Equations (29) and (30) is nonempty.

2. If the set P2 is empty, then the solution to Problem 2 does not exist—go to step 3.
Otherwise, go to step 4.

3. Change the lower k f b,min, δmin or upper k f b,max, δmax bounds of wrapping parameters,
or the order ε0, or the film width b f and go to step 1.

4. Solve in p∗b the integer programming task expressed by Equation (36) for pb ∈ P2.
5. For the best p∗b choose practically reasonable k f b ∈ K2

(
p∗b
)
, compute the overlap

δ = δ
(

p∗b
)

according to Equation (34) and optimal D∗b , H∗b using Equations (5) and (6).
The minimal film consumption is equal to FC

(
p∗b
)

computed in step 4.

3.2.2. Example 2

Film parameters and overlaps constraints from Example 1 are taken, again. Bale
volume Vb0 = 1.357 m3 is assumed together with orders of near-equilibrium ε0 = 0.05

and ε0 = 0.1. Integer pb, bottom ǩ f b(pb) and upper k̂ f b,
=
k f b bounds, parameters k f b,ne

and closed intervals K2 of k f b are given in Table 3. In all tested examples k f b,ne < ǩ f b(pb).
The upper bound of the closed interval of k f b defined by Equation (29) is determined by

k̂ f b(pb), or
=
k f b(pb), or k f b,max—there is no rule here. For any k f b ∈ K2 the formulas from

Equation (34) for computing δ are presented in the penultimate column. In the last column
film usage FC(pb), Equation (35), is given. For most pb ∈ P2 the closed intervals K2(pb)
are wide enough to select a practically convenient overlap ratio k f b. In some cases this
interval is very narrow, e.g., for pl = 10, pb = 6, we have K2 = [0.200, 0.204]; however,
k f b = 0.2 is acceptable from the engineering point of view. For ε0 = 0.05 and pl = 4, 6, 8 set
P2 is composed of only one number pb of bottom film layers and this pb solves Problem
2. For pl = 10, 12, 14, 16 there are at least two pb for which the set K2(pb) is nonempty,
the optimal film usage FC

(
p∗b
)

defined in Equation (36) is marked by bold in Table 3. For
ε0 = 0.05, according to Equations (5) and (6), the optimal bale dimensions D∗b = 1.22 m,
H∗b = 1.162 m, for ε0 = 0.1 we have D∗b = 1.239 m, H∗b = 1.126 m. If ε0 = 0.05 is assumed,
then for pl = 4, 6, 8 the overlaps k f b = 0.3 and δ = 0.2195 ∼= 0.22 can be applied. For
pl = 10 Problem 2 is solved for the same overlaps for pb = 5 yielding minimal film usage.
Similarly, for pl = 16 and pb = 8. For pl = 12 solution to Problem 2 is composed by pb = 7
and, for example, k f b = 0.2 and δ = 0.272. For pl = 14 we have: pb = 6 and k f b = 0.4 and
δ = 0.184. Similarly, based on the data from Table 3, the solutions to Problem 2 can be
found for the greater order ε0 = 0.1.
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Table 3. The numbers of global pl and bottom pb film layers, lower ǩ f b(pb), Equation (32), and upper k̂ f b,
=
k f b bounds

defined in Equations (33) and (31), parameters k f b,ne, Equation (30), the non-empty sets of overlap ratios K2(pb) defined
by the inequalities expressed by Equations (29) and (30) and the linear functions, Equation (34), describing overlap δ for
k f b ∈ K2(pb) determined to find the solution to Problem 2 of near-equal optimal bale dimensions design for fixed volume
Vb0 = 1.357 m3, bale from Example 2; orders of near-equilibrium ε0 = 0.05, 0.1, film width b f = 0.75 m, bounds for the
constraints from Equations (22) and (23): k f b,min = 0.2, k f b,max = 0.45, δmin = 0.15 m, δmax = 0.3 m, 4 ≤ pl ≤ 16. Film usage
FC(pb), Equation (35), for pb ∈ P2 and k f b ∈ K2(pb); the optimal FC

(
p∗b
)

defined in Equation (36) is marked by bold.

ε0 pl pb kfb,ne [−]
ˇ
kfb(pb) [−]

^
kfb [−]

=
kfb [−] K2 δ [m] FC(pb)

0.05

4 2 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 20.804
6 3 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 31.979
8 4 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 41.607

