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Abstract: The working environment of agricultural cutting tools is poor, and the operational quality
and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant
agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser
cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge
was formed when the cladded knife was used, which improved the cutting quality and service life
of the knife. The microstructure, phase, composition, and hardness distribution of the cladding
layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded
samples were analyzed, and the cladded knife was tested in the field. The results show that a
cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The
microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers
was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate.
The impact toughness and wear resistance of the coated knife were obviously higher than those
of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the
self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for
76 h, which greatly extended the service life of the knife. This study improved the service life of an
agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.

Keywords: laser cladding; Ni-based WC alloy powder; self-grinding silage knife; microstructure;
impact toughness; wear resistance

1. Introduction

Cutting tools are used in a variety of agricultural machines for harvest. During usage,
the cutting edge interacts with crop stalks and attachments of earth and sand, which
induces friction and wear of the cutting edges. Friction is the primary cause of failure for
agriculture knives, workpieces touching soil, etc. A gradual loss of materials subjected
to abrasion mechanisms consumes more than 500,000 t of steel in China [1]. In addition,
the blade angle and radius of the edge curvature increases when knives become dull,
which leads to crop damage and poor cutting performance [2]. Self-grinding tool-making
technology offers a good scheme for solving the above problems [3]. The cutting edge
comprises a layered structure that consists of a wear-resistant layer and a lesser wear-
resistant layer. As a result, different amounts of wear are produced at different layers of
the cutting edge when cutting crops. The wear-resistant layer is exposed at the tip of the
cutting edge. The geometry of the cutting edges can remain unchanged for long periods of
time, which improves the service life and cutting quality of the knife [4].

Convenient techniques to induce effective compounds featuring a sharp gradation
are coating, diffusion hardening, and local applied strengthening, e.g., one side of the
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cutting edge is carburized in order to obtain a self-grinding edge [5]. An Fe–Cr–C–V
layer was prepared on a 65 Mn steel substrate by plasma surfacing welding technology.
The over-lapped Fe–Cr–C cladding layer and dot-shaped Fe–Cr–C cladding layer were
deposited by plasma-transferred arc (PTA) cladding on Hadfield steel [6,7]. Three kinds of
steel plates were rolled into hardness gradient materials by vacuum rolling [8]. A two-part
dental molding material was used to make casts of the cutting edge. The tip of the cutting
edge in this case had a radius of less than 0.2 mm, which showed an excellent demanding
operation of self-grinding [2].

Using the laser cladding technique to implement a coat on steel is a convenient
approach to inducing a layered structure that overcomes the defects of other coating
techniques. Metallurgical bonding can be formed for TIG welding, but the dilution ratio of
TIG welding is higher than that of laser cladding, and the precision of the coating thickness
does not meet the demands for preparing self-grinding knives. For the electroplating
technique, only physical bonding takes place, which is prone to falling off. In addition, the
thickness of the electroplating layer is between 1 and 3 µm, which is considerably lower
than that of laser cladding. One the other hand, laser cladding can achieve metallurgical
bonding between the layer and the substrate, a lower dilution, and a high precision of
coating layer thickness, etc. [9]. Self-grinding knives prepared by laser cladding are used in
forage choppers, and demonstrate significantly improved performance characteristics [10].
In addition to the coating technique, the material composition is the other important
element influencing the performance of self-grinding knives. Ni-based alloys are an
important material used to coat steel to obtain high wear resistance, with carbides and
borides forming during coating [11]. Moreover, the wettability of the Ni element is excellent,
which is the main element enhancing the bonds’ strength and the material’s toughness.
Ni-based alloys have good compatibility with tungsten carbide (WC), which in particular
holds high potential regarding wear resistance. WC can improve the hardness and wear
resistance of the coating. The combination of the two can enhance the bonding strength
and fracture toughness of the coating [12]. A layer consisting of nickel alloys and WC
particles is made on one side of the cutting edge by laser cladding, which combines the
hardness and toughness for this layer. Laser cladding also creates metallurgical bonding at
interface between the substrate and the strengthening layer.

Steel of 65 Mn with high hardenability, toughness, and good wear resistance is usually
used to make parts for working in the field [13]. The Ni–WC wear-resistance layer was
prepared by laser cladding on one side of the cutting edge of a 65 Mn knife, which was used
to harvest forage oat grass. Similar studies have not been published. The microstructure,
impact toughness, and wear resistance of the strengthening layer were analyzed, and silage
knives treated with laser cladding were assembled in a lawn mower to carry out field tests.

