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Abstract: In fields such as biology, archeology, and industry, underwater photogrammetry can
be achieved using consumer-grade equipment. However, camera operations underwater differ
considerably from those on land because underwater photogrammetry involves different optical
phenomena. On the basis of the requirements and specifications of the marine vessel Polaris, we
developed a novel underwater camera with prime and zoom lenses and a high resolving power. The
camera can be used in the spectrum in shallow water and the blue–green spectrum in deep water. In
the past, ordinary cameras would be placed in waterproof airtight boxes for underwater photography.
These cameras were not optimized to the underwater spectrum and environment, resulting in no
breakthroughs in resolving power. Furthermore, the use of the blue spectrum greatly increases
during underwater and particularly deep-water surveying. Chromatic aberration and focus-point
displacement generated by the shift from the shallow-water spectrum to the blue–green spectrum
in deep water makes universal underwater photography even more difficult. Our proposed optical
design aimed to overcome such challenges for the development of a high-resolution underwater
surveying camera. We designed a prime lens and a zoom lens. We adopted a waterproof dome
window on the outer surface as the basic structure and optimized it in accordance with the conditions
of different water depths and spectra to obtain distortion within±2% and high-resolution underwater
imaging quality. For the zoom lens design, we employed a genetic algorithm in Zemax to attenuate
chromatic aberration as a kind of extended optimization. This novel optical design that can be used in
all waters is expected to greatly reduce the volume and weight of conventional underwater cameras
by more than 50% and 60%, respectively, and increase their resolving power by 30–40%.

Keywords: optical design; photogrammetry; extended optimization; light spectrum; genetic algorithm

1. Introduction

Underwater photogrammetry, similar to terrestrial and aerial photogrammetry, has ad-
vanced with improvements in photography. Applications of underwater photogrammetry
are increasing because of technical improvements to photographic equipment, underwater
manned and unmanned vehicles, and diving apparatus. Many scientists have used un-
derwater cameras to explore the underwater world and observe marine animals. McNeil
elaborated on the structure of underwater cameras (see Figure 1) and identified parameters
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for ocean optics [1]. An underwater lens is composed of a dome window and an air lens as-
sembly. Nikon Corporation obtained a patent for a wide-angle underwater lens in 1996 [2].
The robotics group of Łuczyński and Birk [3] introduced various situations in which haze
interferes with underwater images.

Figure 1. Underwater camera [1]: Photo from 1. Gomer T. McNeil, Metrical Fundamentals of Underwater
Lens System, Optical Engineering, vol. 16, no. 2, pp. 128–139 (1977).

The refractive index of water changes with salinity, temperature, pressure, and optical
wavelength. The intensity of different colors of light varies at different water depths
because of light absorption and attenuation. The penetration of different colors of light
also varies because of different optical wavelengths. Accordingly, optical aberration greatly
reduces the resolving power of conventional optical cameras in waterproof boxes during
marine surveying [4].

To address these problems, we designed an optical camera based on full and blue-
green spectra and optimized it according to underwater conditions; this optimization
is essential for enhancing the resolving power of underwater cameras. From the early
exploration of underwater imaging technology [5,6] to the latest research, few researchers
have made breakthroughs regarding the fundamental problems of optical lenses [7,8];
specifically, extensive progress has been made in waterproofing technology for lenses from
the perspective of optical design and aberration [9]. From the perspective of modern optical
engineering, technologies with IP67 (industrial optics) or higher waterproof ratings and
the technique of inserting inert gas into barrels are relatively mature. The novel optical
design for underwater cameras in the present study could be a major breakthrough.

