
applied
sciences

Article

A Hybrid Bat Algorithm for Solving the Three-Stage Distributed
Assembly Permutation Flowshop Scheduling Problem

Jianguo Zheng and Yilin Wang *

����������
�������

Citation: Zheng, J.; Wang, Y. A

Hybrid Bat Algorithm for Solving the

Three-Stage Distributed Assembly

Permutation Flowshop Scheduling

Problem. Appl. Sci. 2021, 11, 10102.

https://doi.org/10.3390/

app112110102

Academic Editors: Vladimir Modrak

and Zuzana Soltysova

Received: 17 September 2021

Accepted: 22 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China; zjg@dhu.edu.cn
* Correspondence: yilinwang0319@163.com

Abstract: In this paper, a hybrid bat optimization algorithm based on variable neighbourhood
structure and two learning strategies is proposed to solve a three-stage distributed assembly permu-
tation flowshop scheduling problem to minimize the makespan. The algorithm is firstly designed to
increase the population diversity by classifying the populations, which solves the difficult trade-off
between convergence and diversity of the bat algorithm. Secondly, a selection mechanism is used to
update the bat’s velocity and location, solving the difficulty of the algorithm to trade-off exploration
and mining capacity. Finally, the Gaussian learning strategy and elite learning strategy assist the
whole population to jump out of the local optimal frontier. The simulation results demonstrate that
the algorithm proposed in this paper can well solve the DAPFSP. In addition, compared with other
metaheuristic algorithms, IHBA has better performance and gives full play to its advantage of finding
optimal solutions.

Keywords: hybrid bat algorithm; optimization problem; the distributed assembly permutation
flowshop scheduling problem; variable neighborhood descent

1. Introduction

The distributed assembly scheduling problem is a derivative and extension of the
assembly scheduling problems. It is mainly used to produce multiple products assembled
from different parts. In a decentralized and globalized economy, the current economic
trend of customization and intelligent manufacturing has led to the rapid development of
assembly production. Internationally, international companies with multiple production
centers or plants are even more common. This shows that distributed and intelligent
production plays a pivotal and irreplaceable role in the modern manufacturing industry.
Currently, this type of scheduling is widely used in the supply chain and manufacturing in-
dustry. In order to maintain a competitive position in a rapidly changing market, managers
must quickly make the right decisions about how to allocate work to plants and how to
schedule each plant efficiently. Therefore, the distributed scheduling problem has become
a hot research topic among scholars and researchers.

The distributed assembly permutation flowshop scheduling problem (DAPFSP) is
of great importance to both the industrial industry and the research community. As we
all know, DAPFSP consists of two phases, including production and assembly. In detail,
the production phase corresponds to a distributed displacement flowshop scheduling
problem, where n jobs are assigned to be processed in f plants with m identical machines
in a flowshop line. Each job belongs to a certain product. The processes contained in
each product cannot be interrupted or inserted by processes of other products during the
production process. The assembly phase corresponds to the assembly flow shop scheduling
problem, where s products are made in an assembly plant with a single assembly machine,
and each product must be assembled after all processes produced in the production phase
are completed.

Total completion time has been identified as a more relevant and meaningful goal in
today’s dynamic manufacturing environment when a batch of work needs to be completed

Appl. Sci. 2021, 11, 10102. https://doi.org/10.3390/app112110102 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3944-1033
https://orcid.org/0000-0002-4012-9808
https://doi.org/10.3390/app112110102
https://doi.org/10.3390/app112110102
https://doi.org/10.3390/app112110102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110102
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110102?type=check_update&version=2

Appl. Sci. 2021, 11, 10102 2 of 26

as quickly as possible. This allows the objective function to minimize the flow of work and
efficiently improve resource utilization. DPFSP is an NP-hard with m greater than or equal
to 2, and is a derivation and extension of the traditional permutation flow shop scheduling
problem with this criterion. Similarly, DAPFSP can be seen as an extension of DPFSP, which
is more complex than DPFSP. Therefore, the DAPFSP with completion time as the objective
function is also a strong NP-hard problem. In recent years, as a simple yet efficient method,
the bat algorithm has solved many scheduling problems in academia, including the job
shop scheduling problem [1], the open shop scheduling problem [2], the task scheduling
problem [3], and the production scheduling problem [4], by continuously performing local
search in the neighborhood of the current solution to obtain the optimal solution.

In this paper, an improved hybrid bat algorithm, IHBA, is proposed for solving
the DAPFSP with maximum makespan based on the original bat algorithm. The main
contributions of this paper are:

• The algorithm firstly designs the population classification to increase the diversity of
the population and solve the difficult trade-off between convergence and diversity of
the bat algorithm.

• A selection mechanism is used to update the speed and location of bats, solving the
difficulty of the algorithm to trade-off exploration and mining capacity.

• Gaussian learning strategy and elite learning strategy assist the whole population to
jump out of the local optimal frontier.

This paper is organized as described below. Section 2 reviews the closely related
literature. Section 3 presents the DAPFSP problem and its mathematical model. In Section 4,
the hybrid bat algorithm proposed in this paper is described in detail. In addition, the
parameter calibration and simulation calculation results are analyzed in Section 5. In the
last section, the paper is summarized, and future work is provided.

2. Literature Review

It is well known that the distributed permutation flowshop scheduling problem (PFSP)
is one of the most well-known production scheduling problems. It has a strong engineering
background by having the same work order on all machines. The problem has been shown
to be a strong NP-hard problem when more than two machines are involved.The problem
of distributed assembly permutation flowshop scheduling problem (DAPFSP) has been
gaining attention and popularity among scholars and researchers. The most leading expo-
nent is Hatami et al. [5], whose work is very enlightening. He was the first to optimize and
improve the DAPFSP for modeling and studying complex supply chains in 2013. They
also introduced the mixed integer linear programming model, proposed three construction
algorithms, tested the variable neighborhood descent (VND) algorithm, and demonstrated
the good performance of the VND algorithm in solving this scheduling problem. Similarly,
he went on to expand on his previous paper by adding time for sequence-related setups
in both the production and assembly stages [6]. In 2015, Hatami et al. [7] considered a dis-
tributed assembly scheduling problem with sequence-dependent setup times and the goal
of minimizing production time. The setup times of both phases are sequence-dependent,
which also lays the theoretical foundation for the sequences in this paper. Heuristics and
meta-heuristics are also proposed to solve it. Based on his literature and views, many
of these ideas and opinions have been studied and explored in greater depth by many
scholars. Based on these rather cutting-edge ideas, many scholars have built on and
deepened their research, and Ying et al. [8] extended the DAPFSP for flexible assembly
and sequence-independent setup times in supply chains. Using completion time as an
optimization criterion, construction heuristic and custom meta-heuristic algorithms are
proposed to solve this emerging scheduling extension. Gonzalez-Neira et al. [9] studied a
stochastic version of the DAPFSP and proposed a hybrid algorithm to solve the stochastic
problem, integrating biased randomization and simulation techniques. Wang [10] intro-
duced a just-in-time constraint between the two phases of the traditional DAPFSP to form a
just-in-time DAPFSP to minimize the maximum weighted tardiness cost. A variable neigh-

Appl. Sci. 2021, 11, 10102 3 of 26

borhood search based on memory algorithm is proposed. From the above reviewed studies,
it can be concluded that these scholars and researchers have extended and improved this
problem, and most of them have an objective function based on minimizing the makespan,
which provides a theoretical basis for the objective function in this paper.

