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Abstract: Ultrasound (US) imaging is widely utilized as a diagnostic screening method, and deep
learning has recently drawn attention for the analysis of US images for the pathological status of
tissues. While low image quality and poor reproducibility are the common obstacles in US analysis,
the small size of the dataset is a new limitation for deep learning due to lack of generalization. In this
work, a convolutional neural network (CNN) using multiple feature maps, such as entropy and phase
images, as well as a B-mode image, was proposed to classify breast US images. Although B-mode
images contain both anatomical and textual information, traditional CNNs experience difficulties in
abstracting features automatically, especially with small datasets. For the proposed CNN framework,
two distinct feature maps were obtained from a B-mode image and utilized as new inputs for training
the CNN. These feature maps can also be made from the evaluation data and applied to the CNN
separately for the final classification decision. The experimental results with 780 breast US images in
three categories of benign, malignant, and normal, showed that the proposed CNN framework using
multiple feature maps exhibited better performances than the traditional CNN with B-mode only for
most deep network models.

Keywords: medical ultrasound; breast US images; deep learning; convolutional neural network;
B-mode image; entropy image; phase image

1. Introduction

Among medical imaging modalities, ultrasound (US) is one of the most commonly
utilized in clinical screening and diagnostic applications due to its safety by utilization
of non-ionizing radiation, portability, cost effectiveness, and real-time data acquisition
and display. Despite these advantages, US imaging also has limitations, such as rela-
tively low imaging contrast and degradation of quality caused by noise and speckles, high
image variability due to the operator-dependent hand-held nature in the data acquisi-
tion process, and poor image reproducibility across different manufacturers’ US imaging
systems. Consequently, a more objective and accurate understanding for analysis of US
images, called B-mode images, is important for US diagnosis and assessment in addition to
ultrasound-guided interventions and therapy.

For the better analysis of US images, computer-aided diagnosis (CAD) systems using
machine learning algorithms have been developed and applied to various kinds of features
that are calculated and/or estimated from the B-mode images in order to classify or
quantify the pathological status of the scanned tissue. In traditional CAD systems, image
features including texture, contrast, pattern, morphology, and model-based parameters
are extracted first from B-mode images automatically or manually and then selected and
classified using an automatic classifier such as a support vector machine (SVM) [1] to
divide the feature space. Since AlexNet [2], which is a convolutional neural network (CNN)
in early deep learning generation, won the first prize in the 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), deep learning has garnered significant attention
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as a promising machine learning technique, especially in the research domains of natural
language processing [3], computer vision [4], and various imaging analyses, including
medical images [5,6].

From the perspective of image analysis, the deep learning approach directly processes
the original data and automatically learns multiple levels of abstraction features from
images through supervised or unsupervised methods. It has achieved state-of-the-art
performance in image analysis with large datasets such as ImageNet [7] in various general
tasks, including classification, segmentation, tracking, and object detection. In the areas of
medical US image analysis, recent applications of deep learning have involved traditional
diagnosis tasks such as tissue classification, tumor detection and segmentation, biometric
measurements, and quality assessment. It has also been extended to the clinical domain of
US-guided interventions and therapy. However, the main barrier for deep learning in US
image analysis is the lack of a well-organized dataset in terms of size and annotated classes
in the training set. According to recent papers, most studies utilized a few hundred images
to train deep learning networks, which is much smaller than datasets in natural image
applications. In addition, for the uniformity of datasets in US applications, most databases
were generally acquired from a single-vendor’s US imaging system in a single institution.
These limitations of US image diversity may degrade the performance of a specific task
using deep learning techniques because of the lack of generalization of features and the
overfitting of a given dataset.

