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Abstract: Human mesenchymal stem cells can differentiate into various cell types and are useful for
applications in regenerative medicine. Previous studies indicated that dental pulp exfoliated from
deciduous teeth is a valuable alternative for dental tissue engineering because it contains stem cells
with a relatively high proliferation rate. For clinical application, it is necessary to rapidly obtain a
sufficient number of cells in vitro and maintain their undifferentiated state; however, the abundance
of stem cells in the dental pulp tissue is limited. Non-thermal atmospheric pressure plasma (NTAPP)
has been applied in regenerative medicine because it activates cell proliferation. Here, we examined
the effects of NTAPP to activate the proliferation of human deciduous dental pulp fibroblast-like cells
(hDDPFs) in vitro. Compared with untreated cells, NTAPP increased cell proliferation by 1.3-fold,
significantly upregulated well-known pluripotent genes for stemness (e.g., Oct4, Sox2, and Nanog),
and activated the expression of stem cell-specific surface markers (e.g., CD105). Overall, NTAPP
activated the proliferation of various mesodermal-derived human adult stem cells while maintaining
their pluripotency and stemness. In conclusion, NTAPP is a potential tool to expand the population
of various adult stem cells in vitro for medical applications.

Keywords: non-thermal atmospheric pressure plasma (NTAPP); human deciduous dental pulp
fibroblast-like cells; regenerative medicine

1. Introduction

Stem cells isolated from multiple tissues are used in regenerative medicine as they can
differentiate into various tissues, including odontoblastic, chondrocytic, adipocytic, and
osteoblastic cell lineages [1–4]. Previous in vivo studies demonstrated the differentiation
of stem cells isolated from human dental pulp tissue into odontoblast-like cells lining the
existing dentin surface [5] and the formation of a continuous layer of dentin-like tissue on
the existing canal dentinal walls and mineral trioxide aggregate cement surfaces [6]. In
addition, when stromal stem cells obtained from human dental pulp or bone fragments
in vitro were transplanted into immunocompromised rats it resulted in the generation of a
tissue structure with an integral blood supply similar to that of the human adult bone [7].
Stem cells from exfoliated human deciduous pulp show a higher proliferation rate than that
of adult bone marrow stromal stem cells [8]. Similarly, fibroblast-like cells from exfoliated
human deciduous dental pulp have a higher proliferation rate than that of those from
permanent teeth [9]. Therefore, stem cells from exfoliated human deciduous pulp might
be helpful in tissue regeneration, although those in the dental pulp tissue are present in
minimal quantities. Some studies have reported that stem cells comprise 0.8% and 0.4% of
human and mouse dental pulp, respectively [10,11]. Thus, it is necessary to proliferate cells
and maintain the undifferentiated state of human dental pulp cells for clinical applications.
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Various stimuli, such as drugs and incubation under hypoxia, have been used to activate
pulp undifferentiation potential [12]; however, their use is currently limited because of
safety and cost issues. Therefore, a safer and simpler alternative method is needed.

Recently, “plasma medicine”, which involves the application of non-thermal atmo-
spheric pressure plasma (NTAPP) for medical treatment, is a novel tool being applied in
regenerative medicine. Plasma medicine aims at irradiating inorganic materials for surface
modification or sterilization, whereas NTAPP combines irradiation at low temperatures
and under atmospheric pressure, allowing the direct treatment of biological tissues for
wound healing [13], selective apoptosis of cancer cells [14], and proliferation of pluripotent
stem cells [15]. In the field of medical science, NTAPP has been studied worldwide for
clinical applications. Although the information on the effects of direct plasma irradiation
on the dental pulp and periapical soft tissues is limited, NTAPP is a simple, safe, and
inexpensive tool that could be used in clinical dentistry.

In this study, we aimed to evaluate the effectiveness of NTAPP in activating the prolif-
eration of undifferentiated human deciduous dental pulp fibroblast-like cells (hDDPFs).
To this end, we examined the rate of cell multiplication in vitro, the expression of genes
related to cell proliferation, and changes in mesenchymal stem cell (MSC) markers.