Most scheduling problems are NP-hard and exact methods simply cannot find the
optimal solution in reasonable computational time. Therefore, heuristic and meta-heuristic
algorithms have been used to find the optimal solution and near-optimal solutions in reason-
able computation time. Zhang et al. [11] pointed out that the DAPFSP is a typical NP-hard
combinatorial optimization problem, and proposed an innovative three-dimensional matrix
cube-based distribution estimation algorithm to address the difficulties of the proposed
DAPFSP-T model. Likewise, Zhang et al. [12] also assumed this idea, and their team inte-
grated the problem with two machine environments, distributed production and flexible
assembly, which can assemble job processing into customized products, and proposed a
mixed integer linear programming model to characterize the problem nature and solve the
small-scale problem. An efficient modulo algorithm is further proposed. They affirm that
the modal algorithm is an efficient algorithm to solve the DAPFSP, while some scholars
prefer to use the greedy algorithm to solve the problem. For example, Pan et al. [13] solved
a novel DAPFSP by proposing a mixed integer linear model, three construction heuristics,
two variable neighborhood search methods, and an iterative greedy algorithm to obtain
important problem-specific knowledge to improve the effectiveness of the algorithm. Simi-
larly, Ochi et al. [14] studied the DAPFSP with the objective of minimizing completion time
and, proposed an iterative greedy based approach called bounded search iterative greedy
algorithm. Similarly, in order to coordinate production and transportation scheduling,
Yang [15] proposed a novel DAPFSP-FABD model. The objective is to minimize the total
cost of delivery and delay, and four heuristic algorithms, a variable neighborhood descent
algorithm, and two iterative greedy algorithms are proposed. Liu et al. [16] proposed a
memory algorithm for DAPFSP based on variable neighborhood search with the objective
function of, i.e., makespan. And, the initialization based on NEH heuristic is applied to the
product ordering. The neighborhood structure is introduced into VNS and used to perturb
the job assignment of the factory and adjust the job order of the factory. Huang et al. [17]
considered the DAPFSP with a total flow time criterion, and proposed an improved it-
erative greedy algorithm based on groupthink to solve the problem. It can be seen that
the exact algorithm is no longer able to solve the problem, and this has promoted the
development of heuristic and meta-heuristic algorithms, which can very definitely find the
optimal solution as a solution to this scheduling problem.

More and more scholars are focusing more on the improvement of algorithmic aspects.
For the no-wait flow shop scheduling problem that depends on time series, Hu et al. [18]
proposed an enhanced differential evolutionary algorithm. Subsequently, Seidgar [19] took
minimizing the weighted sum of expected completion time and average completion time
as the solution objective and proposed four metaheuristic algorithms; namely, genetic algo-
rithm, imperialistic competition algorithm, cloud theory-based simulated annealing, and
adaptive differential evolution algorithm. Moreover, Li et al. [20] argued that the imperialist
competition algorithm can solve the fuzzy distributed assembly flow shop scheduling prob-
lem. Furthermore, Al-Behadili et al. [21] proposed a multi-objective optimization model
and particle swarm optimization solution method for the robust dynamic scheduling of
permutation flow shops with uncertainty. Likewise, Zhang [22] emphasized that DAPFSP
is a new generalization of the distributed displacement flow shop scheduling problem
and the assembly flow shop scheduling problem, proposed an enhanced population-based
metaheuristic genetic algorithm, and designed an effective crossover strategy based on
local search to accelerate convergence. Li et al. [23] studied the minimization problem of
DAPFSP and proposed a genetic algorithm with an enhanced crossover strategy and three
different local searches. It is no coincidence that Mao et al. [24] advocated an improved
discrete artificial bee colony algorithm to solve the DAPFSP with preventive maintenance
operator, optimized by the completion time criterion. Moreover, a local search method

Appl. Sci. 2021, 11, 10102 4 of 26

with insertion and exchange operators is used to generate adjacent solutions in the hiring
bee phase and the bystander bee phase. Song and Lin [25] jointly proposed a genetic
programming hyperheuristic algorithm to solve the DAPFSP with sequence-dependent
setup times, minimizing the completion time as the objective. For the improvement of the
algorithm, these scholars further study the genetic algorithm and particle swarm algorithm.
This also provides a reference basis for our subsequent simulation experiments.

3. Problem Description

The traditional distributed assembly permutation flowshop scheduling problem
(DAPFSP) can be divided into two phases; namely, the production phase and the as-
sembly phase. In this section, the two-stage DAPFSP problem is extended to a three-stage
DAPFSP, named the production stage, the transportation stage, and the assembly stage,
and the problem is described as follows.

The job j ∈ {1, 2, . . . , n} consists of operations Oij, OTj and OAj. In the production
stage, there are n work processes and f identical plants, and job j ∈ {1, 2, . . . , n} needs to be
assigned to any plant l ∈ {1, 2, . . . , f } for processing, and each plant is equipped with the
same m machines, M = {M1, M2, . . . , Mm}, which correspond to the same assembly line
shop for part processing. Operations Oij ∈ {O1j, O2j, . . . , Omj} are processed on machine
Mi, i = 1, . . . , m and require pij time units. Machine Mij can process at most one job at a
time. The production and transport operations OTj will be executed on machine MT and
take pTj time units. The rule is that in each assembly permutation flowshop, all jobs need
to be processed on the same path in the order of machine i, which is equivalent to first on
machine M1, then on M2. This goes on, until the end on machine Mm. Parts belonging to
the same product must be processed continuously, and no partial parts are allowed to pass
through. All jobs start timing at time t = 0 and on machine i = 1.

The subsequent phase is the transport stage, which means that after the completion of
the first one in the first stage of the product operation, the transport machine collects all
parts of the product and moves to the assembly stage.

In the assembly stage, there are s products and an assembly machine MA. Each
product r ∈ {1, 2, . . . , s} has a defined part of the operation. The assembly operation OAj
will be executed on the machine MA and uses pAj time units. The rule is that the assembly
of a product can only start when the work contained in the product is completed and
the assembly machine is idle. Continuous processing stages are part of the same product
operation. The next product operation can only be performed after all jobs belonging to a
product have been processed.

From this, it is clear that the objective function of the problem is to determine the
allocation of products to plants, and the sequence of parts and products to each plant in
order to minimize the completion time or maximum completion time for all products. Based
on the above description of the problem, the minimization of the completion time is denoted
as Fm|nwt|Cmax. To satisfy the above constraint, a feasible schedule π = {π1, π2, . . . , πn}
is found for n jobs, such that the completion time Cmax(π) is minimized. This is the same
where Cmax(π) is also equivalent to the time to complete the last job on the last machine.
The Equation (1) is as follows.