10 4 0.394 0.424 0.447 0.545 [0.424, 0.447] 1.244·k f b − 0.378 52.445
10 5 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 51.235
10 6 −0.364 0.200 0.260 0.204 [0.200, 0.204] 0.712·k f b + 0.155 51.573
12 5 0.351 0.393 0.430 0.520 [0.393, 0.430] 1.180·k f b − 0.314 62.073
12 6 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 62.411
12 7 −0.273 0.200 0.274 0.237 [0.200, 0.237] 0.742·k f b + 0.124 61.200
14 6 0.318 0.370 0.418 0.502 [0.370, 0.418] 1.138·k f b − 0.271 71.700
14 7 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 72.038
14 8 −0.212 0.200 0.284 0.259 [0.200, 0.259] 0.765·k f b + 0.102 72.376
16 7 0.293 0.353 0.409 0.488 [0.353, 0.409] 1.107·k f b − 0.241 82.876
16 8 0.091 0.225 0.348 0.387 [0.225, 0.348] 0.925·k f b − 0.058 81.666
16 9 −0.169 0.200 0.292 0.276 [0.200, 0.276] 0.783·k f b + 0.084 82.004

0.1

4 2 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 20.885
6 3 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 32.096
8 4 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 41.769
8 5 −0.389 0.200 0.273 0.206 [0.200, 0.206] 0.691·k f b + 0.158 42.217

10 5 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 52.980
10 6 −0.250 0.200 0.293 0.255 [0.200, 0.255] 0.736·k f b + 0.113 51.890
12 5 0.405 0.433 0.461 0.554 [0.433, 0.450] 1.232·k f b − 0.383 62.206
12 6 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 62.654
12 7 −0.167 0.200 0.307 0.286 [0.200, 0.286] 0.768·k f b + 0.080 63.102
14 6 0.375 0.411 0.449 0.538 [0.411, 0.449] 1.187·k f b − 0.338 73.417
14 7 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 72.327
14 8 −0.111 0.200 0.317 0.308 [0.200, 0.308] 0.792·k f b + 0.056 72.775
16 7 0.352 0.395 0.440 0.525 [0.395, 0.440] 1.154·k f b − 0.306 83.091
16 8 0.167 0.273 0.381 0.429 [0.273, 0.381] 0.961·k f b − 0.113 83.538
16 9 −0.071 0.200 0.325 0.324 [0.200, 0.324] 0.811·k f b + 0.038 82.448
16 10 −0.389 0.200 0.273 0.206 [0.200, 0.206] 0.691·k f b + 0.158 82.896

3.3. Volume-Free Optimal Equal Bale Dimensions Design

In this section the problem of volume-free design of equal optimal bale dimensions
is considered being, in fact, a special case of Problem 1 for the order of near-equilibrium
ε0 = 0.

Problem 3. Given: film parameters b f , v f , ε l f , overlap ratio k f , Equation (20), and number
of global film layers pl . Find film layers decomposition (pb, pu) and overlaps δ, k f b satisfying
constraints expressed by Equations (22) and (23) such that the applicability condition, Equation (21),
hold and for any bale volume Vb0 the optimal dimensions D∗b , H∗b are equal.

The solution to the above problem is identical with that of Problem 1 for ε0 = 0. Thus,
the next result follows directly from Proposition 4 by lying ε0 = 0 in inequalities expressed
by Equations (25) and (26) and in Equations (5), (6) and (27). Inequality from Equation (24),
here b f r > δmax, is identity.
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Proposition 6. The solution to Problem 3 exists if and only if there exists an integer pb such
that inequalities

max
{

b f r−2δmax

2(b f r−δmax)
pl ,

1−k f b,max
2−k f b,max

pl

}
≤ pb ≤ min

{
pl
2 ,

b f r−2δmin

2(b f r−δmin)
pl ,

1−k f b,min
2−k f b,min

pl

}
(39)

are satisfied together with the applicability condition, Equation (21). For any such pb the bottom
layers overlaps are uniquely determined by

k f b =
pl − 2pb
pl − pb

, δ =
1
2

b f rk f b. (40)

For a given bale volume optimal bale dimensions D∗b and H∗b are given by Equation (19).

Thus, to solve Problem 3 an integer pb fulfilling inequalities from Equation (39) must
be found. The fractions dependent on b f r in “max” and “min” functions, which define the
lower and upper bounds in this inequalities, increase with the film width. However, the
upper and lower bounds may be determined by other arguments of “max” or “min”, thus
a larger b f r does not necessarily imply a greater pb. Proposition 6 yielded the following
algorithm.

3.3.1. Algorithm 3

Assume film parameters b f , v f , ε l f , overlap ratio k f , Equation (20), and the number of
global film layers pl are given. Take minimal δmin, k f b,min and maximal δmax, k f b,max values
of the overlaps δ, k f b.

1. Determine the set P3 of all integer pb defined by the inequalities from Equation (39)
for which there exists 2 ≤ q ≤ 5 satisfying applicability condition, Equation (21).

2. If the set P3 is empty, then the solution to Problem 3 does not exist—go to step 3.
Otherwise, go to step 4.

3. Change the lower k f b,min, δmin or upper k f b,max, δmax bounds of wrapping parameters
or the film width b f and go to step 1.