2. Materials and Methods
2.1. Experimental Materials

Figure 1 shows the experimental knife made of 65 Mn steel used in the lawn mower.
A hardness of 65 Mn is approximately 350 HV (0.2). Before laser cladding, the surface of
the knife was rubbed down with sandpaper (mesh number: 400–800) and washed with
acetone (concentration: 99.5%). The chemical composition of the knife and nickel alloy
used for cladding are given in Table 1. The grain size of the nickel and WC alloy was
between 150 and 270 µm. The WC content was 30% in the alloy powder coated on the
surface of the knife.

Table 1. Chemical composition of the knife and nickel alloy.

Material C Si Cr Mn S P Ni Fe B

65 Mn knife (wt%) 0.64 0.23 0.23 1.15 0.028 0.032 0.15

Nickle alloy (wt%) 0.4 4 15 69.4 8 3.2
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should be optimized to obtain a high-quality coating that is free of pores and cracks [14]. 
The scanning direction of the laser ran parallel with the cutting edge during the cladding. 
Coaxial powder delivery with argon was adopted, and the speed of the powder delivery 
device was 1.3 r/min. The spot diameter of the laser was 3 mm with a scanning speed of 
0.03 m/s. The overlap ratio of the cladding was 50%. Staying above the cladding parame-
ters, a laser cladding test was conducted at powers of 1200, 1400, 1600, and 1800 W. 
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Figure 2. (a) Laser cladding test; (b) schematic diagram of coaxial powder delivery for laser cladding. 

  

Figure 1. (a) Macro-morphology of the silage knife after cladding; (b) cross-section morphology of the knife’s edge
after cladding.

2.2. Laser Cladding

Laser cladding was carried out in the 3D rapid molding remanufacturing system,
YLS-4000 (IPG Photonics Corporation), as shown in Figure 2. The processing parameter
and WC particle compositions are highly important during the laser cladding process and
should be optimized to obtain a high-quality coating that is free of pores and cracks [14].
The scanning direction of the laser ran parallel with the cutting edge during the cladding.
Coaxial powder delivery with argon was adopted, and the speed of the powder delivery
device was 1.3 r/min. The spot diameter of the laser was 3 mm with a scanning speed
of 0.03 m/s. The overlap ratio of the cladding was 50%. Staying above the cladding
parameters, a laser cladding test was conducted at powers of 1200, 1400, 1600, and 1800 W.
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2.3. Organizational Structure Observation

Specimens were cut from the cladded knives perpendicular to the direction of the
laser scanning using an EDM machine (DK7720). After mounting, grinding, and polishing,
the specimens were corroded with aqua regia for 25–30 s. Then, they were washed with
absolute alcohol. Vickers was employed to measure the hardness of the specimens, and the
test points were 50 µm apart along the direction from the surface of the cladding layer to the
substrate. The microstructures of the cladding layer and the interface between the cladding
layer and substrate were observed using a field emission scanning electron microscope
(ZEISS UTRAL55). The chemical composition of the material’s micro-zone was analyzed
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with an energy-dispersive spectrometer. The phase of the cladding layer was determined
using an Empyrean X-ray diffractometer that had a scanning velocity of 5◦/min from 20◦

to 110◦.

2.4. Charpy Test

The specimens for the Charpy test were prepared according to the standards of
GB/T229-2007 (Figure 3) [15]. The equipment for the Charpy test was a JB-W300 H.
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2.5. Test of Wear Resistance and Analysis

The friction performance of the cladded layer was tested on an MMS-2A machine
made by Yihua Co., Ltd. Jinan China. The test load exerted on the specimens was 100 N,
and the rotation speed was 200 r/min. The counterpart of the tested cladded layer was
steel with 0.45% carbon. The contact between the cladded layer and the counterpart was
line contact. The mass loss of the specimens was measured four times every sixty minutes.

2.6. Field Test

Field tests were conducted in Xilingol League, Inner Mongolia. The forage grass for
the harvest test was oats with a height between 1 and 1.5 m. The lawn mower was a
GMT-3605FL made by JF-STOLL Co., Ltd., Denmark. Eight self-grinding knives made by
laser cladding were installed in four knife heads, and eight knives without cladding were
installed in the rest of the knife heads in the same lawn mower for contrast. The speed
of a knife head was 2000 r/min, the working velocity of the lawn mower was 20 Km/h,
and the stubble height was between 50 mm and 150 mm. The mass loss of the knives
were measured at intervals during testing, and the morphology of the cutting edges of the
cladded knives were contrasted against the uncladded knives.