Cmax(π) =
n

∑
k=2

Dπk−1,πk +
m

∑
j=1

Pπn ,j (1)

In the transportation phase, it is necessary to ensure that the completion time distance
between two adjacent jobs is determined by the processing time of the two processes,
independent of the other jobs in the arrangement. Therefore, the completion time distance

Appl. Sci. 2021, 11, 10102 5 of 26

is defined between each pair of jobs. The completion time distance between two adjacent
job processes πk−1 and πk is calculated as

Cπk−1,πk = max
1≤i≤m

{
i

∑
j=1

Pπk−1,j −
i

∑
j=2

Pπk ,j−1

}
, k = 2, 3, . . . , n (2)

In order to build a mathematical model based on the above description, the constraints,
parameters and variables are as follows.

Subject to,
n

∑
j=0,j 6=k

Xj,k = 1, k ∈ {1, 2, · · · , n} (3)

n

∑
k=0,k 6=j

Xj,k = 1, j ∈ {1, 2, · · · , n} (4)

n

∑
k=1

X0,k = f (5)

n

∑
j=1

Xj,0 = f (6)

Xj,k + Xk,j 6 1, k ∈ {1, 2, · · · , n− 1}, k > j (7)

zr−1

∑
j=0

zr

∑
k=zr−1+1

Xj,k +
zr

∑
j=zr+1

zr

∑
k=zr−1+1

Xj,k = 1 (8)

r ∈ {1, 2, · · · , s}, zr =
r

∑
t=0

nt (9)

Ci,j > Ci−1,j + pi,j, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} (10)

Ci,j > Ci−1,j + pi,j +
(

Xj,k − 1
)

g
i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}, k ∈ {0, 1, 2, · · · , n}, j 6= k

(11)

s

∑
t=1,t 6=r

Yr,t = 1, r ∈ {1, 2, · · · , s} (12)

Yr,t + Yt,r 6 1, r ∈ {1, 2, · · · , s− 1}, t > r (13)

Cr > Cm,j + pr
j ∈ {zr−1 + 1, · · · , zr}, r ∈ {1, 2, · · · , s} (14)

Cr > Ct + pr + (Yr,t − 1)g
r ∈ {1, · · · , s}, t ∈ {0, · · · , s}, r 6= t

(15)

TF >
s

∑
r=1

Cr (16)

Xj,k ∈ {0, 1}, j ∈ {0, · · · , n}, k ∈ {0, · · · , n}, j 6= k (17)

Yr,t ∈ {0, 1}, r ∈ {0, · · · , s}, t ∈ {0, · · · , s}, r 6= t (18)

Appl. Sci. 2021, 11, 10102 6 of 26

Ci,j > 0, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} (19)

Cr > 0, r ∈ {1, 2, · · · , s} (20)

where Xjk represents a binary variable. It is equal to 1 if job j is the predecessor of job
k. Otherwise, Xjk = 0. The same is true for Yrt. The product r is equal to 1 if it is the
predecessor of the product t. Otherwise, Yrt = 0. Cij is the completion time of job j on
machine i, and Cr is the completion time of product r. pr is the assembly time of product r,
and zr is the total number of jobs contained in the first r products in the product sequence.
In addition, g is a large enough positive number. rt is the number of jobs contained in
product t. It is worth noting that C0,j = Ci,0 = C0 = 0.

Equation (1) shows that the goal of the mathematical model is to minimize the com-
pletion time. The constraint sets (3) and (4) indicate that each job must have only one
preceding job and one following job. Constraint sets (5) and (6) show that the preceding
and following jobs of virtual job 0 are forced to be executed f times. Constraint set (7) en-
sures that a job cannot be both a predecessor and a successor of another job. Constraint
set (8) ensures that jobs belonging to the same product are processed consecutively. Con-
straint set (9) indicates that job j can be processed on machine i− 1 only after it is processed
on machine i. Constraint set (10) indicates that job j can only be processed on machine i
after completing the processing of job k if job j is a successor to job k, where g is positive
and has a sufficiently large scale volume. The constraint sets (11) and (12) ensure that each
product must have only one preorder and one subsequent job. Constraint set (13) ensures
that a product cannot be both a preorder and a successor of another product. Constraint
set (14) ensures that each product cannot enter the assembly stage before the production of
the part of the job it contains is complete. Constraint set (15) shows that if product t is a
preceding job of product r, then product r cannot start the assembly job until product t is
completed. Constraint set (16) defines the minimum completion time. Constraint sets (17)
to (20) define the domains of the decision variables.

The model uses a sequence-based variable and a set of (min{ f , s}+ 1) virtual parts.
The sequence starts with a virtual part and ends with a virtual part. These virtual parts
divide all parts into min{ f , s} subsequences, each corresponding to a plant. Parts belonging
to the same product are never separated. Thus, the product sequence is implicitly included
in the part sequence. For example, s = 4, n = 8, m = 2, f = 2. Table 1 shows the machining
times of parts and products.

Table 1. Machining time for parts and products.

Part 1 2 3 4 5 6 7 8

M1 2 5 7 9 9 3 8 4

M2 3 8 5 7 3 4 1 3

Product 1 2 3 4

MA 9 8 7 6

One of the feasible solutions is x04 = x43 = x35 = x50 = x01 = x12 = x28 =
x86 = x67 = x70 = 1. The sequence of parts is {0, 4, 3, 5, 0, 1, 2, 8, 6, 7, 0}, consisting of the
subsequences {4, 3, 5} and {1, 2, 8, 6, 7}.

4. Materials and Methods

To improve the local search capability of the algorithm, this section introduces the
mathematical representation of feasible solutions, classification of populations, selection
mechanism, domain structure and Gaussian learning strategy and elite learning strategy.
A hybrid bat algorithm adapted to the three-stage DAPFSP problem is proposed.

Appl. Sci. 2021, 11, 10102 7 of 26

4.1. Mathematical Expression of the Feasible Solution of the Three-Stage DAPFSP

The representation of feasible solutions is a crucial and important step in every meta-
heuristic approach. The addition of a transportation process to the DAPFSP solved in this
paper. The result is that the original expression for the process permutation of the PFSP is
not adequate for this scheduling problem. Therefore, in this section, the feasible solution is
divided into a sequence of products and a sequence of s processes based on the model of
the three-stage DAPFSP model and the properties of the bat algorithm. Each sequence of
these s processes corresponds to a product. The processes of a part can be viewed as the
sequence of product assembly on the assembly flowshop.