Notwithstanding the above constraints, many studies using deep learning in US
image analysis have been conducted and exhibit better performance than traditional
machine learning approaches. Breast ultrasound (BUS) is an active application area, since
breast cancer is the second leading cause of death for women [8], and early detection
and diagnosis is crucial to increase the success of treatment and reduce medical expenses.
In 2012, the adaptive deconvolutional network (ADN), which is an unsupervised and
generative hierarchical deep model, was applied to classify benign and malignant breast
tumors and mass lesions [9]. Along with many other studies of deep learning in US
images, Lui et al. proposed a supervised deep learning network, called a deep polynomial
network (DPN), for the classification of breast ultrasound images and exhibited the highest
performance of 92.4% on small US datasets [10]. In addition to B-mode images, shear-wave
elastography, which represents tissue characteristics instead of the anatomical structure,
has also been utilized for breast cancer diagnosis [11].

Recently, ensemble network approaches have been utilized with multiple CNN models
and/or inputs representing different aspects of an image in either time or frequency
domains. Tanaka et al. proposed an ensemble network by combining two CNN models
(VGG-19 and ResNet-152) with a heat map and concluded that many breast masses were
not detected by conventional CNNs as the important regions for correct classification [12].
Moon et al. proposed an ensemble learning architecture using B-mode image, tumor shape
image (TSI), which is manually extracted along mass boundary by an expert, and the
segmented tumor image represents the tumor region only [13]. The fusion image made by
RGB-like concatenation of three images was also used as one of the inputs for an ensemble
network and achieved good classification performances due to manually extracted image
features. Ensemble transfer learning architecture using elastography as well as B-mode
images was proposed and showed benefits of different features rather than morphological
information in breast tumor classification [14].

In this paper, we propose a classification framework for breast US images using a CNN
with multiple feature images produced in the time domain. Although the virtue of CNNs is
a direct abstraction of image features from the raw data by the learning process, it is difficult
to learn some features that are not represented (partially or entirely) in the raw image.
For example, because B-mode images are generated only by the magnitude of the echoed
radiofrequency signals, the reflections from large organ boundaries or tumors represent
the anatomical structure relatively well. However, the magnitude of reflected signals from
interior tumors or tissue microstructures, which are generally related to the pathological



Appl. Sci. 2021, 11, 10216 3 of 14

status of soft tissue, is relatively small due to the nature of diffuse scattering and absorption
of the propagating ultrasonic waves, so it is hardly recognized in a B-mode image. In
addition, as mentioned above, this self-learning ability of deep neural networks generally
degrades as the size of training datasets gets smaller owing to lesser generalization and
overfitting problems. Therefore, additional information (or features) that are extracted from
the original data at different aspects may increase the performance of the deep learning
network. In this work, the entropy and phase images (called feature maps) generated from
a B-mode image are provided to the CNN as new inputs. Because the entropy images
generally represent the small local texture of a B-mode image and the phase images show an
enhanced morphology including organ boundaries and edge structures, the combination
of the three feature maps—B-mode, entropy, and phase images—provides additional
information to the CNN, especially for the case of a smaller dataset. The other advantage
of the proposed framework is that the same feature maps can be calculated from the new
data in the evaluation stage, and applied to the trained convolutional deep network as
separate inputs to obtain the classification decision. This means that a single evaluation
data sample has three classification decisions in our framework, and these results can be
used to obtain the final classification result, either weighted sum or voting schemes.

The remainder of this paper is organized as follows. In the next section, a brief
explanation of the dataset and its properties are described. In addition, the concepts of the
two feature maps used in this work (entropy image and phase image) and detailed methods
to generate them from B-mode images are presented. Section 3 provides a description of the
proposed deep convolutional neural network and training parameters. The experimental
results are presented and discussed in Sections 4 and 5, respectively. Finally, Section 6
presents the conclusions and future work.