4. For any pb ∈ P3 compute the overlap ratio k f b and, next, overlap δ according to
Equation (40).

5. For any pb ∈ P3 and assumed bale volume Vb0 compute film usage obtained for the
optimal D∗b , H∗b , Equation (19), using Equation (A2) and choose that pb which yields
the minimal film consumption.

3.3.2. Example 3

The same mechanical parameters of the film and wrapping parameters constraints
as in the previous examples are assumed. Film widths b f = 0.75, 0.9 m and 4 ≤ pl ≤ 16
are considered. For b f = 0.75 m, similarly as in Example 1, the set of integer solutions
pb of inequalities expressed by Equation (39) is empty for all pl considered, while for the
wider film for pl = 14 solution to Problem 3 exists. When the lower constraint expressed
by Equation (22) is changed into δmin = 0.1 m, then for some pl Problem 3 has a solution.
These solutions are listed in Table 4. For every pl , nonempty P3 is a singleton (a unit set),
thus step 5 of the selection of best film layers composition pl = pb + pu can be omitted
here; however film usage FC is added in the last column.
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Table 4. The numbers of global pl and bottom pb film layers and bottom layers overlaps k f b, δ for
which Problem 3 of volume-free equal optimal bale dimensions design has a solution for bale from
Example 3; film width b f = 0.75, 0.9 m, the bounds from Equations (22) and (23): k f b,min = 0.2,
k f b,max = 0.45, δmin = 0.1, 0.15 m, δmax = 0.3 m, 4 ≤ pl ≤ 16. Film usage FC, Equation (A2) for the
assumed bale volume Vb0 = 1.357 m3.

δmin [m] bf [m] pl pb kfb [−] δ [m] FC
[
m−1]

0.1

0.75
8 3 0.400 0.114 41.047

14 5 0.444 0.127 72.524
16 6 0.400 0.114 82.095

0.9

8 3 0.400 0.137 39.449
10 4 0.333 0.114 49.478
14 5 0.444 0.152 76.222
16 6 0.400 0.137 78.898

0.15 14 5 0.444 0.152 76.222

3.4. Volume-Fixed Optimal Equal Bale Dimensions Design

Problem 4. Given: film parameters b f , v f , ε l f , overlap ratio k f , Equation (20), number of global
film layers pl and bale volume Vb0. Find film layers decomposition (pb, pu) and overlaps δ, k f b
satisfying constraints from Equations (22) and (23) such that the optimal bale dimensions D∗b , H∗b
resulting in the volume Vb0 are equal and film usage is minimal.

Lying ε0 = 0 in inequalities expressed by Equations (29) and (30) and in
Equations (34) and (35) based on Proposition 5 the following solution results.

Proposition 7. The solution to Problem 4 exists if and only if there exist k f b and an integer pb
such that inequalities

≡
k f b(pb) = max

{
k̆ f b(pb), k f b,min

}
≤ k f b ≤ min

k̃ f b(pb),
2δmax +

(
pl
pb
− 2
)

3
√

4Vb0
π(

pl
pb
− 1
)

3
√

4Vb0
π + b f r

, k f b,max

 (41)

and inequality

k f b 6=
pl − 2pb
pl − pb

(42)

are satisfied together with the applicability condition, Equation (21), where

k̆ f b(pb) =
2δmin +

(
pl
pb
− 2
)

3
√

4Vb0
π(

pl
pb
− 1
)

3
√

4Vb0
π + b f r

, (43)

and k̃ f b(pb) is defined by the next equation with
≡
k f b(pb) introduced in Equation (41)

k̃ f b(pb) = 1− 2

b f r
3
√

4Vb0
π


3
√

4Vb0
π

 2

1−
≡
k f b(pb)

−
( pl

pb
−1
)

b f r

+
(

pl
pb
− 1
) . (44)

For any such pb and k f b the overlap δ is given by

δ =

3
√

4Vb0
π

2

[
1−

(
pl
pb
− 1
)(

1− k f b

)]
+

b f rk f b

2
, (45)
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the optimal bale dimensions are given by Equation (19) and film usage

FC(pb) =
4b f

(ε l f +1)
[

3
√

4Vb0
π

]2


pb

3
√

4Vb0
π

 2

1−
≡
k f b(pb)

−
( pl

pb
−1
)

b f r

+ 4
π

⌈
π

3
√

4Vb0
π (pl−pb)

2b f r

⌉. (46)

Integer p∗b solving Problem 4 is defined by optimization task expressed by Equation (36).

Thus, the inequalities specified in the proposition must be solved for two variables:
integer pb and continuous k f b. Next optimization task, Equation (36), must be solved and
the overlap δ can be computed.

Example 4

Film parameters and overlap ratio k f as in the previous examples are given. Film widths
b f = 0.75, 0.9 m, even p such that 4 ≤ pl ≤ 16 and bale volume Vb0 = 1.357 m3 are assumed.