3. Test Results and Discussion
3.1. Microstructure of the Cladding Layer

At the bottom of the cutting edge of the 65 Mn steel, a high hard layer of Ni–WC
alloy was created using laser cladding as shown in Figure 4. The test was carried out at
the selected laser scanning speed and powder feeding speed, and the properties of the
cladding layer were studied when the laser power was between 1200 and 1800 W. Thus, the
cutting edge consisted of a wear-resistant layer and a relatively lesser wear-resistant layer.
While utilized, the material at the up-side of the cutting edge wore faster than material
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at the bottom side consisting of the Ni–WC alloy. The cladding layer projected over the
cutting edge and formed a self-grinding effect, resulting in a long cutting time.
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Figure 4 shows the microstructure of the cladding layer when the laser power was
between 1200 and 1800 W. The microstructure of the cladding layer was dense. During
cladding, the energy density enhanced with an increase in the laser power with the same
cladding process conditions. Thus, the heat input into the alloy powder and knife’s surface
increased, which caused element diffusion between the cladding layer and the substrate to
increase and the thickness of the cladding layer to vary. Formation of the cladding layer
is a process of non-equilibrium solidification. A variety of non-equilibrium solids can be
formed in the layers under conditions of a temperature gradient and supercoiling [16].
With movement of the laser beam, a large temperature gradient was created at the bottom
of the molten pool because of the cooling effect of the substrate material. At the early
stage of solidification, there was no constitutional supercooling for molten alloy near the
substrate. Therefore, the solid–liquid interface stayed planar, and flat crystals formed at
the interface between the cladding layer and the substrate. As solidification continued,
molten alloy at the bottom of the molten pool formed a kind of columnar crystal and
regular cellular crystals along the temperature gradient. The solidification direction was
perpendicular to the solid–liquid interface as shown in Figure 5. Dendrite and cell crystals
with various grain growth directions developed at the middle part of the molten pool
which had a temperature gradient that softened due to the fact of convection. At the surface
of the molten pool, the fast cooling speed was the main reason for the formation of small
equiaxed crystals because of the cooling effect of the air.
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Within the laser powers selected for the tests, the microstructures of the cladding
layers were typical for metallurgical morphologies of rapid direction solidification, which
mainly consist of dendrites and cell crystals. When the laser power increased, the amount
of flat crystal diminished at the interface between the cladding layer and substrate, and
the columnar crystals became longer and thinner. This was because the laser power was
directly proportional to the energy. When the laser power was low, the cladding layer
absorbed less energy, the molten pool formed by the powder and matrix was shallow, and
the matrix dissipated heat quickly. The crystals in the cladding layer did not have enough
time and space to grow in the subsequent solidification process, and the cooling speed was
fast; thus, the dendrite sizes were relatively small. With the increase in the laser power, the
energy absorbed by the powder and matrix increased, and the cooling speed slowed down.
The dendrites had sufficient space and time to grow; therefore, the size of the dendrites
became larger and the microstructure slenderer.

The SEM inside the cladding layer under different laser powers is shown in Figure 6.
It can be seen from Figure 6 that the microstructure of the cladding layer was uniform and
dense. Rapid heating and cooling occur during cladding, which refines the microstructure
of the cladding layer [17]. When the laser power was low, the grain size of the cladding
layer was fine, the grain boundary was fuzzy, and a large number of unmelted particles
were distributed. A larger laser power increased the heat input into the cladding layer, and
the content of the unmelted WC in the cladding layer decreased. At the same time, fine
cellular crystals and columnar dendrites formed. When the laser power was 1600 W, the
size of the cellular and columnar dendrites increased and became slenderer. The particles
basically dissolved and formed larger dendrites when the laser power was 1800 W.
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The combination of cladding layer and substrate was a main element influencing the
performance of the cladding layer. Component analysis of the cladding layer was carried
out by line scan analysis of the EDS. Figure 7 shows the distribution of the main chemical
elements from the surface to the center of the cladding layer when the laser powers were
1200 and 1600 W. The cladding layer was obviously higher in contents of Ni, Cr, etc.,
than those in the substrate. These elements also diffused from the cladding layer into the
substrate due to the heat effect of the laser, and metallurgical bonding formed between
the cladding layer and the substrate. But there was a high concentration gradient at the
interface between the cladding layer and substrate; the, element dilution did not take place
to a high degree in the cladding layer. The higher the laser power, the greater the heat
input. A high laser power can promote diffusion of Ni, Cr, etc., from the cladding layer into
the substrate. As a result, the concentration gradient at the interface becomes gentle, and
the contents of Ni, Cr, etc., decreases in the cladding layer with the increase in laser power.