2. Materials and Methods
2.1. Cell Culture

Non-carious deciduous teeth (canine or molar) obtained from three healthy orthodon-
tic patients at the pediatric dentistry in Osaka Dental University Hospital were kept in
sterile 0.01 M phosphate-buffered saline (PBS; Wako Co., Ltd., Tokyo, Japan) and cut
horizontally under sanitary conditions. The dental pulp tissue was gently removed,
minced, and cultured in 35-mm tissue culture dishes, containing Dulbecco’s modified
Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Wako, Tokyo,
Japan), 100 U mL−1 penicillin (Life Technologies, Carlsbad, CA, USA), 100 µg mL−1 strep-
tomycin (Life Technologies), and 4 mM L-glutamine (Life Technologies) at 37 ◦C in a
humidified atmosphere of 5% CO2. The culture medium was replaced with fresh medium
every 3 days. hDDPFs isolated from the dental pulp tissues at passages 2–9 and expressed
the markers CD105, CD44, and CD146 (data not shown) were used in this study. All
experiments were approved by the Ethical Committee of Osaka Dental University (No.
111039). Informed consent was obtained from all study participants, and the study was
conducted according to the principles of the Declaration of Helsinki.

2.2. NTAPP Stimulation Device

We used an argon-based NTAPP device in which the multi-gas plasma jet source has
a columnar body similar to a pen and is connected to an AC power supply of 16 kHz and
9 kV and a gas cylinder (Plasma Concept Tokyo, Tokyo, Japan; Figure 1).

Figure 1. Argon-based non-thermal atmospheric pressure plasma (NTAPP) stimulation device used
in this study. The multi-gas plasma jet source has a columnar body like a pen connected to an AC
power supply of 16 kHz and 9 kV and a gas cylinder.
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2.3. Cell Proliferation Assay
2.3.1. Investigation of NTAPP Irradiation Conditions

To investigate the effects of NTAPP, we first examined the cell proliferative poten-
tial after NTAPP irradiation. To expose cells to NTAPP, 1 × 104 cells seeded in 24-well
culture plates were incubated for 96 h. The cells were exposed to the indicated doses
of NTAPP (2.7 standard L/min, 20 V) for 10, 20, 30, and 40 s every hour, and the num-
ber of times was 1, 2, 3, and 4. The distance between the NTAPP stimulation device
and cells was fixed to 2 cm, and 0.5 mL of medium was used. Then, the cells were fur-
ther incubated for 72 h. After that, cell proliferation was evaluated using a Cell Titer96
Aqueous One Solution Cell Proliferation Assay kit (Promega, Madison, WI, USA), accord-
ing to the manufacturer’s instructions. Briefly, hDDPFs were cultured in 24-well plates
at 1 × 104 cells per well for 96 h at 37 ◦C under a humidified atmosphere of 5% CO2
and then treated with or without the indicated dose of NTAPP (2.7 standard L/min−1,
20 V). The NTAPP-treated cells and non-treated cells (control) were further incubated for
72 h. Next, 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) and phenazine methosulfate were added to the cultures. Absorbances
at 490 nm and 690 nm were measured using a Spectra Max5 microplate reader (Molecular
Devices, Downingtown, PA, USA).

2.3.2. Effects of NTAPP on Culture Medium

Some studies have reported that NTAPP irradiation alters the culture medium and
affects the cells [16,17]. Then, we wondered whether the cell proliferation induced by
NTAPP was the direct effect of NTAPP, or the indirect outcome of the medium modified by
NTAPP, or both.

To answer this question, we experimented with four groups. (Table 1) Groups 1 and 2
were not irradiated, whereas groups 3 and 4 were irradiated 3 times with NTAPP for 20 s.
Immediately after irradiation, the cell culture media of groups 2 and 3 were exchanged.
The cell proliferation was evaluated using the Cell Titer96 Aqueous One Solution Cell
Proliferation Assay kit and the results were compared with the results of the earlier cell
proliferation assay.