In the production and transportation stages, parts need to be allocated one by one
according to the product order. When allocating parts, their processes are sequentially
arranged to the corresponding factories according to the process order of the product,
and a minimum manufacturing cycle is obtained. Only after all the processes included
in the current part are completed can the next part be produced. When a product has
completed all processes, the product can proceed to the assembly stage for the installation
and assembly stages. As an example, suppose a set of sequences f is used to represent
a feasible solution, and each plant has one and only one solution. Each sequence is an
ordering of all the parts assigned to that plant, indicating the order in which the parts
enter the flow shop. Thus, the order of processed products in the assembly stage is
also implied, and the feasible solution can be expressed as π =

{
π1, π2, . . . , π f

}
, where

πk =
(

πk,1, πk,2, . . . , πk,ηk

)
, k = 1, 2, . . . , f is the sequence associated with sequence associ-

ated with plant k and ηk is the total number of parts assigned to plant k. For the example in
Section 3, the representation corresponding to this feasible solution is π = {π1, π2} and
π1 = {4, 3, 5}, π2 = {1, 2, 8, 6, 7}.

In the feasible solution of the original DAPFSP problem, the first stage represents the
arrangement of all N processes, and the second stage represents the plants to which these
N processes are assigned respectively. In this section, the concept of product priority is
introduced to determine the order of product assembly, and a novel feasible solution of
the three-stage DAPFSP is proposed. Specifically, the feasible solution in the first stage is
expressed as the processing priority of the product, and the parts assembly of each product
is equal to the number of processes that constitute that product. The specific steps are,
firstly, calculating the total processing time of the product at each stage and randomly
initializing the sequence of products. Second, the first two products in the initial product
sequence are selected for evaluation, and whichever sequence is better is chosen as the
current sequence. Again, this is done by placing it among the product sequences that are
already scheduled properly. Finally, an optimal schedule can be obtained to select the
current best sequence for the next iteration of the process. The second stage is represented
as the processing priority of all processes, where the processes belonging to the same
product are arranged in a random order. The smaller the number of its columns, the higher
the priority of the element values; the third stage is the plant priority assignment vector,
where each part is represented as the plant assigned to the corresponding process. The
specific steps are to assign a part of the processes to the factories one by one in order, then
select a process and find the minimum completion time by placing it after the last process
in each factory. The best part assignment is selected for the next iteration.

Table 2 describes how the three-stage DAPFSP representation is decoded into a sched-
ule. Suppose there are 3 products (s = 3) consisting of 9 jobs (n = 9) processed in 3 plants
(f = 3). The mathematical representation is P1 = {3, 4, 6}, P2 = {1, 2, 8, 9}, P3 = {5, 7}.
According to the last two stages, called job sequence and factory assignment, it can be
observed that jobs 5, 4, and 8 are assigned to the first factory and are processed in the order
of 5, 4, and 8 according to the priority specified in layer 2. Then, it is instantly obtained that
the partial scheduling of the factories can be decoded as π1 = {5, 4, 8}. Similarly, the partial
scheduling of the remaining two plants can be decoded as π2 = {2, 7, 9} and π3 = {6, 3, 1},
respectively. According to the values of the first stage specifying the product assembly

Appl. Sci. 2021, 11, 10102 8 of 26

priority, the value of 1 in the table corresponds to jobs 5 and 7 belonging to product 3.
It can be concluded that after the processing stage, product 3 should be assembled first.
In a similar way, it can be concluded that product 1 is assembled for the second time
immediately after product 2.

Table 2. Coding scheme.

Product Priority 2 1 2 3 3 2 1 3 3

Job 6 5 4 2 8 3 7 9 1

Factory Tasks 3 1 1 2 1 3 2 2 3

In the context of the traditional representation of feasible solutions, the order of
assembly of all products follows a first-come, first-served rule. This results in products
being ranked in the processing stage in ascending order of the total completion time of
their component operations. In contrast, the priority of products in the assembly phase is
determined by the order of arrival at the assembly, and there is no way to specify it. This
observation is confirmed by a study of the two-stage assembly scheduling problem by
Tozkapan [26]. The efficiency may be higher if the sequence of operations in the processing
phase is different from the sequence of operations in the assembly phase under the total
delay objective. With a very late delivery date, for example, the assembly of the product
may be delayed, even if the entire processing phase of the product’s component operations
has been completed.

4.2. Population Classification

The optimization process is divided into two stages. The first stage is that when the
individual bat is in a better search position and is close to the optimal solution, its loudness
and pulse emission rate reach the best state. This process is called the search phase, its
population is called the search-type population. The second stage is the population of bats
in a disadvantaged search position; that is, the capture population, so two populations
with different functions are obtained. After each iteration, by updating the search direction
and step length, the loudness and pulse emission rate of the bat algorithm are improved
to find the optimal solution. By adjusting the weights and deviations of the network, the
difference between the average value and the standard deviation of the bat algorithm can
be minimized.

4.2.1. Search-Type Population

The combination of the back propagation (BP) algorithm based on mean square error
(MSE) and gradient descent method minimizes the mean square error [27]. The formula
based on the mean square error measurement is shown in (21):

MSE(d, y) =
1
N

N

∑
n=1

(d(n)− y(n))2 (21)

where d(n) represents the n-th element of the required signal, and y(n) represents the nth
actual output. In the training process, the weight vector in the (t + 1) iteration is updated
by (23). Where α is the learning rate or step length,Wt is the weight vector of the previous
iteration and gt is the gradient vector, which can be calculated by (22) and (23).

wt+1 = wt − αgt (22)

gt =
∂e
∂w

∣∣∣∣
w=wt

=

[
∂e

∂w11
· · · ∂e

∂wij
. . .

∂e
∂wnn

]
(23)

In (23), e is the MSE error output in the t-th step of the training process and ∂e/∂w is
derived from the MSE error on each element of the w vector. The weight is expressed as

Appl. Sci. 2021, 11, 10102 9 of 26

wt+1 = wt − αtgt, αt will be adjusted to an appropriate value to achieve better convergence.
At this time, suppose the probability pops of the search-type population, its loudness and
pulse emission rate are updated to:

At+1
i = αt × At

i (24)

rt+1
i = ro

i
(
1− e−wt) (25)

4.2.2. Captive Population

As a branch of the gradient descent method, the conjugate gradient method (CG) is
applied to nonlinear unconstrained optimization problems. This method has strong local
and global convergence [26–28]. According to the cloud computing resource scheduling
problem, the CG method uses (26) to generate a weight sequence:

w′t+1 = w′t + α′td (26)

where α′t is the result of the line search method, which can be an exact line search or an
inaccurate line search, which is expressed as a step size here. In (26), dt is in the descending
direction, which is expressed as the search direction here, and its formula is shown in (27):

dt+1 = −gt+1 + βtdt (27)

In (27), βt is the conjugate parameter, gt+1 is the gradient of the objective function
concerning the weight at step t + 1, and represents the direction of the last step, and the
first step is d0 = −g0.