For any pl the sets of overlap ratios k f b satisfying inequalities from Equations (41) and (42)
are given in the fourth column of Table 5. As previously, for any k f b from these closed
intervals the linear formulas from Equation (45) for computing δ are given in the next
column, in the last column film consumptions FC(pb), Equation (46), are enclosed. For these
pl for which there are more than one pb such that inequalities from Equations (41) and (42)
are satisfied the minimal film usage, solving optimization task from Equation (36), is
marked by bold. Note that in most cases film usage for b f = 0.9 m is smaller from that
for b f = 0.75 m; this confirms the analysis of the film width influence on the optimal film
usage from [14,20]—the broader film width is applied, the smaller minimal film usage
is achieved.

Table 5. The numbers of global pl and bottom pb film layers, bottom layers overlaps k f b, δ fulfill-
ing inequalities from Equations (41) and (42), and respective film usage FC, Equation (46), for
Vb0 = 1.357 m3 and bale from Example 4; film widths b f = 0.75, 0.9 m, the bounds from
Equations (22) and (23): k f b,min = 0.2, k f b,max = 0.45, δmin = 0.15 m, δmax = 0.3 m, 4 ≤ pl ≤ 16.
Minimal film usage solving Problem 4 of volume-fixed design of equal optimal bale dimensions is
marked by bold.

bf [m] pl pb kfb [−] δ [m] FC
[
m−1]

0.75

4 2 [0.200, 0.311] 0.886·k f b 20.726
6 3 [0.200, 0.311] 0.886·k f b 30.309
8 3 [0.428, 0.439] 1.286·k f b − 0.4 41.232
8 4 [0.200, 0.311] 0.886·k f b 41.453

10 4 [0.380, 0.412] 1.186·k f b − 0.3 50.815
10 5 [0.200, 0.311] 0.886·k f b 51.036
12 5 [0.346, 0.394] 1.126·k f b − 0.240 61.958
12 6 [0.200, 0.311] 0.886·k f b 60.619
14 6 [0.322, 0.382] 1.086·k f b − 0.2 71.541
14 7 [0.200, 0.311] 0.886·k f b 71.762
14 8 [0.200, 0.204 0.736·k f b + 0.15 70.423
16 6 [0.428, 0.439] 1.286·k f b − 0.4 80.903
16 7 [0.304, 0.372] 1.057·k f b − 0.171 81.124
16 8 [0.200, 0.311] 0.886·k f b 81.345
16 9 [0.200, 0.222] 0.752·k f b + 0.133 81.566
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Table 5. Cont.

bf [m] pl pb kfb [−] δ [m] FC
[
m−1]

0.9

4 2 [0.200, 0.263] 0.943·k f b 20.058
6 3 [0.200, 0.263] 0.943·k f b 30.087
8 3 [0.410, 0.450] 1.343·k f b − 0.4 43.861
8 4 [0.200, 0.263] 0.943·k f b 38.244

10 4 [0.362, 0.377] 1.243·k f b − 0.3 49.478
10 5 [0.200, 0.263] 0.943·k f b 48.273
12 5 [0.330, 0.357] 1.183·k f b − 0.240 59.507
12 6 [0.200, 0.263] 0.943·k f b 58.302
14 5 [0.443, 0.450] 1.423·k f b − 0.480 76.222
14 6 [0.306, 0.343] 1.143·k f b − 0.2 67.664
14 7 [0.200, 0.263] 0.943·k f b 68.331
16 6 [0.410, 0.450] 1.343·k f b − 0.4 87.722
16 7 [0.288, 0.333] 1.114·k f b − 0.171 77.693
16 8 [0.200, 0.263] 0.943·k f b 76.487
16 9 [0.200, 0.206] 0.810·k f b + 0.133 90.389

3.5. Optimal Film Usage

For the combined 3D wrapping technique, the analysis of the optimal film consump-
tion reached for D∗b , H∗b was carried out in [19,20], where it was shown, in particular, that
for the bottom film layers pb � pu the optimal selection of bale diameter and height may
result in a 3.37% to even 23.13% reduction in film usage depending on the number of global
film layers and wrapping parameters, which means up to 23% film cost savings. Many
conclusions regarding the impact of film width, pre-assumed bale volume and numbers
of bottom and upper film layers on near-optimal bale dimensions and near-optimal film
consumption were formulated [19,20].

4. Conclusions

It has been shown that for bale wrapping by a 3D combined method for given film
parameters and given a global number of film layers it is possible, both for assumed and
for an arbitrary bale volume, to select such wrapping parameters that guarantee the pre-
assumed equilibria of optimal bale dimensions. Thus, the “compliance” is the answer to
the question from the title.