Table 1. Irradiation conditions for cells and culture medium.

Group Cell Medium

1 NTAPP(-) NTAPP(-)

2 NTAPP(-) NTAPP(+)

3 NTAPP(+) NTAPP(-)

4 NTAPP(+) NTAPP(+)

2.4. Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

We examined the expression of Oct4, Sox2, and Nanog to determine whether hDDPFs
irradiated with NTAPP 3 times for 20 s each time could maintain proliferative capacity
and pluripotency. We also studied the expression of Sox9, a marker of pluripotency in
undifferentiated neural crest cells, and that of ALP, a marker of pluripotency in undiffer-
entiated osteoblasts. Complementary DNA (cDNA) was isolated from NTAPP-treated
cells and non-treated cells after 72 h of incubation using a Cells-to-CT 1-Step TaqMan kit
(Thermo-Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instruc-
tions. RT-PCR was performed using a Step One Plus system (Thermo-Fisher Scientific) in a
total volume of 20 µL, consisting of 5 µL Master Mix, 13 µL RNase-free water, 0.5 µL Oct3/4
(Hs01654807_s1), Sox2 (Hs01053049_s1), Nanog (Hs02387400_g1), Sox9 (Hs00165814_m1),
or ALP (Hs01029144_m1) primers, 0.5 µL glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; Hs02758991_g1) primers and 1 µL cDNA. In the TaqMan Gene Expression Assay
(Life Technologies), the thermal conditions were as follows: 50 ◦C for 5 min, followed by



Appl. Sci. 2021, 11, 10119 4 of 9

40 cycles at 95 ◦C for 20 s, 95 ◦C for 3 s, and 60 ◦C for 30 s. Gene expression in multiplex re-
actions was quantified using the comparative Ct method with normalization of the amount
of the target (FAM) to endogenous GAPDH (VIC) expression. The relative expression levels
were normalized to GAPDH expression.

2.5. Flow Cytometry

To detect stem cell-specific surface markers, NTAPP-treated cells and non-treated cells
were detached with Accutase (Innovative Cell Technologies, San Diego, CA, USA), washed
with FACS buffer (PBS, 1% FBS, 0.1% NaN3 sodium azide), and centrifuged for 5 min at
1000 rpm and 4 ◦C. Cells were incubated with an optimal dilution of fluorescein-conjugated
monoclonal antibodies (anti-CD44-allophycocyanin [APC], anti-CD105-fluorescein isoth-
iocyanate [FITC], and anti-CD146-phycoerythrin [PE]; Biolegend, San Diego, CA, USA)
for 1 h on ice. In total, 10,000 stained cells per assay were evaluated using BD FACSVerse
(BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo (BD Biosciences). To
evaluate the fluorescence intensity, we measured the value of ∆MFI (the change of median
fluorescence intensity). We compared the ∆MFIs of CD44, CD105, and CD146 in hDDPF
treated with NTAPP.

2.6. Statistical Analysis

Data were expressed as means ± standard error of the mean (SE). Comparison among
groups was performed with one-way ANOVA, followed by the Student-Newman–Keuls
test. For comparisons between two groups with normally distributed data, two-tailed
unpaired Student’s t tests were used to determine statistical significance. Significance was
set at a p-value of <0.05 (KaleidaGraph 4.00; SynergySoftware, Reading, PA, USA).

3. Results
3.1. Cell Proliferation Assay
3.1.1. Investigation of NTAPP Irradiation Conditions

We observed cell proliferation in hDDPFs treated 1–4 times with NATPP for 20 s
compared with that in the non-treated group. When hDDPFs were irradiated with NTAPP
4 times, we observed cell detachment and irreversible disturbance of the proliferative
capacity (Figure 2). Optimum NTAPP protocol (3 times with NTAPP for 20 s) was followed
for all the following experiments.