In the iterative process, the loudness Ai and the pulse emission rate ri will also change.
As the bat moves closer to its prey, its loudness will decrease, and the pulse emission
rate will increase. At this time, the probability of the catching population is poph and
pops + poph = 1. In summary, the loudness and pulse emission rate of the bat algorithm
are updated to:

At+1
i = α′t × At

i (28)

rt+1
i = ro

i

(
1− e−w′t

)
(29)

4.3. Selection Mechanism

When it comes to the bat algorithm as a learning algorithm, each individual in the
population needs to learn from the individually optimal and globally optimal individuals
in order to find the optimal solution. In the field of multi-objective optimization, there is
no single optimal solution, and the optimal selection mechanism needs to be redesigned.
Which strategy is used to update the individual optimal pbest and the global optimal
gbest respectively, thus connecting the decision variable space and the objective space, is
particularly important for weighing the exploration and exploitation capabilities of the
algorithm evolution process. In this paper, we consider fully mining individuals with
better diversity and convergence to assist populations to jump out of the local Pareto
frontier. Three guides are selected from the searching and capturing populations to guide
the entire individual bat flight, and how the guides are selected from the two populations
is specified below.

Unlike the traditional bat algorithm, this algorithm first generates a set of θ with
ω solutions and performs a local search process for the optimal solution in the set θ.
Subsequently, IHBA enters the iterative phase. In the iteration, the solution ϕ is selected
using the selection mechanism in the set θ. The solution ϕ is applied to the search phase
and two partial sequences can be obtained, one for the solution ϕSearch with the products
and processes removed, and the other for the remaining part of the solution ϕCaptive. The
local search for the products is applied to ϕCaptive, and the suboptimal solution ϕ′Captive is

Appl. Sci. 2021, 11, 10102 10 of 26

generated. IHBA again reinserts the removed products and jobs into ϕ′Captive. This process
is called the capture phase, and a complete solution ϕ′ is regenerated. A local search is
performed on ϕ′ to generate ϕ′′. Finally, acceptance criteria are used to determine whether
the new solution ϕ′′ updates the set.

Therefore, in scheduling problems, the selection mechanism is to select a solution
from the solution set θ at the beginning of each iteration, and the selected solution is noted
as ϕ, and proceeds to the subsequent stages such as search and capture. In this scheduling
problem, the minimum completion time and the number of iterations are often used as
selection factors. So, the proposed selection mechanism consists of two random options,
both of which have a 50% probability of being selected. That is, two solutions are randomly
selected in the set θ and the one with the lower minimum completion time is chosen as ϕ.
Alternatively, two solutions are randomly selected in θ, and the one with the lower number
of iterations is chosen.

The main focus of pbest, gbest and osd wizard selection mechanisms is on the target
space, implying how to fully exploit the candidate solutions with good convergence and
diversity in the target space. These wizards serve as a bridge between the target space and
the decision variable space, and the new wizard selection mechanism can weigh the ability
of exploration and exploitation of the decision variable space in an integrated way.

4.4. Three Neighborhood Structures Based on Insert Operator

To solve the three-stage DAPFSP problem, this paper introduces three neighborhood
structures based on the INSERT operator, which constitutes the three-stage bat algorithm
(3SBA). The insert operator is considered by many scholars as a superior performance
operator, which is described as follows.

• Product-based Neighborhood (PBN)
Regarding the order of product assembly, a randomly selected product is inserted into
another random position.

• Factory-based Neighborhood (FBN)
A process is randomly selected from the representation of the solution and assigned to
another randomly selected plant. For this plant, all possible positions where jobs can
be inserted are considered and the part of the job sequence with the earliest completion
time is selected. It is worth noting that the sequence of jobs assigned to other plants
remains unchanged during this process.

• Job Sequence-based Neighborhood (JSBN)
A plant is randomly selected and its sequence of jobs is extracted from the solution rep-
resentation. Next, a job is randomly selected from this partial sequence, and another
location is randomly inserted. Finally, the jobs in this partial sequence along with
their product priorities and plants are placed in an orderly manner in the distribution
solution representation, which is partially the location belonging to that plant.

4.5. Local Search Method Based on Variable Neighborhood Structure

Based on the above three neighborhoods named PBN, FBN and JSBN, this section
proposes a local search method with variable neighborhood search. Equation n(s) denotes
that the neighborhood structure and other parameters are consistent with the original bat
algorithm, implying that the maximum number of iterations for each neighborhood at the
same frequency is noted as Tmax and the frequency f is initialized as f0. In 3SBA, all three
neighborhoods are iterated sequentially, avoiding premature convergence throughout the
search process.

Variable neighborhood descent (VND) is the simplest variant of variable neighborhood
search [29]. It has been shown to be effective in solving the flow shop [30] and distributed
scheduling problems [31]. VND searches for different neighborhood structures from
minimum to maximum. First, starting from the initial solution, VND searches the first
neighborhood to find the local optimum. Then, while searching the second region, if a
better local optimum solution is found, the algorithm returns to the first neighborhood.

Appl. Sci. 2021, 11, 10102 11 of 26

Otherwise, it continues searching the third neighborhood and so on. The algorithm does
not end until a local optimum is found with respect to all neighborhoods. Therefore,
to facilitate the differentiation of the VNDs in this paper, two versions were developed
based on the characteristics and features of the bat algorithm. The first one uses three
neighborhood structures, named VND3BA, and the second one uses two neighborhood
structures, named VND2BA, respectively. A VND that best fits the bat algorithm and the
scheduling problem is selected by calibration through simulation experiments.

4.5.1. VND3BA Local Search Method Based on Three Neighborhood Structures

The first method is applied to each product contained in the plant. After removing
each part of the product in succession, it is tested at all possible locations within the
product. If a better manufacturing span is found, the part sequence is updated. This
method runs until all parts contained in the plant have been taken into account and no
further improvements are found; then, it can be stopped and ended. It can be named as
Local Search Inside Product() and Part Local Search Inside Factory(). The former mainly
searches individual products, while the latter searches the whole factory by calling the
former, each in its own way.

The second method is a local search of the products within the factory. The principle
of this method is to remove the products one by one from the beginning to the end and try
to find the best position for them, equivalent to the optimal solution of this problem. If,
in the process, a better manufacturing span is found, the sequence of parts in the plant is
updated. The process is repeated until no products are found that can be improved.

The third method focuses on finding the most suitable location for a product that
crosses plants. First, all plants are checked and the plant with the maximum completion
time p is found. Then, the first product is removed and is tested in all possible locations
in the remaining plants. If the generated best completion time is lower than the original
completion time Cp, this product is inserted into the current location. The principle is that
the algorithm iterates by finding the plant with the maximum completion time again, until
a local optimum is found.

4.5.2. VND2BA Local Search Method Based on Two Neighborhood Structures

Since VND3BA considers the neighborhood of parts and the neighborhood of products
separately, some available feasible solutions may be missed. Therefore, in this section,
two local search algorithms are proposed to consider these two neighborhoods in an
integrated manner.

The first approach explores the interior of the plant by extracting the range of products
and finding the best location of the products within the plant. This step is to extend the
scope of the local search. This method also adaptively finds the best part order for the
product when inserting it.

The second approach exploits the local search capability of the bat algorithm itself to ex-
plore the optimal solution across plants. Therefore, it can be viewed as a combination of two
processes named ProductLocalSearchBetweenFactories() and LocalSearchInsideProduct().