On the basis of the requirements of the research vessel Polaris, we developed an
optical design for prime and zoom lenses applicable in the underwater spectrum. First,
we removed the conventional outer waterproof box included in the IP67 specification
because the glass surface of the box reduces the resolving power of the camera and the
penetration of light, and it increases the volume and weight of the camera. Moreover,
chromatic aberration and focus-point displacement caused by the shift from the shallow-
water spectrum to the blue, deep-water spectrum makes universal deep-water photography
even more difficult. These two optical aberrations also reduce the resolving power. In this
research, we wrote a program using the genetic algorithm by Matlab language connected
with Zemax via its macro language to optimize optics and selected appropriate glass to
greatly reduce the influence of chromatic aberration. Using the optimization method via
CODEV and Zemax we developed a novel optical zoom lens applicable in all waters to
reduce the volume and weight of the camera by more than 50% and 60%, respectively, and
increase its resolving power by 30–40% relative to conventional underwater cameras.
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2. Background
2.1. Light Waves

Light can be classified into visible and invisible wavelengths according to human
vision, as shown in Figure 2. The wavelengths of visible light range from 380 to 760 nm.
Violet, indigo, blue, green, yellow, orange, and red light have wavelengths from short to
long. The wavelengths of invisible light are longer than 760 nm and shorter than 380 nm.
Visible spectra are adopted in many optical systems, but invisible spectra are also applied
in some technologies.

Figure 2. General visible spectrum. The wavelength of visible light ranges from 380.00 to 760.00 nm.
Violet, indigo, blue, green, yellow, orange, and red light have wavelengths from short to long.

2.2. Underwater Light Intensity

Figure 3 was adopted from an article published in an IEEE international confer-
ence [10]. The horizontal axis is the depth of water from 0 to 20 m, and the vertical axis
is light intensity (%). In general, blue and green lights attenuate the slowest and second
slowest in intensity, but red light attenuates the fastest. At 12 m underwater, the intensities
of blue, green, and red lights are greater than 60%, approximately 60%, and nearly 0%,
respectively. At 20 m underwater, the intensities of blue, green, and red lights are greater
than 45%, greater than 40%, and 0%, respectively. Colors of objects observed in underwater
environments are different from those in air.

Figure 3. Spectrum of the horizontal axis which is around the water depth from 0 to 20 m, and the
vertical axis is light intensity (%). Blue and green lights attenuate the slowest and second slowest in
intensity; red light attenuates the fastest. This diagram is from reference [10].
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Generally speaking, the light intensity decreases with the distance from objects in
liquid by light attenuation depending on the wavelength of light. Figure 3 shows the light
attenuation in water. For example, the intensity of red color decreases to about a half at
the point whose distance from the light source is 2 m, although that of blue color hardly
changes. Red color disappears at 20 m distance. In this way, colors of objects in water look
different from those in air. The measurement system and its set-up is described in [10].

2.3. Penetration of Light Waves in a Lake

Figure 4 depicts the results of sunlight penetration in Lake Superior obtained by
the students and scientists at the University of Minnesota Duluth [11]. In this lake, the
penetration depth of red light is less than 50 m, whereas that of blue and green lights
exceeds 100 m.

Figure 4. Penetration of light at different wavelengths [11]. In Lake Superior, the penetration depth
of red light is less than 50 m, whereas that of blue and green lights exceeds 100 m.

2.4. Relationship between Wavelength and Refractive Index

As mentioned in Section 2.1, light is divided into visible and invisible spectra. Table 1
presents the refractive indices of light at different wavelengths at a water temperature of
20 ◦C. A shorter wavelength results in a higher refractive index; conversely, the longer the
wavelength, the lower the refractive index.

2.5. Variances between Wavelength and Refractive Index

Table 2 presents the changes in the refractive index of yellow sodium light at a
wavelength of 589.3 nm in water at different salinity and temperature levels. The unit for
salinity is ‰ or ppt (grams of salt per thousand grams of water), and it ranges from 0‰ to
40‰. The unit for temperature is ◦C and it ranges from 0 ◦C to 30 ◦C. The refractive index
is approximately 1.3 and varies slightly at different salinity and temperature levels.
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Table 1. Refractive indices of light at different wavelengths at a water temperature of 20 ◦C [10].

Press, Chapter 2 Ocean optics, P.R.C.