2. Materials

Ultrasound images are generally referred to as B-mode images or brightness images,
which are constructed from the envelope of reflected or backscattered ultrasound radiofre-
quency waves from a scanned tissue. The received ultrasound signals at the ultrasonic
transducer are divided into two categories: the reflected waves at the boundaries that
are relatively much larger than the transmitted wavelength, and the backscattered waves
from a large number of randomly distributed scatterers within a soft tissue. While the
reflected waves are presented as organ or tumor boundaries in a B-mode image that pro-
vide anatomical structures of the human body, the backscattered waves generally result
in speckle patterns in a B-mode image that are closely related to tissue microstructures.
Although a B-mode image utilizes only the magnitude information of the received ultra-
sound radiofrequency signals, it can be said that a B-mode image contains both anatomical
and microstructural information simultaneously in one image. However, in the analysis
of B-mode images, experienced experts are needed for classification, in terms of mor-
phological information and textual features that are related to the microstructure in a
B-mode image.

When this classification is executed by convolutional deep neural networks, we
generally believe that the deep network learns both types of information—morphological
and textual features—from a B-mode image through the training process by itself. However,
the low image quality, as well as the relatively small size of datasets in medical ultrasound
applications, might become obstacles for deep learning approaches. To compensate for
these limitations during the training phase in deep learning approaches, distinct feature
maps (or images) to represent tissue characteristics explicitly are used to improve the
classification performance. In this section, we briefly introduce the breast ultrasound
dataset used in this study and present the methods to calculate the two feature maps,
entropy and phase images, from this B-mode dataset.
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2.1. Breast US Image Dataset

Although US imaging is one of the most popular modalities in practical clinical
applications, it is difficult to find publicly available US image datasets in the literature.
The dataset used in this study was recently released to the public, which consists of
breast US images from 600 female patients aged between 25 and 75 years at the Baheya
hospital in 2018 [15]. The data were acquired using the LOGIQ E9 ultrasound system and
LOGIQ E9 Agile ultrasound system with the ML6-15-D matrix linear transducer, and
converted gray scale images were obtained with an average size of 500 × 500 in PNG
file format. The dataset consists of 780 B-mode images with pathological status and is
categorized into three classes: normal, benign, and malignant. The numbers of images
for the three classes are presented in Table 1, and the sample US images of each class are
shown in Figure 1.

Table 1. Three classes of breast US images and the number of images in each class.

Class Number of Images

Benign 487
Malignant 210

Normal 133
Total 780

Figure 1. Sample B-mode images of the breast ultrasounddataset [11]; (a) Normal, (b) benign, and
(c) malignant.

2.2. Entropy Images

US B-mode images contain the anatomical information formed by reflections at large
boundaries as well as microstructural properties inside a small local area, which may
be related to the pathological status of soft tissue. These backscattered waves are gen-
erally shown as speckles, periodic patterns, or textures in a B-mode image. Therefore,
many approaches have been used to analyze tissue characteristics from these randomly
backscattered signals using various statistical models [16]. For example, the Nakagami [17],
K-distribution [18], and homodyned K-distribution [19] are popular statistical distributions
for assessing pathological information. For these approaches, called model-based methods,
there are some limitations in estimating the distribution parameters for a specific model
because a single model cannot be satisfied for the entire image area, and nonlinear signal
processing such as log-compression may change the original statistical characteristics of
raw data. Therefore, non-model-based approaches have been studied to compensate for
the limitations of statistical model-based methods.

The Shannon entropy, a measure of the average level of information, was proposed in
the research area of information theory [20] and applied to many signal processing applica-
tions to estimate the signal uncertainty in a random variable. Since Hughes first utilized
the Shannon entropy for the analysis of ultrasonic waveforms in a scattering medium [21],
many studies using the same concept for ultrasound images have been proposed and
exhibited performances comparable to those of model-based approaches [22–24]. The
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Shannon entropy of a discrete random variable X with possible values {x1, x2, · · · , xn} is
defined in the following discrete form:

H = −
n

∑
i = 1

p(xi) log2[p(xi)] (1)

where p(·) represents the function of probability distribution.
In this study, the entropy image was constructed from the B-mode image using a small

moving rectangular window in both the axial and lateral directions. Although Wan et al.
showed that the appropriate window length in the axial direction for a stable statistical
parameter was three times the pulse length [25], the window used in this study was a fixed
size of 25 × 25 pixels, which is the minimum size considering the average size of B-mode
images, because detailed information on raw radiofrequency data was not available. The
sample entropy images calculated from the B-mode image are shown in Figure 2b.