4.6. Gaussian Learning Strategy and Elite Learning Strategy

Gaussian learning strategy (GLS) [32] and elite learning strategy (ELS) [33] can assist
individuals of bats to jump out of the local frontier and improve the local search ability of
the algorithm. If the feasible solution is not updated many times, the whole bat population
is most likely to fall into local optimum, and then only the GLS reset strategy can be
executed, which is given by

xt+1
i ∼ N

(xgbest − xgbest,i

2
,
∣∣∣xgbest − xgbest,i

∣∣∣) (30)

Appl. Sci. 2021, 11, 10102 12 of 26

The collaborative learning mechanism of pbest and bbest ensures that the exploration
and exploitation capability of the entire bat population is enhanced, allowing the algorithm
to quickly jump out of the local frontier to approximate the true frontier.

Although the use of GLS can assist individual bats to jump out of the local frontier,
this strategy alone still cannot meet the requirements of the bat algorithm for solving the
DAPFSP. To further improve the performance of the bat algorithm, ELS is introduced to
solve the scheduling problem with the following mathematical expressions.

Ei(j) ∼ Ei(j) + (xub(j)− xlb(j))N(0, 1) (31)

where xub(j) and xlb(j) represent the upper and lower bounds of the j-th dimensional
decision variable, respectively, and N(0, 1) represents the random number with a mean
value of 0 and a variance of 1.

5. Simulation Results
5.1. Test Questions and Parameter Settings

In this section, the proposed IHBA is compared with the competitive memetic algo-
rithm (CMA) [34], biogeography-based optimization algorithm (BBO) [35], estimation of
distribution algorithm (EDA) [36], genetic algorithm [19,21], and particle swarm optimiza-
tion algorithm [20], and only one of these algorithms was selected for comparison from
the literature [37]. So far, the three DIWO algorithms have proved to be the state-of-the-art
algorithms for the considered problem with the parameters shown in Table 3. All simula-
tion experiments were implemented on the MATLAB r2020a platform. All programs were
executed on an AMD A8-7100 Radeon R5@1.80 GHz and 12.0 GB RAM in Windows 10
operating system.

Table 3. Algorithms and Parameters.

Comparison Parameters Range

TDIWO

Initial population size 10
Maximum population size 50

permutation-based shift operator 5
Max value 20
Min value 1

Control parameters 0.9

CMA

Selection probability of a subclass 0.5
Selection probability of populations 0.5

Number of populations 50
Local search operator 100

BBO

Number of populations 40
Elite retention number 10
Max emigration rate [0,1]
Max migration rate [0,1]
Max mutation rate [0,1]

EDA
Population size 50

Probability vector 0.3
Iterative Probability Sampling Parameters 0.4

GA

Number of populations {40,50,60}
Max number of iterations 300

Crossover rate [0.7, 0.9]
Mutation rate [0, 0.2]

Appl. Sci. 2021, 11, 10102 13 of 26

Table 3. Cont.

Comparison Parameters Range

PSO

Number of populations 2n
Decreasing coefficient 0.975

Crossover rate [0,1]
Variation rate [0,1]

Uniform random number [0,1]
Inertia weights [0.4,0.9]

BA
Frequency [0,1]
Loudness [1,2]

pulse emission rate [−1,1]

IHBA

Frequency [0,1]
Loudness [1,2]

pulse emission rate [0,1]
Step size [0,1]

To calibrate the proposed IHBA, a total of 810 instances were randomly generated
according to the literature [5,34] written by Hatami et al. These instances can be found
in http://soa.iti.es/problem-instances, accessed on 1 September 2021. These instances
combine four factors, including the number of jobs (n), the number of machines (m),
the number of products (s), and the number of plants (f). Each factor has three levels,
n ∈ {100, 200, 500}, m ∈ {5, 10, 20}, f ∈ {4, 6, 8} and s ∈ {30, 40, 50}. Thus, a total of
34 = 81 factor combinations are studied. The processing time in the production stage
is randomly generated in the range [1, 99] with uniform distribution. The operation time
of the transportation stage is obtained in the range [l, 99l] with uniform distribution. The
assembly operation time for the assembly stage is obtained in the range between nl and
99nl with uniform distribution.

5.2. The Results and Discussion

Relative percentage deviations are the absolute deviations of a given measurement
as a percentage of the mean, and can only be used to measure the deviation of a single
measurement from the mean. In order to compare the efficiency between algorithms, the
calculation of relative percentage deviations (RPD) is considered to compare and analyze
these metaheuristic algorithms. Its formula is shown in (32).

RPD =
Cmax(π)− Cmax(π)best

Cmax(π)best
× 100% (32)

where Cmax(π) is the total completion time of the current algorithm, and Cmax(π)best is the
minimum value of Cmax(π) among all algorithms to be compared.

In this paper, the termination condition of the iteration is set to a maximum CPU
runtime equal to C×m× n milliseconds, and the results are calculated for C = 20, 40, and
60. Then, the results obtained from the calculation are compared with other algorithms. The
methods used are the analysis of variance (ANOVA), which is widely used in parametric
statistical procedures, and the Friedman test and Wilcoxon paired signed test, which are
commonly used in nonparametric statistical procedures. These methods have been widely
used and promoted in the recent scheduling literature.

5.2.1. Comparative Analysis at C = 20

When C = 20, the values of RPD for various heuristic algorithms are shown in Table 4.
It can be seen from the bold figures that the value of PRD of the proposed algorithm IHBA
in this paper is smaller than that of other algorithms in the vast majority of combinatorial
solutions, including the recognized TDIWO algorithm and the original bat algorithm. Only
in these 5 sets of data (1) m = 5, n = 100, s = 30 and f = 4, (2) m = 5, n = 200, s = 40

http://soa.iti.es/problem-instances

Appl. Sci. 2021, 11, 10102 14 of 26

and f = 4, (3) m = 10, n = 100, s = 50 and f = 8, (4) m = 15, n = 200, s = 50 and f = 4,
(5) m = 15, n = 200, s = 40 and f = 8, IHBA is 5–10% smaller than the other algorithms.
Meanwhile, IHBA not only obtains the lowest relative percentage deviation value, but also
the smallest average RPD value, which is 21.15%, with an error of about 0.83% from the
optimal value. This is good proof that the IHBA algorithm has a strong advantage and
superiority. It can also be seen that the GA and PSO performance is also very good, with
average RPD values of 32.09% and 31.52%. Although TDIWO is not satisfactory in this
comparison, it is significantly better than BBO and EDA. The most surprising is the original
bat algorithm, with a result of 27.69, which is second only to the algorithm proposed in
this paper. This also shows that the bat algorithm itself has better performance and has
stronger search capability.