Wavelength (nm) Refractive Index Wavelength (nm) Refractive Index

250 1.3773 486 1.3371

308 1.3569 589 1.3330

359 1.3480 768 1.3289

400 1.3433 1000 1.3247

434 1.3403 1250 1.3210

Table 2. Variables in the refractive index of the D-Line wavelength [10].

Salinity
(‰, ppt)

Temperature (◦C)

0 10 20 30

0 1.33400 1.33369 1.33298 1.33194
5 1.33498 1.33463 1.33390 1.33284
10 1.33597 1.33557 1.33482 1.33374
15 1.33595 1.33652 1.33573 1.33464
20 1.33793 1.33746 1.33665 1.33554
25 1.33892 1.33840 1.33757 1.33644
30 1.33990 1.33934 1.33849 1.33734
35 1.34088 1.34028 1.33940 1.33824
40 1.34186 1.34123 1.34032 1.33914

2.6. Equation for the Refractive Index of Water

According to McNeil [1], Equation (1) calculates the refractive index in water. The
refractive index in water is associated with salinity, temperature, optical wavelength, and
pressure, and it can be obtained when these variables are known. In Equation (1), nw is the
refractive index of water; λ is the optical wavelength (in nm); T is the water temperature
(in ◦C); S is the salinity (in ‰ or ppt); and P is the pressure (in kg/cm2).

nw= 1.3247+ 3.3×103

λ2 − 3.2×107

λ4 − 2.5× 10−6T2 +
(
5− 2× 10−2T

)(
4× 10−5S

)
+(

1.45× 10−5P
)(

1.021− 6× 10−4S
)(

1− 4.5× 10−3T
) (1)

2.7. Distortion

In ideal optics, the magnification of each field of view is identical. However, in reality,
after light passes through an optical system and is focused on the imaging surface, the
magnification differs at different image heights, and the objects in the images are then
deformed, as depicted in Figure 5. This is called distortion. In positive distortion, also
called pincushion distortion, the actual imaging surface is larger than the ideal imaging
surface. In negative distortion, also called barrel distortion, the actual imaging surface is
smaller than the ideal imaging surface.

2.8. Chromatic Aberration

The refractive index of glass varies depending on its material, whereas that of light
differs by its wavelength. After entering an optical system, a ray of white light produces
light in different color bands when refraction occurs. Chromatic aberration occurs when
different colored light is focused at different positions. Chromatic aberration is positive
when the focus point of light with long wavelengths is left of that of light with short
wavelengths. Conversely, chromatic aberration is negative when the focus point of the
light with long wavelengths is right of that of light with short wavelengths. Generally,
red light is longer in wavelength and blue light is shorter in wavelength. In addition,
chromatic aberration can be categorized into axial and lateral. As depicted in Figure 6,
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axial chromatic aberration indicates that the difference between the focus points of light
at different wavelengths is on the optical axis after refraction in an optical system. As
illustrated in Figure 7, lateral chromatic aberration refers to a difference between the focus
points of light at different wavelengths on the ideal imaging surface after refraction in an
optical system.

Figure 5. (a) Positive and (b) negative distortion.

Figure 6. Axial chromatic aberration. Such chromatic aberration typically affects the displacement
of the focus points of different colored light in different spectra and enables underwater cameras to
produce absolute images.

Figure 7. Lateral chromatic aberration. Such chromatic aberration typically occurs at the edges
of images and is commonly used with a haze to produce an effect similar to flare. Although
nonconsequential in this study, the selection of glass using the genetic algorithm increases image
quality and reduces flare.
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3. Brief Introduction to Polaris