Figure 2. Direct effects of non-thermal atmospheric pressure plasma (NTAPP) on the proliferation of
human deciduous dental pulp fibroblast-like cells (hDDPFs). These hDDPF (1 × 104 cells per well)
were incubated for 96 h at 37 ◦C and 5% CO2 in 24-well plates and then treated 1, 2, 3, or 4 times
with NTAPP for 10, 20, 30, or 40 s per h. NTAPP-treated cells were incubated for 72 h at 37 ◦C and
5% CO2. Cell proliferation was measured using the MTS assay. Data are presented as means ± SE
(n = 4). Markers * and ** indicate significant differences at p < 0.05 and p < 0.01, respectively.
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3.1.2. Effects on the Culture Medium

As shown in Figure 3, compared with the control (Group 1), in which neither cells nor
culture medium were irradiated, a significant increase in the proliferative capacity of cells
in Group 4 was confirmed, in which both cells and culture medium were irradiated.

Figure 3. Effects of NTAPP on the culture medium. Group 4 (in which both cells and culture medium
were NTAPP-irradiated) showed a significant increase in the proliferative capacity compared with
the control (group 1) (in which neither cells nor culture medium was irradiated). Data are presented
as means ± SE (n = 4). ** indicates significant differences at p < 0.01.

3.2. RT-PCR

The results showed NTAPP upregulated Oct3/4, Sox2 and Nanog in hDDPFs (Figure 4).

Figure 4. Effect of non-thermal atmospheric pressure plasma (NTAPP) on the expression of pluripo-
tency markers (Oct3/4, Sox2, Nanog, Sox9, and ALP) in human deciduous dental pulp fibroblast-like
cells (hDDPFs). (−) indicates the control group (non-NTAPP treated cells), and (+) indicates NTAPP-
treated cells. Values were normalized using GAPDH as the internal control. Data are presented as
means ± SE (n = 5). Data from five different experiments are shown. * and ** indicate significant
differences at p < 0.05 and p < 0.01, respectively.
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3.3. Flow Cytometry

The increased protein expression of stemness markers in NTAPP-treated hDDPFs
was further confirmed using flow cytometry. We found that the ∆MFI of CD105 was
significantly increased post-incubation for 72 h compared with that of non-treated cells,
whereas no change was observed in CD44 and CD146 (Figure 5).

Figure 5. Effect of non-thermal atmospheric pressure plasma (NTAPP) on the expression of stem
cell-specific markers (CD44, CD105, and CD146) in human deciduous dental pulp fibroblast-like cells
(hDDPFs). ∆MFI (%), change in median fluorescence intensity.

4. Discussion

NTAPP is a partially ionized gas containing electrically charged particles and radicals
at atmospheric pressure [18]. Previous studies reported that NTAPP exhibits various
physiological effects beneficial for applications in regenerative medicine. It activates the
proliferation of various mesoderm-derived adult stem cells, including human adipose
tissue-derived stem cells, bone marrow-derived (BM)-MSCs, and hematopoietic stem cells,
in vitro without affecting their stem-like properties [15,19].

In the present study, we investigated the effectiveness of NTAPP in activating the
proliferation of cells from the deciduous dental pulp for potential use in regenerative
dentistry. Our results showed that the cell proliferative capacity of cells treated 3 times
with NTAPP for 20 s each time was approximately 1.2-fold higher than that of non-treated
cells. In this study, the increased rate of cell proliferation was detected by MTS which
is an indirect indicator. To confirm that proliferation (and not only metabolic activity)
was increased by the NTAPP treatment, work should be carried out to directly compare
cell numbers between the control group and the group treated with the optimum NTAPP
protocol in future study. The optimal NTAPP conditions vary depending on plasma
generator devices, the gas type used for plasma generation, and cell type. For instance, it
has been reported that the proliferative potential of MSCs and hematopoietic stem cells is
increased when treated with helium-based NTAPP 10 times for 50 s each time, in contrast
to that of human synovial cells when treated with argon-based NTAPP for 60 s [19,20].
Here, the proliferative potential of hDDPFs decreased when treated >3 times with NTAPP
for >20 s each time. Thus, the appropriate treatment conditions for each cell line need to be
established before any clinical application.