The derived necessary and sufficient conditions for the balance of optimal bale di-
mensions allowed for the formulating of four practical problems of selecting the wrapping
parameters, in particular the overlaps in the bottom film layers and decomposition of
the global number of layers into bottom and upper layers. The mathematical form of the
conditions of optimal bale dimensions equilibrium indicated the legitimacy of considering
two separate design strategies, one for fixed and one for free bale volume. Design algo-
rithms were derived. These algorithms only require a solution with respect to the number
of film layers and overlap ratio of the bottom film layers of two or four simple algebraic
inequalities. Then, on the basis of very simple formulas, the remaining wrapping param-
eters and the optimal bale diameter and height can be determined. Examples regarding
standard large bales demonstrate that the algorithms can handle the optimal dimensions’
equilibria problems.

Optimal dimensions mean a reduction in film consumption by up to 23%. Simultane-
ously, equal and near-equal bale dimensions are essential from the agriculture engineering
practice and bale wrapping technique point of view. The algorithms developed can be ap-
plied for design of wrapping processes using a 2D method for cylindrical bales of arbitrary
agricultural materials, e.g., lignocellulosic agricultural residues [46,47], bearing in mind
the minimisation of the film usage and the desired equilibrium between bale dimensions.
Potential applications of the algorithms include the baling of waste, such as municipal
solid waste [48,49], for example.
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Appendix A

Appendix A.1. Film Consumption

A mathematical model describing the consumption of the stretch film to wrap a cylin-
drical bale using combined 3D technique was derived in [14]. It was assumed that the
subsequent film strips, which are wrapped in pb bottom layers on the bale’s lateral surface,
overlap one another, creating the overlap k f bb f r, where k f b is a dimensionless relative ratio
determining the width of the contact between adjacent film strips and the film width after
stretching b f r is described by [12]:

b f r = b f

(
1− v f ε l f

)
, (A1)

where b f is the width of un-stretched film, v f and ε l f are the Poisson’s ratio and unit
deformation of the film. The extreme film strips are overlapped at the bases of the bale for
δ, as shown in [14] (Figure 3). It was assumed that 0 < k f b < 1

2 , for which only one film
layer results for one wrapping cycle. For the wrappings of pu upper layers it was assumed
that the subsequent film strips are wrapped along the bale’s longitudinal axis with the
overlap ratio k f [14] (Figure 2).

The global film consumption measured by the index FC defined as the ratio of the
surface area of un-stretched film used to wrap the bale to bale volume, is described by the
function [14]:

FC =
4pbb f

DbHb

(
ε l f + 1

)
Hb + 2δ− b f rk f b

b f r

(
1− k f b

)
+

8(Db + Hb)b f

πD2
b Hb

(
ε l f + 1

)
 πDb pu

2b f rΩ
(

k f

)
, (A2)

where dxe denotes ceiling function [45], function [20]

Ω
(

k f

)
=
(

1− k f

)⌊ 1
1− k f

⌋
, (A3)

is introduced for brevity of the notation; bxc is the floor function [45]. The above formula
indicates the dependence of the film usage on film parameters ε l f , v f , b f , bale diameter
Db and height Hb, the overlaps δ, k f b and k f of the bottom and upper film layers, and the
numbers of film layers pu, pb. Second summand of FC describe film used for upper layers
wrappings provided that the following applicability condition [14]:

pu⌊
1

1−k f

⌋ = m, m ∈ N , (A4)

holds, where N denotes the set of positive integer numbers. Global number of basic film
layers wrapped on the bale’s lateral surface is pl = pb + pu.

Appendix A.2. Film Consumption Minimization

As the non-continuity and non-differentiability of the original film usage index FC
undermines our ability to directly analytically solve the problem of film usage minimization,
special attention has been given to the simpler case of near-optimal bale dimensions
design, this being as important as the optimal parameters for engineering applications.
The problem of the selection of near-optimal bale dimensions has been constructed by



Appl. Sci. 2021, 11, 10246 22 of 28

minimizing continuous lower bound of the original film usage index FC, where the goal
function of a non-linear optimization problem is convex and differentiable. The necessary
and sufficient optimality condition for near-optimal bale diameter, called “optimal” in [20]
and here, was established in the form of a standard cubic equation, Equation (1), which can
easily be solved using both analytical and numerical methods. The results of the numerical
experiments [19,20] demonstrated that for any four to sixteen even layers of the film there
are such compositions of bottom and upper film layers that the relative near-optimality
errors do not exceed 0.01% whenever the optimal bale dimensions are used.