Polaris is the product of an industry–academia partnership between Dragon Prince
Hydro-Survey Enterprise Co. Kaohsiung City 800, Taiwan and National Kaohsiung Univer-
sity of Science and Technology (Nanzi Campus), and it is Taiwan’s first nongovernmental
oceanographic research and survey vessel. It was built by Shing Sheng Fa Boat Building
Co, Ltd. Kaohsiung City 80544, Taiwan. It weighs 260 tons has a top speed of 11 knots, and
is 36.98 m long by 6.80 m wide. Since 2008, Polaris has been stationed at the Innovation
Incubation Center of National Kaohsiung University of Science and Technology, and it is
typically parked at the jetty of the Cijin Campus. Polaris has completed many underwater
exploration and rescue operations. For example, various parties were involved in the
search for Malaysia Airlines flight MH370, which mysteriously disappeared on 8 March
2014. The Indian Ocean is approximately 3900 m deep on average, and approximately
8000 m deep at its deepest. The search operations required advanced equipment, and
Polaris was invited to Australia to use its underwater detection and deep tow system
to help in salvation operations. This demonstrated the international recognition of the
high-quality system on Polaris. Photographs and diagrams of the vessel are presented in
Figure 8a–c.

Figure 8. (a) Polaris, (b) cabin configuration, and (c) data-processing center.

Polaris is equipped with a differential satellite positioning system, underwater re-
motely operated vehicle, single-beam and multibeam echo sounders, subbottom profiler,
side-scan sonar system, underwater positioning system, sediment corer, marine magne-
tometer, and penetrometer.

4. Methodology: Optical Design of the Prime System
4.1. Specifications for Underwater Optical Systems

The design was based on the specification requirements of Polaris. We first designed
the prime lenses followed by zoom lenses. In terms of chromatic aberration, spherical-
chromatic aberration, and different spectra, the executive software CODE V was powerful
enough to obtain relatively small chromatic aberration when appropriate settings were
used. This suggested that we could achieve satisfactory results for prime lens design
without using the genetic algorithm.

Underwater lenses are composed of a dome window and an air lens assembly, and the
two components should be designed together. The initial architecture of the underwater
lenses designed in this study was a dome window and a double-Gauss lens, as illustrated
in Figure 9. We used quartz glass as the material for the dome window in consideration of
water pressure and Schott lenses for the air lens assembly.
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Figure 9. Optical system with the object at infinity.

Theoretically, in an optical system where the object is at infinity, the refractive indices
of the object space and the image space are different. The refractive index of the object
space is n, and that of the image space is n′. The focal length is f , and the image height
is y′. The first and second principle points are P and P′, respectively; the first and second
nodal points are N and N′, respectively. The incident and emergent angles of the chief ray
are u. The included angle between the marginal ray and the optical axis is u in the object
space and u′ in the image space. The heights of the incident point and emergent point of
the marginal ray are h and h′, respectively. By using the optical invariant [12], we could
infer the relationship among refractive index, focal length, angle of view, and image height,
as expressed in Equation (8) [13].

On the image surface
H = n

(
hu− hu

)
= −nhu (2)

On the object surface
H = n

(
hu− hu

)
= n′y′u′ (3)

Equivalent image and object surface according to the optical invariant

− nhu = n′y′u′ (4)

Image height

y′ =
n
n′

h
−u′

u (5)

Focal length

f =
h
−u′

(6)

Image height obtained by substituting Equation (6) into Equation (5)

y′ =
n
n′

f u (7)

Image height in a nonparaxial optical system

y′ =
n
n′

f tan u (8)

The specifications of the underwater lenses designed for the full and blue–green
spectra are listed in Table 3. The actual image height detected by the sensor was 21.6 mm,
the pixel size was 7.13 µm, and the spatial frequency was 70 lp/mm. The aperture and focal
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length were f/2 and 75 mm, respectively, and a half-angle of view of 12.20◦ was obtained.
The half-angles of view and their weight ratios are listed in Table 4. We selected seven
fields of view for the design of the prime lens. The weight of the on-axis field of view was
the largest, and that of the outermost field of view was the smallest.

Table 3. Specifications of the novel underwater prime lens.

Resolution 4800 × 3600 (1700 K)

Sensor size 36 mm × 24 mm (CMOS)

Diagonal length 43.2 mm

Actual image height 21.6 mm

Object distance Infinity

Spatial cutoff frequency 70 lp/mm

Half-angle of view 12.20◦

Focal length 75 mm

Aperture f/2

Table 4. Fields of view and their weights.