Table 4. The Average RPD Values at C = 20. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 11.85 14.07 25.59 28.36 12.28 10.24 53.91 18.83
5 100 40 4 41.58 49.38 46.39 48.22 29.16 49.85 46.87 25.63
5 100 50 4 26.73 31.74 38.40 41.56 47.26 43.52 22.52 23.37
5 200 30 4 48.36 57.43 40.74 47.44 35.20 56.69 35.68 27.15
5 200 40 4 8.87 10.53 7.14 11.10 6.15 10.70 10.16 17.69
5 200 50 4 47.76 56.71 55.76 59.54 53.07 37.67 43.21 34.59
5 500 30 4 30.86 36.64 33.26 41.60 33.05 25.58 19.19 18.86
5 500 40 4 25.67 30.49 36.49 34.20 37.50 11.28 37.71 8.10
5 500 50 4 35.44 42.09 43.98 55.36 21.82 45.52 58.99 19.78
5 100 30 6 30.36 36.05 33.53 42.51 34.00 23.69 20.28 18.46
5 100 40 6 16.92 18.22 20.91 26.45 11.15 22.00 18.97 15.03
5 100 50 6 14.64 17.38 27.64 29.01 16.31 17.51 51.16 13.77
5 200 30 6 42.98 51.04 46.84 46.54 46.33 35.33 28.28 11.31
5 200 40 6 12.65 13.15 19.69 13.68 14.52 14.22 14.55 12.54
5 200 50 6 23.56 27.98 26.25 35.09 17.27 27.49 25.69 11.40
5 500 30 6 46.72 55.48 60.63 60.97 57.59 31.18 58.46 24.63
5 500 40 6 51.32 60.94 56.66 55.71 49.76 47.74 41.95 35.20
5 500 50 6 40.78 48.42 41.75 42.01 44.55 32.92 16.54 13.40
5 100 30 8 20.84 24.75 25.22 21.40 38.58 21.02 16.60 14.46
5 100 40 8 11.02 13.09 15.01 19.47 21.27 19.67 28.64 14.66
5 100 50 8 22.67 26.92 33.08 34.28 24.49 18.57 45.03 14.19
5 200 30 8 31.21 37.06 30.75 46.38 38.70 50.60 33.70 28.68
5 200 40 8 53.90 54.00 49.87 62.06 49.33 43.08 32.29 25.95
5 200 50 8 35.10 41.69 43.78 45.73 35.73 40.96 55.08 28.74
5 500 30 8 11.47 13.62 19.68 24.89 20.14 21.65 19.63 15.58
5 500 40 8 27.18 32.28 24.95 24.47 26.94 24.71 23.42 22.44
5 500 50 8 30.93 36.73 31.26 37.29 21.58 47.19 33.29 15.87

10 100 30 4 29.22 34.70 25.77 36.59 26.01 39.50 18.83 13.88
10 100 40 4 44.89 53.31 39.65 44.46 32.99 52.31 21.54 19.12
10 100 50 4 47.60 56.52 44.56 47.68 28.89 21.54 17.43 15.14

Appl. Sci. 2021, 11, 10102 15 of 26

Table 4. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 200 30 4 42.81 50.84 45.18 52.77 23.63 27.72 15.36 16.31
10 200 40 4 24.49 29.09 24.96 30.24 22.21 24.33 24.06 18.05
10 200 50 4 22.92 25.34 35.40 46.44 33.68 30.87 29.50 20.82
10 500 30 4 32.87 39.03 42.94 48.66 33.78 28.67 28.91 26.93
10 500 40 4 50.92 60.46 59.45 67.94 30.49 26.25 22.15 22.22
10 500 50 4 25.84 30.68 29.11 33.74 20.88 28.21 17.38 13.10
10 100 30 6 23.73 26.31 25.34 36.70 23.18 22.91 18.00 11.04
10 100 40 6 38.41 39.99 36.67 44.55 20.91 25.07 20.69 23.65
10 100 50 6 29.15 34.62 38.62 41.89 27.51 27.88 27.73 21.81
10 200 30 6 39.89 37.37 31.57 36.12 26.45 29.34 29.94 24.69
10 200 40 6 36.05 34.69 42.13 34.93 23.31 24.19 23.62 19.12
10 200 50 6 30.22 35.89 49.16 32.23 26.75 20.67 24.09 21.13
10 500 30 6 42.37 50.32 48.31 50.49 48.61 31.90 32.61 26.39
10 500 40 6 29.31 21.06 21.56 33.01 21.97 25.72 25.27 23.94
10 500 50 6 59.07 70.15 66.60 64.97 24.49 27.74 26.04 20.91
10 100 30 8 51.95 61.69 49.99 52.54 29.46 29.25 26.85 19.78
10 100 40 8 34.00 36.63 32.67 40.62 22.16 24.44 28.81 20.86
10 100 50 8 56.42 67.00 50.65 54.65 55.99 51.22 22.92 28.90
10 200 30 8 41.14 48.85 49.44 46.66 56.14 22.03 21.86 21.52
10 200 40 8 49.89 59.25 51.00 48.80 52.47 42.32 21.99 22.23
10 200 50 8 41.96 49.82 50.83 50.00 45.85 33.87 45.36 20.07
10 500 30 8 40.46 48.05 39.82 46.89 40.35 36.53 24.49 21.79
10 500 40 8 33.12 39.33 29.86 43.19 21.71 21.22 23.33 18.57
10 500 50 8 22.82 25.22 29.75 30.31 22.57 21.79 20.48 20.39
15 100 30 4 41.00 48.68 48.43 33.07 27.57 30.33 27.09 18.56
15 100 40 4 32.39 38.46 41.61 50.28 25.80 25.73 29.15 17.36
15 100 50 4 24.60 29.21 27.17 25.18 21.45 25.28 22.54 20.74
15 200 30 4 39.11 46.44 39.60 46.76 33.83 40.48 23.17 27.04
15 200 40 4 32.44 38.52 44.61 46.40 30.73 30.90 28.91 25.84
15 200 50 4 35.44 36.46 27.70 28.21 28.96 21.37 26.87 27.48
15 500 30 4 29.43 34.94 29.08 37.33 38.61 27.30 21.71 24.60
15 500 40 4 39.05 30.74 32.58 35.84 34.42 32.77 27.07 23.55
15 500 50 4 33.60 39.90 29.44 36.31 27.27 36.57 25.20 22.54
15 100 30 6 48.79 57.94 44.76 54.99 45.33 47.37 29.07 24.60
15 100 40 6 35.70 42.39 34.74 41.65 32.14 45.68 24.84 24.55
15 100 50 6 30.59 34.45 31.89 33.88 34.72 34.40 29.02 26.06
15 200 30 6 48.61 57.73 34.31 62.97 28.05 24.32 21.15 21.04
15 200 40 6 36.57 43.43 32.65 41.21 37.58 31.90 29.96 28.62
15 200 50 6 19.02 22.59 25.25 32.25 25.43 20.72 23.85 20.05
15 500 30 6 34.44 39.02 36.17 39.27 43.01 33.42 33.74 30.71
15 500 40 6 38.32 45.50 38.05 42.53 32.75 40.05 20.60 20.55
15 500 50 6 34.04 40.43 40.17 45.40 40.42 34.26 29.71 29.51
15 100 30 8 28.09 33.36 24.98 29.91 30.08 53.29 25.50 24.36
15 100 40 8 31.40 37.29 37.76 38.73 33.05 46.61 28.17 20.90
15 100 50 8 44.26 52.56 49.95 51.98 34.90 49.19 28.10 20.38
15 200 30 8 32.96 39.14 33.75 48.87 25.10 27.53 24.32 21.47
15 200 40 8 26.57 31.55 34.71 42.07 22.66 27.82 24.17 28.35
15 200 50 8 23.99 28.49 28.64 32.36 25.55 20.04 15.67 15.14
15 500 30 8 44.80 53.20 42.29 43.54 52.56 32.56 21.67 22.26
15 500 40 8 53.71 63.78 45.43 54.28 44.49 57.55 21.57 22.33
15 500 50 8 39.05 46.38 42.36 45.63 56.73 27.47 29.36 21.82