Appendix B

Proof of Proposition 1. The optimal bale diameter D∗b is near-equal to the optimal bale
height H∗b with order ε0 if and only if Equations (1) and (5) are satisfied, simultaneously.
For D∗b given by Equation (5) the optimality condition, Equation (1), takes the form

2πpu
Ω(k f )

4(1+ε0)Vb0
π + πpb

1−k f b

(
2δ− b f rk f b

)(
3
√

4(1+ε0)Vb0
π

)2
− 4Vb0

[
pb

1−k f b
+ pu

Ω(k f )

]
= 0

and is equivalent to the next equation

2pu(1 + ε0)

Ω
(

k f

) 3

√
4Vb0

π
+

pb
1− k f b

(
2δ− b f rk f b

)(
3
√

1 + ε0
)2 − 3

√
4Vb0

π

 pb
1− k f b

+
pu

Ω
(

k f

)
 = 0,

which can be rewritten as follows

pb
1− k f b

(
2δ− b f rk f b

)(
3
√

1 + ε0

)2 3

√
4Vb0

π

 pb
1− k f b

− pu

Ω
(

k f

) − 2pu

Ω
(

k f

) ε0

. (A5)

To show the Proposition two cases must be considered separately:

(i) the wrapping parameters and order ε0 are such that

pb
1− k f b

6= pu

Ω
(

k f

) +
2pu

Ω
(

k f

) ε0, (A6)

(ii) for the wrapping parameters and ε0 the following equality holds

pb
1− k f b

=
pu

Ω
(

k f

) +
2pu

Ω
(

k f

) ε0. (A7)

Provided that inequality from Equation (A6) is satisfied, we have

pb
1−k f b

(
2δ− b f rk f b

)(
3
√

1 + ε0
)2

pb
1−k f b

− pu
Ω(k f )

− 2pu
Ω(k f )

ε0
=

3

√
4Vb0

π
, (A8)

whence Equation (7) follows. The optimal bale diameter and height are described by
Equations (5) and (6) and for D∗b and H∗b Equations (1) and (5) are satisfied; case (i) is proved.

In case (ii), when Equation (A7) holds, Equation (A5) is satisfied if and only
if, simultaneously,

2δ− b f rk f b = 0.
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Then, Equation (1) takes especially simple form

2πpu

Ω
(

k f

) (D∗b )
3 − 4Vb0

 pb
1− k f b

+
pu

Ω
(

k f

)
 = 0,

whence the optimal bale diameter

D∗b = 3

√√√√√2Vb0
π

 pbΩ
(

k f

)
pu

(
1− k f b

) + 1

. (A9)

Simultaneously, from Equation (A7) it follows that

pbΩ
(

k f

)
pu

(
1− k f b

) = 1 + 2ε0.

Thus Equations (A9) and (5) are identical and, by Equation (4), formula from Equation (6)
follows for any Vb0, which completes the proof of case (ii) since Equations (A7) and (8) are
equivalent.

Proof of Proposition 2. By Proposition 1 the optimal bale dimensions are near-equal with
order ε0 if:

• in case (i) inequality expressed by Equation (13) is satisfied,
• in case (ii)

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0 = 0 (A10)

and, simultaneously, Equation (9) holds. In the second case any change of ε0 to ε < ε0 re-
sults in a loss of equality in Equation (A10). Then the inequality expressed by Equation (13)
holds, i.e., case (i) occurs, and since according to Equation (9) 2δ− b f rk f b = 0, we imme-
diately conclude that Equation (7) is satisfied only for volume Vb0 = 0. Thus, if for ε0
Equation (A10) holds, the optimal bale dimensions cannot be near-equal for any ε < ε0.

Assume now, that for ε0 the inequality expressed by Equation (13) is satisfied. Let us
consider bale volume Vb0(ε0) uniquely given by Equation (7). Differentiating Equation (7)
on both sides with respect to ε0 results in

4

3π

(
3
√

4Vb0(ε0)
π

)2 ·
dVb0(ε0)

dε0
= pbΩ

(
k f

)(
2δ− b f rk f b

) 2
3 [pbΩ(k f )−pu(1−k f b)−2pu(1−k f b)ε0]+2pu(1−k f b)(1+ε0)

3√1+ε0[pbΩ(k f )−pu(1−k f b)−2pu(1−k f b)ε0]
2 ,

whence, after algebraic manipulations, we obtain

dVb0(ε0)
dε0

=
πpbΩ(k f )(2δ−b f rk f b)[pbΩ(k f )+2pu(1−k f b)+pu(1−k f b)ε0]

2 3√1+ε0[pbΩ(k f )−pu(1−k f b)−2pu(1−k f b)ε0]
2

[
3
√

4Vb0(ε0)
π

]2
. (A11)

Thus, monotonicity of the function Vb0(ε0) depends on the sign of the expression(
2δ− b f rk f b

)
. First, consider case (a) of the proposition assuming that inequality from

Equation (12) holds. Then the denominator of the left hand side of Equation (7) is also
positive, and if inequality given by Equation (13) holds for ε0, then it holds also for any
0 ≤ ε ≤ ε0. Function Vb0(ε) is monotonically increasing for 0 ≤ ε ≤ ε0. For ε0 = ε, by
Equations (5), (6) and (A8), the optimal bale dimensions D∗b (ε), H∗b (ε) can be equivalently
expressed by Equations (16) and (17). Thus, D∗b (ε), H∗b (ε) are also monotonically increasing
for 0 ≤ ε ≤ ε0.
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In case (b), when inequality expressed by Equation (14) is satisfied, function Vb0(ε0)
decreases with ε0 and, by Equation (7), inequality from Equation (13) takes the form

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε0 < 0.