Half-Angle of View Weight

0◦ 3

2.2◦ 3

4.5◦ 2

6.0◦ 2

8.4◦ 2

10.8◦ 1

12.2◦ 1

4.2. Design and Verification of the Underwater Optical Camera

The selected wavelengths from the blue–green spectrum are listed in Table 5. We
selected green and blue light wavelengths because they have superior penetration ability
in lakes. The weight ratio of the three selected wavelengths was 1:1:1, and the center
wavelength was in the blue light range. The lens was designed to reduce the chromatic
aberration value, particularly that of green and blue light, to a low point. In CODE V, we
mainly used wavelength weights to attenuate chromatic aberration.

Table 5. Weight ratios for wavelengths in the blue–green spectrum.

Wavelength Weight

546.1 nm (ne) 1

486.1 nm (nF) 1

479.9 nm (nF′ ) 1

As depicted in Figure 10, the lens consists of a dome window and an air lens assembly,
and the optical system has 11 lenses in total. In addition to an infinite object distance,
various object distances should be considered in photography. Therefore, we conducted
tests with object distances of infinity, 10 m, and 5 m.
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Figure 10. Optical design layout of the underwater lenses.

The spot size diagrams in Figures 11–13 show how light rays are focused on the ideal
imaging surface. The half-angle of view gradually increases from bottom to top, with the
bottommost angle on the optical axis being 0◦ and the topmost angle being 12.2◦. The
scales of the diagram are all 0.1 mm. Figures 11–13 present the spot size diagrams with an
infinite, 10-m, and 5-m object distance, respectively.

Figure 11. Spot size diagram with an infinite object distance (generated by CODE V).

Figures 14–16 present the spherical aberration, astigmatism field curvature, and
distortion with an object distance of infinity, 10 m, and 5 m, respectively. The scales of the
spherical aberration range from −0.1 to 0.1. The optical axis does not have astigmatism,
but the off-axis fields of view do. The distortion of this camera approaches 0 at an infinite
object distance. When the object is closer, the negative distortion of the off-axis fields of
view increases. The distortion ranges within ±2%.
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Figure 12. Spot size diagram with a 10 m object distance (generated by CODE V).

Figure 13. Spot size diagram with a 5 m object distance (generated by CODE V).
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Figure 14. Optical aberration diagram with an infinite object distance ((left), axial chromatic aberra-
tion; (middle), astigmatic (blue line) field curvature (blue dot line); and (right), distortion).

Figure 15. Optical aberration diagram with a 10 m object distance ((left), axial chromatic aberration;
(middle), astigmatic (blue line) field curvature (blue dot line); and (right), distortion).

The modulation transfer function (MTF) is another method for inspecting the quality
of an optical system. The horizontal axis is the spatial frequency, and the vertical axis
is the modulation. The highest spatial frequency was defined as 70 lp/mm; the highest
and lowest modulations were 1 and 0, respectively. Figures 17–19 are the MTF curves
with an infinite, 10-m, and 5-m object distance. The outermost off-axis field of view was
preferable with an infinite object distance and superior to the sixth field of view with an
object distance of 5 m.
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Figure 16. Optical aberration diagram with a 5 m object distance ((left), axial chromatic aberration;
(middle), astigmatic field (blue line) curvature (blue dot line); and (right), distortion).

Figure 17. MTF curves with an infinite object distance.

Figures 20–22 were captured from two-dimensional simulations with object distances
of infinity, 10 m, and 5 m. A picture we captured was used to simulate the results of the
designed underwater lens by using CODE V. Because only blue light penetrates in the
ocean, we added a filter that allowed only blue light to pass through to the first lens.
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Figure 18. MTF curves with a 10 m object distance.

Figure 19. MTF curves with a 5 m object distance.

Figure 20. Two-dimensional simulation with an infinite object distance.
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Figure 21. Two-dimensional simulation with a 10 m object distance.

Figure 22. Two-dimensional simulation with a 5 m object distance.