Figure 2. Sample B-mode, entropy, and phase images for a patient in each class; (a) B-mode images,
(b) entropy images, and (c) phase images.

2.3. Phase Images

The spectral representations of data converted by various transformation techniques
have been widely utilized in many signal processing areas to analyze the data with respect
to different aspects in a different domain. The Fourier transform is an important method
for representing data in the frequency domain and provides two components—magnitude
and phase—at every frequency component of the input data. Oppenheim and Lim first
presented that more important features of data are preserved in phases of the Fourier
transform [26], and Ni and Huo also proved the importance of phase information in signal
reconstruction from a statistical point of view [27]. In general, phase-only signals are
accentuated where a high temporal (or spatial) frequency change occurs, such as edges or
boundaries, without changing their positions in the original data.

In this study, we constructed a phase image from its B-mode image using its own
phase information and the representative (or average) magnitude of the Fourier transform,
which are averaged for the entire dataset. Because the image sizes of the dataset used
in this study are different, the Fourier transform was performed with large enough data
points first, and then the reconstructed image was re-sampled to its original size after the
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inverse Fourier transform with its own phase and the average magnitude components. The
sample phase images calculated from the B-mode image are shown in Figure 2c.

3. Methods

In this section, we explain the preprocessing of feature maps and B-mode image for
CNN models and the proposed deep learning framework for classification tasks using
three time-domain feature maps. The detailed CNN models utilized in our simulation
to compare the performances of the traditional CNN and the proposed architecture are
explained. The performance metrics used in this study are also summarized.

3.1. Preprocessing

Many previous studies on convolutional neural networks have been conducted with
a pre-trained CNN followed by fine tuning to obtain classification performance while
handling medical images [28]. We utilized several CNN models that were pre-trained from
a very large-scale database on the ImageNet dataset that contains over 1.2 million natural
images in approximately 1000 classes, and re-trained using the breast US dataset including
feature maps for the classification task. Because this work focuses on the classification
performances between conventional CNN and the proposed architecture utilizing multiple
time-domain feature maps, several variations of VGG, ResNet, and DenseNet, which are
popular network models in CNN, were used for comparison.

As explained above, two feature maps, entropy and phase images, were directly
calculated from a B-mode image before applying the deep neural network. Because the
B-mode images in our dataset are of different sizes, after generating feature maps, all three
images were resized to 256 × 256 pixels. There are no specific rules for determination of
input image size for the breast US image analysis, but the tradeoff between the diagnostic
performance, the training time, and memory needed should be considered. Although our
dataset did not provide the detailed dimensions of a scanned image, we selected an image
size of 256 pixels in both the axial and lateral directions for visibility of tumors or lesions in
several tens of pixels in a B-mode image. To utilize pre-trained CNN models for RGB color
images, each image was duplicated, and the input size of a deep neural network was set to
256 × 256 × 3.

3.2. Network Architecture

The overall architecture of the traditional and proposed CNN is shown in Figure 3.
The traditional CNN for the classification task, shown in Figure 3a, takes B-mode images
(256× 256) as inputs to train the backbone network, and the output vector (1 × 1000) of the
backbone network is applied to the linear layer to obtain the final prediction. Various deep
neural networks could be used as a backbone network, and the VGG, ResNet, and DenseNet
were used in this study to provide reference performance for the BUS classification.