If, simultaneously, inequality expressed by Equation (15) holds, then for any 0 ≤ ε ≤ ε0
there exists Vb0(ε) fulfilling Equation (7). Otherwise, there exists 0 < ε < ε0 such that
Equation (18) holds and only for ε < ε ≤ ε0 Equation (7) is satisfied for some Vb0(ε). In
both cases, for 0 ≤ ε ≤ ε0 or ε < ε ≤ ε0, by Equation (16) we have

dD∗b (ε)
dε

= pbΩ
(

k f

)(
2δ− b f rk f b

) [
pbΩ

(
k f

)
+ pu

(
1− k f b

)]
[

pbΩ
(

k f

)
− pu

(
1− k f b

)
− 2pu

(
1− k f b

)
ε
]2 .

Thus, in view of the inequality from Equation (14), optimal bale diameter decreases
with increasing ε. The analysis of Equation (17) yields analogous property of H∗b (ε).
Proposition 2 is proved. �

Proof of Proposition 4. For k f expressed by Equation (20) and pu = pl − pb Equation (8)
takes the form

pb

[
1 +

(
1− k f b

)
(1 + 2ε0)

]
= pl

(
1− k f b

)
(1 + 2ε0),

whence the bottom layers overlap ratio is uniquely determined by Equation (27). The over-
laps δ and k f b are related by Equation (9). Substituting k f b, Equation (27), into constraints
described by Equation (23) leads to inequalities

k f b,min ≤
pl(1 + 2ε0)− pb(2 + 2ε0)

(pl − pb)(1 + 2ε0)
≤ k f b,max,

which can be rewritten in the equivalent form of constraints expressed with respect to
integer pb by Equation (25).

Simultaneously, on the basis of Equations (9) and (27), the constraints expressed by
Equation (22) are satisfied if and only if

δmin ≤
b f r

2
· pl(1 + 2ε0)− pb(2 + 2ε0)

(pl − pb)(1 + 2ε0)
≤ δmax,

which is equivalent to the inequalities expressed by Equation (26), provided that inequality
described by Equation (24) is satisfied. Proposition 4 is derived. �

Proof of Proposition 5. According to Proposition 1 the solution to Problem 2 exists if and
only if there exist integer pb and overlaps δ, k f b satisfying Equation (7), constraints from
Equations (22) and (23) and the applicability condition, Equation (21), provided that the
denominator of the left hand side of Equation (7) is non-zero, i.e., that inequality from
Equation (13) holds, which for k f = k f ,u and pu = pl − pb can be rewritten as

pb − (pl − pb)
(

1− k f b

)
− 2(pl − pb)

(
1− k f b

)
ε0 6= 0.

The above condition can be expressed directly with respect to the overlap ratio as inequality
described by Equation (30). By Equation (7), having in mind that Ω

(
k f

)
= 1 and pu = pl −

pb,
the overlap δ is uniquely given by equation

pb

(
2δ− b f rk f b

)(
3
√

1 + ε0

)2
=

3

√
4Vb0

π

[
pb − (pl − pb)

(
1− k f b

)
− 2(pl − pb)

(
1− k f b

)
ε0

]
,
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whence direct formula from Equation (34) follows. Thus, the inequalities from Equation (22)
take the form

δmin ≤
3
√

4Vb0
π

2
(

3
√

1 + ε0
)2

[
1−

(
pl
pb
− 1
)(

1− k f b

)
(1 + 2ε0)

]
+

b f rk f b

2
≤ δmax

and can be unravelled with respect to k f b as follows
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( pl
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−1
)

3
√

4Vb0
π +b f r( 3√1+ε0)

2
=

=
k f b(pb). (A12)

Simultaneously, for the overlap ratio k f b inequalities from Equation (23) must
be satisfied.

It has been proved above that there exist decomposition (pb, pu) and the bottom
layers overlaps δ, k f b satisfying constraints expressed by Equations (22) and (23) such that
the optimal D∗b , H∗b of the bale of volume Vb0 are near-equal with order ε0 if and only if
there exist an integer pb and continuous parameter k f b such that inequalities expressed by
Equations (A12) and (23), i.e., jointly

ǩ f b(pb) = max
{

k f b(pb), k f b,min

}
≤ k f b ≤ min

{
=
k f b(pb), k f b,max

}
, (A13)

are satisfied together with the applicability condition, Equation (21), and inequality from
Equation (30). For any such pb and k f b the overlap δ is given by Equation (34). By
Proposition 1 the optimal bale dimensions are given by Equations (5) and (6). Since by
Equation (34), we have