5. Introduction to Genetic Algorithm and Its Extended Optimization Specific for
Chromatic Aberration for Photogrammetry

Genetic algorithms [14,15] were used to define an objective function estimating the
degree of compliance of different cameras with the specifications. In general, the defined
objective function approaches an objective value of 0. When a camera obtains an objective
value of 0, it complies with all requirements. The objective function of this study was
defined as follows:

obj_Value (i) = |AXCL| + |LACL| (9)

where | | denotes an absolute value; and AXCL and LACL are the axial and lateral
chromatic aberrations defined by Zemax, respectively.

Since the chromatic aberration is majorly related to the Abbe number of the material,
the genes are to be the Abbe number of the lens elements for the GA optimization. There
are 10 lens elements with glass material in the proposed lens so that the GA employs
10 genes for the chromatic aberration suppression. Subsequently, we randomly generated a
population size (pop_size) with 10 genes (i.e., 10 Abbe numbers) to the designs of different
lenses. The objective values of lens with different genes were obtained using the optical
simulation software to evaluate the compliance of the lens with the specifications (that is,
Equation (9)). The objective values were used to select crossovers. Many methods can be
employed to select lenses for crossovers, among which the roulette wheel selection is the
most common [16]. The proportion of the lenses on the wheel was allocated according to
their fitness with the specifications. Lenses with superior fitness accounted for larger areas
on the wheel; conversely, those with inferior fitness occupied smaller areas. However, the
objective function we previously defined had an inverse relationship with the fitness value;
that is, a smaller objective value was associated with a larger fitness value. Accordingly,
we could not directly employ the objective value to select the lenses for crossover during
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roulette wheel selection. Therefore, we defined the conversion relationship between the
objective value and the fitness value as follows:

fit_Value(i) = max{obj_Value(j)|1 ≤ j ≤ pop_size} + min{obj_Value(j)|1 ≤ j ≤ pop_size} − obj_Value (i)
for i = 1, 2, . . . , pop_size

(10)

where the functions max{} and min{} are the maximum and minimum objective values in
the pop_size lenses, respectively. In the simulation, we used probabilities to indicate the
area of the wheel occupied by the lens sets according to their fitness value. Hence, the
probability of the entire wheel is 1, and that of the lens sets could be determined using
Equation (11).

p(i) = fit_Value(i)/ ∑pop_size
n=1 f it_Value(n) for i = 1, . . . 2, , pop_size (11)

The probability of the entire wheel is 1. We could obtain the area of each lens set on
the wheel according to their fitness by using Equation (12).

q(i) = ∑i
n=1 p(n) for i = 1, 2, . . . , pop_size (12)

and
q(0) = 0 (13)

To randomly generate a number α between 0 and 1, if q(i − 1) < α ≤ q(i), we selected
the genes of the ith lens for crossover. Moreover, the genes of two lens sets were required
during a crossover; therefore, two selection mechanisms were required. Here, we let the
genes of the two selected parent lens sets be X = (x1, x2, . . . , x10) and Y = (y1, y2, . . . ,
y10) and that of their children lens sets be Z = (z1, z2, . . . , z10). The crossover procedure
for generating the next generation was subsequently implemented after the genes of two
parent lens sets were selected. Since both selected parents would propagate their features
to the new genes, we further used random crossover to select the glass material as follows:

zi = βxi + (1 − β)yi for i = 1, 2, . . . , 10 (14)

where β is a random number between 0 and 1, which indicated that the feature of new
gene partially came from one of the parents and partially from the other. According to the
preceding crossover calculation, we could obtain the genetics of the next-generation lenses.
However, although living organisms adapt to their growth environment and pass on the
better adapted genes to their next generation, their genes also mutate to make them more
competitive in the environment. In terms of the application of the GA to the optimization
of optical lenses, we defined a mutation rate pm between 0 and 1 and selected a random
value between 0 and 1 for each gene. When γ < pm, we implemented a mutation calculation
for corresponding gene. Since the common Abbe number is from 25 to 80, the genetic
changes of their subsequent generation are expressed as follows:

zi = random number from 25 to 80 (15)

In the preceding selection, crossover, and mutation were the basic calculations of the
genetic algorithm. Figure 23 presents the implementation procedure of the GA in this study.
This GA is based on pop_size 200, crossover rate 0.8, and mutation rate 0.3 for running
200 generations.
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Figure 23. Flowchart of the genetic algorithm calculation.