The proposed architecture for BUS classification using multiple time-domain feature
maps is shown in Figure 3b. This framework consists of the feature extraction stage and
the decision layer along with a backbone network, and we call this architecture a feature-
channel convolutional neural network (FC-CNN). The feature extraction stage makes two
feature maps, entropy and phase images, from a B-mode image, and adjusts all three
images with a size of 256 × 256 pixels as input data for the backbone network. For the
backbone networks, three separate CNN models were utilized for each feature-channel
image. Each CNN model was independently trained by its own images (i.e., B-mode,
entropy, and phase images) and the best model was saved when the highest accuracy
occurs. Since entropy and phase images represent distinct characteristics of an image,
it would be better to select the most appropriate CNN model for each feature channel
respectively for the improvement of performances. However, since the main purpose of
this work is to show the benefits of multiple time-domain feature maps derived directly
from a B-mode image, the experiments were performed with single CNN model for all
feature channels under the same conditions.
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Figure 3. Overall architectures of convolutional deep neural networks. (a) Traditional convolutional
neural network (CNN) using B-mode image only, and (b) proposed feature-channel CNN architecture
(FC-CNN) using multiple feature images.

The decision layer determines the final prediction for a patient after combining three
individual prediction results for B-mode, entropy, and phase images. In this study, to deter-
mine a final decision by combining three outputs of each feature-channel, four different
combining strategies are utilized that are simple voting, weighted voting, simple averaging,
and weighted averaging. Because the output of an individual channel before the activation
function consists of three probabilities corresponding to each class, we can use either
probabilities or local prediction of each channel for the final classification result. While
the simple voting algorithm makes the final prediction by the majority of classes for each
channel output, the weighted voting algorithm sets double weight to the channel which
has the highest probability in a feature vector. The simple averaging algorithm calculates
the mean probability for all three classes first, and then determines the final decision with
these mean probabilities. The weighted average algorithm applies the channel accuracy,
which was obtained in the training phase, as a weight to the mean probability of each
class. The classification performances among combining strategies are compared in the
next section.

In this study, several variations of VGG, ResNet, and DenseNet were used as backbone
networks to compare the classification performances of the traditional CNN and the
proposed FC-CNN. The VGG network is a classical CNN-based deep neural network
proposed by the Visual Geometry Group, a research team at Oxford University [29]. For
comparison purposes, we utilized relatively simple networks such as VGG-11, VGG-13,
and VGG-16, which have fewer layers, because US images contain fewer morphological
details than natural images. While the VGG network can extract more detailed information
using the smallest filter of 3 × 3 and more features of the data by stacking layers deeply, of
about 16 and 19 layers, it also experiences the vanishing gradient problem as the layers
become deeper [30].

The ResNet proposed by Kaiming He et al. [31] overcomes the vanishing and ex-
ploding gradient problems for deeper networks by the initialization or normalization
method [32]. The residual block of ResNet solves the accumulated errors in the training
stage and improves the nonlinearity by the shortcut connection. In this work, ResNet-18,
ResNet-34, and ResNet-50 were simulated as backbone networks. DenseNet is a densely
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connected convolutional network that concatenates feature maps in all layers [33]. Because
the feature map information is preserved, gradient vanishing problems are alleviated and
the training speed is relatively fast owing to the smaller number of parameters. We used
DenseNet-121, DenseNet-161, and DenseNet-169 as backbone networks.

3.3. Training and Evaluation

To achieve consistency of experiments, we compared all classification performances
using a 5-fold cross-validation method, which divides the entire dataset into 80% of the
training set and 20% of the evaluation set. Because our dataset consists of an unbalanced
number of benign, malignant, and normal cases, the random selection of data for training
and evaluation sets from an entire dataset cannot guarantee the fair training of each class.
In our simulation, the same distribution ratio of each class was maintained to select the
training and evaluation sets, and the classification performances were compared. Since the
main purpose of this work is the benefits of multiple time-domain feature maps in CNN-
based deep learning, no artificial manipulation was applied to compensate the dataset
imbalance and classification performances were compared under the same conditions for
the traditional CNN and the proposed FC-CNN methods.