2δ− b f rk f b =

3
√

4Vb0
π(

3
√

1 + ε0
)2

[
1−

(
pl
pb
− 1
)(

1− k f b

)
(1 + 2ε0)

]
,

having in mind that Ω
(

k f

)
= 1 it can be proved that for the optimal D∗b , H∗b film usage

index FC, Equation (A2), is described by

FC =
4b f

3√1+ε0

(ε l f +1)
[

3
√

4Vb0
π

]2

pb


3
√

4Vb0
π

[
2

1−k f b
−
( pl

pb
−1
)
(1+2ε0)

]
b f r( 3√1+ε0)

2

+ 2(2+ε0)
π(1+ε0)

⌈
π

3
√

4Vb0
π (1+ε0)(pl−pb)

2b f r( 3√1+ε0)
2

⌉, (A14)

where only numerator of the fraction in the argument of the ceiling function in the first
sum in curly brackets depends on k f b and is non-decreasing left-continuous function of k f b,
piecewise constant in the intervals determined by its discontinuity points. If k̂ f b(pb) is dis-
continuity point being direct right neighbourhood of ǩ f b(pb) defined in Equation (A13), i.e.,
for k̂ f b(pb) the following equation holds


3
√

4Vb0
π

[
2

1−ǩ f b(pb)
−
( pl

pb
−1
)
(1+2ε0)

]
b f r( 3√1+ε0)

2

 =

3
√

4Vb0
π

[
2

1−k̂ f b(pb)
−
( pl

pb
−1
)
(1+2ε0)

]
b f r( 3√1+ε0)

2 , (A15)

then for any
ǩ f b(pb) ≤ k f b ≤ k̂ f b(pb), (A16)

film usage FC, Equation (A14), being left-continuous in discontinuity points is identical.
Thus, combining inequalities from Equations (A12), (23), and (A16) result in the inequalities
from Equation (29). Direct formula expressed by Equation (33) follows from Equation (A15),
while Equation (35) results directly from Equation (A14). Integer minimization task in
Equation (36) makes it possible to find the best film layers decomposition. Proposition 5
is true. �
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Appendix C

Appendix C.1. Nomenclature

b f width of un-stretched film, m
b f r width of stretched film, Equation (A1), m
Db, Hb bale diameter and height, m
D∗b optimal bale diameter, solution of Equation (1), m
H∗b optimal bale height given by Equation (2), m
FC film consumption index, Equation (A2), m−1

k f b, k f overlap ratios applied to wrap bottom and upper film layers
k f b,min, k f b,max the smallest and largest admissible k f b, Equation (23)
ǩ f b(pb) lower bound of k f b solving Problem 2, Equation (32)

k̂ f b(pb),
=
k f b(pb) upper bounds of k f b solving Problem 2, Equations (33) and (31)

≡
k f b(pb) lower bound of k f b solving Problem 4, Equation (41)

k̆ f b(pb), k̃ f b(pb) bounds of k f b solving Problem 4, Equations (43) and (44)
K2(pb) set of overlap ratios k f b defined for pb ∈ P2 by Equations (29) and (30)
m integer number
N set of all positive integer numbers
pl global number of basic film layers
pb, pu numbers of basic film layers in bottom and upper layers
p∗b optimal pb solving Problems 2 and 4 defined in Equation (36)
P1 set of pb for which Problem 1 has solution, defined in Equation (28)
P2, P3 sets of pb for which Problems 2,3 have solution
v f Poisson’s ratio of the stretch film
Vb0 pre-assumed bale volume, m3

ε0 order of nearly-equal bale dimensions introduced in Equation (4)
ε l f unit deformation of the stretch film
Ω function of the overlap ratio k f defined by Equation (A3)
δ overlap of extreme film strips at base of bale, m
δmin, δmax the smallest and largest admissible overlap δ, Equation (22), m

Appendix C.2. Mathematical Terminology

dxe the smallest integer not less than x, ceiling function
bxc the largest integer not greater than x, floor function
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10. Ivanovs, S.; Gach, S.; Skonieczny, I.; Adamovičs, A. Impact of the parameters of round and square haylage bales on the
consumption of the sealing film for individual and in-line wrapping. Agron. Res. 2013, 11, 53–60.

http://doi.org/10.1016/j.resconrec.2016.02.011
http://doi.org/10.1016/j.jclepro.2019.119844
http://doi.org/10.1016/j.jclepro.2021.128153
http://doi.org/10.3390/s21155129
http://doi.org/10.1016/S0956-053X(03)00087-4
http://doi.org/10.13031/2013.23132
http://doi.org/10.25165/j.ijabe.20181104.2855


Appl. Sci. 2021, 11, 10246 27 of 28

11. Gach, S.; Piotrowska, E.; Skonieczny, I. Foil consumption in wrapping of the single green forage bales. Ann. Wars. Agric. Univ.
Life Sci.-SGGW Agric. 2010, 56, 13–20.
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