6. Methodology for Extended Optimization of Zoom Optics with Genetic Algorithm
Specific for Chromatic Aberration

Optimization was executed by CODE V basically for most aberrations in this system
so that it played the role at modulation transfer function (MTF). Genetic algorithm in
this research was close to so-called “extended optimization” specific for chromatic aber-
rations only and nothing to do with other aberrations in this system. Therefore, there
was no obvious contribution to MTF (2%) of the whole system via genetic algorithm
extended aberrations.

Why is chromatic aberration so sensitive to lens for under water purposes although it
might not play the role at system MTF? Chromatic aberration might cause focus shift due
to various wavelengths. From 1 m to 100 m for under water applications, there is plenty of
variety regarding wavelengths so that is a better choice to minimize chromatic aberration
first in order to guarantee the best performance from 1 m to 100 mm for under-water
image application.

From the simulation of CODEV and Zemax, there might be only 2% improvement
of simulation MTF. Why is chromatic aberration so critical in practical systems? The key
point is that chromatic aberration might be strongly-emphasized with so called integral
aberrations effects due to ocean currents under water, which can be seen as a kind of
time-domain variance of the glass index, which seriously degrades system performance
although CODE V or Zemax is not able to simulate that cases. So far, there is no similar
software or digital signal processing to overcome this kind of “ocean aberration” but
minimization of chromatic aberration might be successful in minimizing such types of
time-domain aberrations; similar optical software is used in the air in order to overcome
air turbulence.

In this section, we propose an extended optimization method via genetic algorithm
specific for chromatic aberration applied to photogrammetry. This extended optimization
method will efficiently eliminate the chromatic aberration although it might be not of help
in improving MTF. The optical design of zoom lenses for underwater is different from
that of prime lenses. First, changes in light spectra increase the chromatic aberration and
focus-point displacement for zoom lenses compared with prime lenses. The various optical
aberrations generated by zoom magnification are difficult to control. Second, zoom lenses
generally have lower resolving power than prime lenses and produce more complex optical
aberrations with changes in magnification [17]. Therefore, designing a zoom lens with a
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high resolving power for underwater photography and the ability to adjust with changes
in water depth is difficult.

In accordance with Polaris specifications, we developed a zoom lens with three times
zoom ratio. The specifications are listed in Table 6. The half-angles of view and their weight
ratios are listed in Table 7. All optical layouts are demonstrated on Figure 24 optimized
by Zemax with genetic algorism. Its MTF performance is illuminated by Figures 25–27
according to difference zoom ratio 5 mm, 10 mm, and 15 mm.

Table 6. Specifications of the novel underwater zoom lens.

Resolving power 2100 K pixels

Sensor size 12.8 mm × 9.6 mm (CMOS)

Diagonal length 14.6 mm

Actual image height 7.3 mm

Object distance Infinity

Spatial cutoff frequency 70 lp/mm

Angle of view 72.20◦

Focal length 5 mm to 15 mm 3x

Aperture f/2.8 to f4.5

Table 7. Field of view and weights.

Angle of View Weight

0◦ 3

4.6◦ 3

9.1◦ 2

18.2◦ 2

27.3◦ 2

36.7◦ 1

Zoom optics has its inherent difficulties in optical performance compared to prime
lenses especially in astigmatism, distortion, and MTF performance. In this case, fixed
overall length complicates optical design and optimization so that its performance is not
as good as fixed focal optics. There are some alternatives to improve the performance of
zoom optics although their performance is not equivalent to optics with fixed focal length.
Generally speaking, one is the employment of very-high-index optical glass and another
is employment of more optical elements. Unfortunately, both methods are not feasible in
this specification from Polaris as optical glass with high index might have poor physical
and chemical characteristics so that it is not a good choice for optics under water and
employment of more optical glass will make optics longer than expected, which is also not
good for optics under water.