As an augmentation method in the training phase, random numbers from a normal
distribution were added to each batch with the same size as the input data, and a few blends
of transformations were also applied. The learning process was conducted over 30 epochs
when the highest accuracy of validation dataset occurs, and the batch size was set to 8. The
CrossEntropyLoss function, which combines the LogSoftmax function and the negative
log-likelihood loss function, was used as a loss function, and the Adam optimizer [34] with
a learning rate of 1e-4 was also used. Since the proposed feature-channel CNN architecture
utilizes three feature maps independently for training each channel backbone network,
all weights of the individual CNN model were determined when the highest accuracy
was achieved in the training phase. For the experimental environments, PyTorch (v.1.8.0)
backend in Python 3.6 was used to implement the networks, and a personal computer
outfitted with the Intel Xeon Gold 5120 CPU and NVIDIA Tesla-V100-PCIE graphics
processing unit (GPU) was used to conduct all the experiments.

The performance metrics used in this study were accuracy, recall, precision, F1 score,
and area under the ROC curve (AUC) [35]. In the following equations, TP, TN, FP, FN, and
f(x) represent the number of true positives, true negatives, false positives, false negatives,
and the receiver operating characteristic (ROC) curve, respectively.

Accracy(%) =
TP + TN

TP + TN + FN + FP
× 100

Recall(%) =
TP

TP + FN
× 100

Precision(%) =
TP

TP + FP
× 100

F1 score =
2 × Precision × Recall

Precision + Recall

AUC =
∫ 1

0
f (x)dx

Multiple feature maps were also effectively utilized in the evaluation stage for clas-
sifying BUS images. The B-mode image for evaluation is used to obtain the entropy and
phase images with the same parameters, such as the filter size and number of FFT points
for the training dataset. Therefore, one patient (or one B-mode image) has three feature
images including the original B-mode image, and all the three feature images are applied
to the proposed FC-CNN to obtain the classification results separately. As explained above,
the final prediction of classification for each evaluation patient (or test B-mode image) was
made using the voting algorithm.
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4. Results

We compared the classification performances of the traditional CNN (with B-mode
only) and the proposed FC-CNN (with multiple time-domain feature maps) architecture
for nine backbone networks including variations of VGGs, ReNets, and DenseNets. For
the performance metrics of accuracy, recall, precision, F1 score, and AUC, all simulation
results for classification are shown in Table 2. Note that the highest performance for each
metric is represented in bold. Although we used four different combining algorithms in the
decision layer to produce the final prediction, the results of the proposed FC-CNN method
shown in Table 2 were obtained using the simple voting algorithm, which achieved the
best performance. A detailed comparison among the combining strategies is presented in
the following section.

Table 2. Performances of traditional CNN and the proposed FC-CNN for backbone networks.

Backbone ACC (%) Recall (%) Precision (%) F1 Score (%) AUC

Traditional
CNN

VGG-11 89.28 87.45 87.93 87.67 0.9427
VGG-13 89.30 88.57 88.31 88.34 0.9468
VGG-16 87.97 87.43 86.28 86.62 0.9275

ResNet-18 90.07 89.95 88.56 89.07 0.9576
ResNet-34 91.50 90.73 91.29 90.85 0.9577
ResNet-50 91.24 90.64 90.99 90.79 0.9563

DenseNet-121 90.85 90.30 89.83 90.06 0.9587
DenseNet-161 92.29 92.21 91.01 91.56 0.9685
DenseNet-169 90.72 90.85 89.28 90.02 0.9582

Proposed
FC-CNN

VGG-11 91.76 89.34 89.70 89.38 0.9572
VGG-13 91.50 89.52 89.33 89.32 0.9562
VGG-16 90.33 89.22 88.35 88.59 0.9487

ResNet-18 93.07 91.31 91.37 91.28 0.9631
ResNet-34 93.86 92.03 92.76 92.31 0.9645
ResNet-50 93.07 92.28 92.02 92.15 0.9678