3.2. Phase Analysis of the Cladding Layer

During cladding, complex reactions of physical chemistry occur and intermetallic
compounds form in the Ni-based alloy with 30% WC. Figure 8 shows the XRD spectra of
the cladding layers that come from Ni-based alloy with 30% WC at laser powers of 1200
and 1600 W. There were hard phases of γ-Ni, M7C3, M23C6, CrB, W, W2C, WC, etc., which
increased the hardness and wear resistance of the cladding layer. With the heat effect of
the laser, WC fuses and reacts with C and then forms W2C and other hard phases during
cladding [18]. There were more types of hard phases in the cladding layer at the laser
powers of 1200 W than that of 1600 W.
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3.3. Laser Cladding Hardness Testing

Figure 9 shows the microhardness value curve from the cladding layer to the substrate
at selected laser powers. The microhardness of the cladding layers was obviously higher
than that of the substrate. The average microhardness value of the cladding layer was
approximately 1000 (HV0.2), and the peak value was 1100 (HV0.2). During cladding, hard
carbides of WC, W2C, W3C, and CrB formed and increased the hardness of layer. This was
not only related to the WC-related hard phase generated in the cladding layer [19], but
also the refinement of the microstructure [20]. The dilution effect makes the atoms in the
bonding area between the cladding layer and the substrate diffuse each other. Therefore,
the microhardness of the bonding area was lower than that of the middle and upper parts of
the cladding layer, but it was also significantly higher than that of the substrate. When the
laser power increases, atom diffusion and phase transformation can improve the hardness
of the materials at the substrate near the cladding layer [21].
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steel substrate).

3.4. Impact Toughness Test

An impact test was performed at room temperature. The side of the specimens with
the cladding layer was placed down according to the working position of the knives. All
specimens were divided into four groups, and each group consisted of four specimens,
which is shown in Figure 10. Impact absorption energy values were averaged over four
specimens in one group. Impact toughness was calculated according to Equation (1) [22,23]:

ak =
AK
S

(1)

where:

ak—Impact toughness, J/cm2;
Ak—Impact absorption energy, J;
S—Standard fracture surface area of the impact test, cm2.
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Charpy impact test results of the specimens are shown in Figure 11. The impact
toughness of 65Mn steel base metal cutter was significantly affected by laser cladding, and
marked** is more significant than *. Laser cladding exerts a notable effect on the impact
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toughness of the knives. The average impact toughness value of the specimens without
cladding was 13.25 J/cm2, and the average impact toughness values of the specimens
with laser cladding at the powers of 1200, 1400, 1600, and 1800 W were 14.44, 15.36, 16.82,
and 16.03 J/cm2, respectively. The effect of laser cladding on the increase in the impact
toughness varied with the laser power. When the laser power was 1600 W, the laser
cladding increased the impact toughness of the specimens to the degree of 78.7%. Physical
chemistry reactions performed inadequately at low laser powers; therefore, the toughness
of the cladding layers were low. But overly high laser powers decreased the toughness of
the substrate material near the interface between the coat and substrate; thus, the toughness
of the specimens dd not increase with the laser power when the laser power was too high.
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3.5. Wear Resistance Analysis

Figure 12 shows the mass loss of the substrate and cladding layer from indoor friction
tests. The mass loss for the substrate due to the fact of friction was the highest for all
specimens, and it had a wear rate of approximately 10.075 mg/h. The wear rates of the
cladding layers were 6.025, 2.325, 2.475, and 3.200 mg/h, respectively, at the different laser
powers. When the laser power was 1600 W, the wear-resisting property of the cladding
layer was the best, which was 4.3 times that of the substrate.
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Research by Evans and Wayne [24,25] shows that wear resistance is related with the
hardness of the material. A large number of hard phases in the cladding layer increases the
hardness and wear resistance of the layer material. On the other hand, impact toughness
exerts a notable influence on the wear resistance of material. The formula can be concluded
similar to (2):

w = C
1

K3/4
IC H1/2

(2)

where:

K3/4
IC —fracture toughness;

H—hardness;
C—coefficient of friction.

When the value of the laser power is between 1200 and 1800 W, a compaction layer
of the Ni–WC alloy formed at the surface of the 65 Mn steel. When the laser power was
1600 W, the hardness of the cladding layer was high, and the impact toughness of the
cladding layer was the highest for all of the specimens. Therefore, according to Formula (2),
the combination of high hardness and high toughness leads to high wear resistance.