In plasma medicine, NTAPP acts directly on cells and indirectly through the plasma-
treated medium. For instance, NTAPP-activated media have anti-cancer effects on various
human cancer cells [16], and He-based low-temperature atmospheric plasma jet-activated
media have anti-bacterial properties [17,21]. Here, we found that cells cultured in NTAPP-
treated medium had a higher proliferative capacity than those cultured in non-treated
medium. Therefore, NTAPP enhanced cell proliferation both directly and indirectly by
modifying the culture medium. Many oral periapical tissues contain large amounts of
water. For instance, the dental pulp is a soft gelatinous tissue and water comprises 75–80%
of its volume [22]. Therefore, it is essential to consider the effects of NTAPP on the cells
and the surrounding fluid. Our findings showed the effectiveness of NTAPP in modifying
the cell culture media, possibly expanding the applications of NTAPP using dental pulp.
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Previous studies reported that Oct4, Sox2, and Nanog play essential roles in maintaining
stem cell pluripotency and promoting cell proliferation in various adult stem cells [23–26].
To determine whether NTAPP treatment (3 times, 20 s each) could promote the proliferation
of hDDPFs without affecting pluripotency, we examined the expression of Oct4, Sox2, and
Nanog. We also studied the expression of Sox9, a marker of pluripotency of undifferentiated
neural crest cells, and ALP, a marker of pluripotency of undifferentiated osteoblasts since
hDDPFs are known to differentiate into chondrocytes and osteoblasts [27–29]. Our results
showed that mRNA expression of Oct3/4, Sox2 and Nanog was upregulated in NTAPP-
treated cells.

A study on multipotent myoblasts has reported that the expression of Sox9 increases
after 3 to 5 days of incubation with material trioxide aggregate (MTA), which promotes
hard tissue formation [30]. Therefore, in our experiments, confirming the expression of
Sox9 in NTAPP-irradiated cells cultured for a longer period was necessary.

It has been reported that the MSC markers CD44, CD73, and CD90, as well as the
stem cell markers CD105 and CD146, are expressed in dental pulp cells. Of these, CD105 is
highly expressed in deciduous teeth [31]. In the present study, we studied CD44, CD105,
and CD146 and found that they are all expressed in non-treated cells; however, only the
expression of CD105 was increased after NTAPP treatment. It is known that MSCs from
various human tissues and organs are adherent to plastic, have a fibroblastoid morphology,
and are positive for CD73, CD90, and CD105 [32,33], but they vary in potency and self-
renewal potential. Therefore, NTAPP treatment (3 times, 20 s each) is an effective tool that
activates cell proliferation while maintaining and increasing MSC and stem cell markers in
hDDPFs.

The multi-gas plasma jet source can generate atmospheric plasma of various gas
species, including argon, oxygen, helium, nitrogen, air, and carbon dioxide, at low gas
temperatures (<57 ◦C) [34]. Nevertheless, a study has reported that the effect of plasma
depends on the type of gas, and different gases change the active species produced, thus
changing the effectiveness and speed of the treatment. [35] For example, NTAPP using
nitrogen and carbon dioxide is effective for hemostasis [36].

Helium and argon have been used in many plasma studies, but we preferred the
latter because of the lower temperature, according to the manufacturer’s instructions. We
found that NTAPP based on argon gas was effective for promoting proliferation in hDDPFs;
however, further research is necessary to examine other gas species and elucidate the
complex biological effects of NTAPP on human stem cells.

5. Conclusions

Our study showed that argon-generated NTAPP activates the proliferative potential
of hDDPFs both directly and indirectly through the culture medium. Furthermore, we
revealed the possibility of enhancing the undifferentiated and proliferative cell potential,
suggesting that NTAPP could be an effective tool in regenerative dentistry.
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