DenseNet-121 92.55 91.72 91.23 91.43 0.9645
DenseNet-161 93.73 93.19 92.40 92.76 0.9706
DenseNet-169 93.33 92.78 92.44 92.57 0.9676

While the performance among individual backbone networks made little difference,
the proposed FC-CNN generally achieved better performance than the traditional CNN
in most performance metrics. As for the accuracy, ResNet backbones showed higher
accuracies for the traditional CCN and DenseNet backbones for the FC-CCN architecture,
but the differences were not significant. For the performance metrics of recall and precision,
we hardly found a trend or tendency according to the backbone networks, but most
simulation results of the FC-CNNs were better than those of the traditional CNNs.

To compare the advantages of the proposed FC-CNN architecture in detail, we chose
the ResNet-34 network and DenseNet-161 network cases, which achieved the best perfor-
mance in all aspects. Figure 4 shows the classification accuracies for the traditional CNN
with B-mode images and the proposed FC-CNN with multiple time-domain feature maps.
The simulation results of the traditional CNN with entropy image and phase image are
also plotted for reference. The accuracies for the CNN with a single image (i.e., B-mode,
entropy, and phase images separately) are lower than those of the FC-CNN with three
feature images simultaneously for both ResNet-34 and DenseNet-161 network models.
Since the accuracy of B-mode image is better than those of entropy and phase image for
the traditional CNN with a single image, it could be said that B-mode images represent
morphological as well as textual information of the tissue scanned. However, the proposed
FC-CNN exhibits better performance than the traditional CNN with a B-mode image.
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Figure 4. The accuracy curves of the traditional CNN using a single image such as B-mode, entropy, and phase images, and
the proposed FC-CNN architectures; (a) ResNet-34, (b) DenseNet-161. Note that the shaded areas represent the five-fold
cross-validation results and the solid lines represent their mean accuracies.

The receiver operating characteristic (ROC) curves of the traditional CNN and the
FC-CNN architecture for ResNet-34 are shown in Figure 5. Two graphs were plotted for
the benign and malignant categories, and entropy and phase-only cases are also shown for
reference. As shown in Figure 5, the performances of the traditional CNN with B-mode
images and the FC-CNN architecture using multiple feature maps were very similar, but
the case of B-mode provided only slightly higher values than the case of FC-CNN for
both categories.

Figure 5. The ROC Curves of the traditional CNN and the FC-CNN architectures for ResNet-34; (a) benign, (b) malignant.

For the proposed architecture, three classification results from each feature-channel
CNN were properly combined to reduce the classification variances from different feature
maps and improve the final prediction result. In this study, we applied four different
combining algorithms to individual channel outputs and compared the performances.
Table 3 shows the classification accuracy and standard deviation (STD) for the traditional
CNN method and the proposed method with four combining strategies which are simple
voting, weighted voting, simple averaging, and weighted averaging algorithms. In this
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experiment, it is hard to find the significant differences and trends among the combining
algorithms, which means all CNN models mostly agree with the same prediction of class.

Table 3. Classification accuracy and standard deviation of traditional CNN and FC-CNN combining strategies.

CNN Model Traditional
CNN

Simple
Voting

Weighted
Voting

Simple
Averaging

Weighted
Averaging

ResNet-34
Accuracy 0.915 0.939 0.929 0.935 0.928

STD 0.016 0.026 0.023 0.026 0.016

DenseNet-161
Accuracy 0.923 0.937 0.936 0.932 0.929

STD 0.020 0.029 0.023 0.033 0.033

5. Discussion

The performance of deep learning approaches is generally determined by the archi-
tecture of a deep neural network, as well as the quality of the training dataset. In medical
US applications, there are few well-annotated datasets available in terms of both varieties
(clinical cases, US systems, and institutions) and the amount of data. The classification
performance of the proposed method did not exhibit significant difference than the conven-
tional method, because each channel-CNN model was not trained enough for its feature
(entropy and phase information) due to small size of training data used. Although entropy
and phase images represent distinct features of an image, a sufficient number of training
datasets are needed to extract each feature since both images are calculated directly from
the same B-mode image. However, the proposed FC-CNN method provided better perfor-
mances than the traditional method for all CNN models under the same conditions, and
the proposed method would be helpful for breast ultrasound classifications when each
feature-channel CNN model is well trained with large datasets.