Despite the two concerns of optical aberrations and resolving power, zoom lenses
have more degrees of freedom than prime lenses. Therefore, we used the genetic algorithm
for optimization and conducted optical design in Zemax as follows: the optimal glass lens
sets were initially selected in Zemax based on the genetic algorithm to significantly reduce
chromatic aberration, particularly axial chromatic aberrations [18,19]. Various approaches
can be used to reduce axial chromatic aberration; however, the most direct and efficient
method is to select an appropriate optical glass. Neither the least damping square in Zemax
nor CODEV could reduce the chromatic aberration of the zoom lens to a low value [17,20].
However, we incorporated the high-level language of the genetic algorithm into Zemax
for optimization and obtained a set of lenses that produced relatively low axial chromatic
aberration. We made minute adjustments to the zoom lenses and further identified the
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displacement of the highest resolving power lenses separately at different depths and
under different spectra.

Figure 24. Optical layout of underwater optical zoom optics. From top to bottom, the focal length is
5 mm, 10 mm, and 15 mm. This zoom design is characterized with only one element for zoom func-
tion, which significantly simplifies opto-mechanical system design for underwater image systems.
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Figure 25. MTF chart for zoom 1 (focal length = 5 mm).

Figure 26. MTF chart for zoom 2 (focal length = 10 mm).

Figure 27. MTF chart for zoom 1 (focal length = 15 mm).
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The reason why it is very difficult to compare volumetrically this optical design
with conventional optical design is that the lens design in this paper is without a dome.
Compared with traditional optical components, the proposed zoom exhibits higher MTF
and provides a more satisfactory image quality. Because of the advantages of the proposed
MTF zoom, which are difficult to achieve for a traditional single lens, it has the potential
to be applied to in-camera systems and virtual and augmented reality. For example, the
medium index outside the lens given in this paper is different from that of general optics
with a dome. Their boundary conditions after optimization are also completely different.
From the point view of optical measurement, there will be a flat glass in the front of
conventional optics with dome, which might degrade MTF up to 20% or more. Both are,
however, made in different worlds so that it is very difficult to find a basic standard with
which to compare them.

7. Discussion and Conclusions

In accordance with the requirements of the survey vessel Polaris, we proposed a novel
optical design with prime and zoom lenses and a high resolving power in the full light
spectrum in shallow water and the blue–green light spectrum in deep water. We specifically
applied a genetic algorithm and Zemax software to optimize a 3x zoom lens for use in deep
water with a minimized chromatic aberration value. This camera can prevent sensitive
chromatic aberration and maintain its imaging quality during underwater surveying when
spectra change.

Both the prime and zoom lenses achieved the following experimental results:
First, the developed lenses enabled independent operation without an airtight box. In

the past, cameras were placed in waterproof airtight boxes for underwater photography,
which caused problems such as chromatic aberration and focus-point displacement and
made deep-water photography difficult. Therefore, we proposed an optical design for
both prime and zoom lenses. The prime lens had a focal length of 75 mm and an aperture
of f/2, and the zoom lens had an effective focal length of 5–15 mm and an aperture of
f/2.8–f/4.5. Conventional waterproof boxes were not used this optical system. We adopted
a waterproof dome window on the outer surface as the basic structure and optimized it in
accordance with different water depths and light spectra to obtain a distortion within ±2%
and high-resolution underwater imaging quality.

Second, both the prime and zoom lenses could reach at least a 20% increase in resolving
power at a cutoff frequency of 70 lp/mm compared with conventional cameras with water-
proof doom.

The zoom lens was optimized using the genetic algorithm and designed to be applica-
ble at all water depths. Compared with conventional underwater cameras, its volume and
weight were reduced by more than 50% and 60%, respectively, and its resolving power was
increased by 30–40%.
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