Figure 13 shows the abrasion morphology of the 65 Mn steel and the coat of the
Ni–WC alloy using SEM. Under the same abrasive condition, the wear was severe on the
surface of the 65 Mn steel. Because the hardness of the 65 Mn steel was lower, a number
of scratches and ploughs parallel to the slide direction formed at the material’s surface.
The wear mechanisms of the specimens was mainly abrasive wear [26]. By contrast, the
scratches on the coat’s surface were shallow due to the fact of its high hardness.
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4. Field Experiments on a Laser Cladding Self-Sharpening Cutter

High working speed of a rotary flail knife leads to severe abrasive wear of the knife,
especially the knife point. The speed of the knife point is higher than other parts of the
knife, because it is far from the rotating shaft. Therefore, the knife point is more susceptible
to wear than other parts of the knife, which decreases the cutting performance of the knife
point [27,28]. The self-grinding knife and 65 Mn steel knife were assembled on one rotating
shaft. Figure 14 shows the macro-morphology of the two types of knives after usage for
43 h. For the integral knife made of 65 Mn steel, the wear rate of the two sides of the
cutting edge was the same, and the knife point became an arc shape due to the severe
wear. The cutting performance of the dull knife became poor, which increased the effects
of slide, impact, and tear on the crop [29]. The wear rate of the bottom side decreased after
coating with a wear-resistance layer on the bottom side of the cutting edge. The coated
layer projected out from the cutting edge, which made the knife stay sharp.
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Laser cladding self-grinding knives and knives without cladding were assembled on
the same lawn mower. With the same working condition, the mass loss of the tested knives
were recorded and are shown in Figure 15.
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At the early stage of cutting, the wear rates of the knives were high. As the working
time expanded, the knives underwent the normal wear process, and for which the mass
loss due to the wear decreased. The mass loss of the knives with the laser cladding was
obviously lower than the knives without cladding. For the knives with laser cladding, the
rate of mass loss was 0.186 g/h after 76 h of cutting. By contrast, for the knives without
cladding, it was 0.521 g/h for the same working time. There was a good combination
between the substrate and the cladding layer with a dense micro-structure. Thus, erosion
of the coat did not take place for all of the knives with laser cladding during operation.
The mass loss rates were different for the knives cladded with different laser powers. The
mass loss rate of the knife with cladding at 1600 W was the lowest for all of the knives.
The wear resistance was related with the hardness, toughness, and quality of the cladding
layer. Although the layer hardness under the laser power of 1200 W was the highest, the
toughness was poor and the mass loss of the knife was still high. From a cost-effectiveness
perspective, the process of laser cladding increased the cost of making the knife by thirty
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percent, but the life of the knife with laser cladding was more than two times longer
than that of knives without laser cladding. Therefore, laser cladding increased cutting
performance and decreased the cost of the knife.

5. Conclusions

(1) In this study, a Ni–WC alloy layer was made at the surface of the cutting edge by laser
cladding. A microstructure of typical rapid directional solidification was formed in
the cladding layer that was dense and without defects such as cracks and gas holes.
A metallurgical combination was formed between the substrate and cladding layer.
Obvious composition dilution did not take place at the cladding layer;

(2) A large number of hard phases formed during the laser cladding, increasing the
hardness of the cladding layer. The chosen hardness value of the cladding layer was
approximately 1100 HV(0.2), and the average hardness value was approximately
1000 HV(0.2). The hardness of the cladding layer was obviously higher than that of
the substrate, but there was a good hard gradient between the cladding layer and
the substrate;

(3) The laser cladding increased the impact toughness of the knife to a large degree.
When the laser power was 1600 W, the cladding layer had a combined high hardness
and toughness and the best wear resistance. The friction mass loss of the 65 Mn steel
was approximately four times that of the cladding layer;

(4) Contrasting with common knives made with 65 Mn steel, a self-sharpening edge
was formed during operation for the knives after laser cladding with the Ni–WC
alloy. The sharp cutting edge of the laser cladding knives was still kept after usage
for 76 h. The wear resistance and cutting performance increased sharply due to the
laser cladding;

(5) The successful manufacturing the self-grinding knife using laser cladding increased
the working performance and cost effectiveness, while ensuring excellent work effi-
ciency. The tool’s life increased by more than double, with only a 30% cost increase.
This product has a large market and strong application in agricultural machinery.
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