In this study, we proposed one possible way for increasing the number of training
data for two feature maps in order to extract (or abstract) its own feature more exactly.
Since two feature maps were calculated from a B-mode image, the extended feature maps
could be generated using various sizes of filters or different signal processing techniques.
For the entropy images, three more sizes of entropy filters which are 9 × 9, 15 × 15, and
31 × 31 pixels, in addition to the entropy filter of 25 × 25 pixels, were applied to calculate
new entropy images in the training dataset. Since a larger entropy filter relatively smooths
local variations of complex structure inside soft tissue, it provides a different view of the
tumor area comparing to the background tissue. For the phase images, two additional
phase images were reconstructed using one dimensional FFT in either axial or lateral
directions with their average magnitudes, and one phase image was obtained using a
magnitude of Gaussian distribution. Because the horizontal and vertical edges in a B-mode
image are emphasized using axial and lateral 1-D FFT respectively, these phase images
also provide additional information of the tissue scanned. Figure 6 shows the examples
of extended entropy and phase images. Experimental results for the ResNet-34 model
exhibited that classification accuracy with larger extended feature maps outperformed 3.8%
higher than that of original feature maps. This shows that final accuracy of the proposed
architecture could be improved as the performance of each feature channel improved with
larger feature maps.

To compensate the limitations of dataset including the size as well as class imbalance,
data augmentation is commonly used to increase the amount of data for the learning
process. However, overfitting is a common disadvantage inherited because the data
augmentation artificially inflates datasets by image transformations and synthetic creations
from a small set of original images. In the proposed architecture, two feature maps, entropy
and phase images, along with a B-mode image, represent distinct characteristics that are
not easily seen in the original image. Therefore, the proposed method can be considered as
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feature-based data augmentation in a broad sense and can be extended for different feature
maps with various quantitative ultrasound (QUS) techniques.

Because the entropy and phase images are directly calculated from a B-mode image,
the proposed method can be applied to any available ultrasound B-mode dataset to deeply
learn the neural networks for various tasks. In addition to feature maps used in this study,
other parametric images using the Nakagami distribution, homodyned K-distribution,
or any other meaningful models which represent distinct characteristics of tissues and
breast masses, would be helpful for the classification of breast ultrasound. For the task of
segmentation of tumors in US images, entropy images represent a different aspect of image
features compared to a B-mode image and provide additional information to discriminate
between the tumor and background tissue. In addition, with more additional feature maps,
the deep neural network can classify US images into more detailed categories, such as the
American College of Radiology BI-RADS system for breast US images [36].

Figure 6. Examples of extended feature maps using different signal processing techniques; (a) entropy images, (b) phase images.

6. Conclusions

Deep learning-based analysis of medical ultrasound is still lacking compared with
the deep learning-based approaches of CT and MRI due to the high variability of operator
and/or system dependencies for image acquisition and interpretation. In addition, with
a small dataset, a deep neural network would fail to generalize image features for clas-
sification. The proposed FC-CNN architecture explicitly extracts distinct features, called
feature maps of entropy and phase images, which represent anatomical or microstructural
information, obtained from a B-mode image directly, and utilizes them for classification of
breast US images to help the deep neural network learn image characteristics quickly and
accurately. The experimental results showed that the FC-CNN architecture using multiple
time-domain feature maps outperformed the traditional CNN with B-mode only for most
of the CNN models. The proposed framework can be extended to other feature maps in
both the time and spectral domains and improve the classification performance in deep
learning applications.
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