average 34.33 39.71 37.09 41.40 32.09 31.52 27.69 21.15

Appl. Sci. 2021, 11, 10102 16 of 26

Then, the results of the descriptive statistics of the Friedman test were calculated for
the case of C = 20, as shown in Table 5, where N is the number of test cases and takes the
value of 4050. The minimum value of each item derived in the algorithm is marked in
bold. The p-value calculated for the test statistic is 0 when the significance level α = 0.05,
which is less than or equal to 0.05. This indicates that there are significant differences
between the algorithms used for comparison. The following conclusions can be clearly seen
through Table 5. The rank of IHBA is only 2.60, which is close to one-half of CMA, BBO
and TDIWO, while it is smaller than the ranks of GA, PSO and the original bat algorithm
by 1.39, 1.09 and 0.78, respectively. Although IHBA does not take the best value in terms
of maximum value, it means that standard deviation and minimum value are the smallest
among all algorithms. The comparison between the groups also shows that the ranking of
EDA is even more than three times that of IHBA, indicating the worst performance of the
algorithm, which echoes the results and analysis in Table 4. In addition, it can also be seen
by the mean and standard deviation that the three algorithms of DIWO are very close to
the proposed algorithm.

Table 5. The Descriptive Statistics Achieved by the Friedman Test at C=20 and α=0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 3.99 4050.00 1.43 1.36 0.00 4.61
PSO 3.69 4050.00 1.31 1.25 0.00 5.35
BA 3.38 4050.00 1.00 0.95 0.00 4.47

IHBA 2.60 4050.00 0.74 0.71 0.00 5.51
p-value 0.00

Next, the non-parametric test for paired samples is the Wilcoxon paired signed test
method used. This method was developed based on the signed test for paired observations,
and is more effective than the traditional test with positive and negative signs alone. The
observed data are generally considered to be significantly different when p is less than 5%.
When p is greater than or equal to 5%, the difference in the data is considered insignificant.
The results of the Wilcoxon paired signed test for this paper are given in Table 6, assuming
that there is no difference between each pair of algorithms (α = 0.05). R+ in the table
represents positive differences and R− represents negative differences. In the results for
each pair of algorithms, the sum of R+, R− and bonding values is equal to n in Table 5. It
can also be seen in Table 6 that the p-values in the last column are equal to 0 and all are less
than 0.001, indicating that the differences between the algorithms compared are statistically
significant with respect to 0. In other words, there is a significant difference between IHBA
and the other algorithms.

Table 6. The Wilcoxon paired signed test result at C = 20 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 756 3168 126 0.00
IHBA VS BBO 2341 274 1435 0.00
IHBA VS EDA 3840 100 110 0.00

IHBA VS TDIWO 1791 817 1442 0.00
IHBA VS GA 3113 783 154 0.00
IHBA VS PSO 2881 829 341 0.00
IHBA VS BA 2873 907 270 0.00

Appl. Sci. 2021, 11, 10102 17 of 26

Finally, in order to make the observations more visual and relevant, this section
analyzes and interprets the results of the ANOVA analysis for the eight algorithms. The
methods used are the mean plot and the minimum difference method interval, and Figure 1
shows the plotted plots with 95% confidence level. It can be very clearly seen that the best
performance is IHBA, which beats the other comparison algorithms by a more significant
margin. The bat algorithm also has some advantages, while GA and PSO continue to
perform consistently, and the EDA algorithm has the worst performance, followed by BBO.

CMA BBO TDIWO EDA GA PSO BA IHBA

R
P

D

20

25

30

35

40

45

Figure 1. Mean plot and 95% LSD interval of the bat algorithm at C = 20.

5.2.2. Comparative Analysis at C = 40

The lower the RPD, the better the performance of the algorithms. When C takes the
value of 40, the average RPD of these eight algorithms is shown in Table 7. As can be
seen in the last row, the average value of IHBA is 22.73%, which is significantly lower
than the average value of other algorithms including the original bat algorithm. It shows
that the IHBA algorithm is more efficient than the other metaheuristic algorithms, while
BA performs second, with an average RPD of 23.57%. Compared with Table 7, it can be
concluded that the RPD value of IHBA changes from the original 21.15 to the current 22.73,
as the value of C is taken to increase, which shows that the value of RPD of IHBA increases
with the increase of the number of iterations and time. In addition, PSO with a mean value
of 35.76% is significantly better than GA and the other four heuristics. Meanwhile, EDA
has the largest value and its performance is the worst, which is also consistent with the
results in Table 4.

Table 8 describes the results of the Friedman test calculations. As can be seen at a
glance from the rankings, IHBA has a mean rank of 3.06, which is the smallest value among
these algorithms. The next best performer is TDIWO, which also has a better performance,
but its standard deviation is 0.89, which is larger than CMA, GA, and PSO. It can be seen
from the mean and standard deviation that IHBA has values of 0.79 and 0.76, respectively,
which are also the smallest values among all algorithms. The performance of EDA is still
the worst, with its average rank, mean, standard deviation, and maximum value all being
at a disadvantage. The performance of EDA is still the worst, with its ranking, mean,
standard deviation and maximum value being at a disadvantage. In particular, the mean
value is as high as 32 times that of IHBA. The p-value in the last row is 0, which is less than
0.05, indicating that the difference between the algorithms has statistical significance. This
difference is not due to chance sampling, but rather, the difference between the two groups
of algorithms is significant.

Appl. Sci. 2021, 11, 10102 18 of 26

Table 7. The Average RPD Values at C = 40. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 17.00 21.80 22.45 25.09 18.96 17.93 18.42 17.76
5 100 40 4 45.33 46.15 47.52 54.11 49.00 44.16 30.39 29.30
5 100 50 4 31.97 35.80 36.86 49.68 42.45 40.10 26.74 25.79
5 200 30 4 48.36 46.67 48.06 56.50 52.94 47.03 29.99 28.92
5 200 40 4 8.76 9.22 9.50 10.91 10.09 9.03 7.37 7.49
5 200 50 4 52.88 55.13 56.77 70.34 57.50 52.03 35.04 33.79
5 500 30 4 33.25 35.74 36.80 45.17 37.22 33.69 21.18 20.42
5 500 40 4 30.58 32.43 33.39 43.34 32.52 29.70 20.40 19.68
5 500 50 4 40.10 45.33 46.68 51.02 45.22 41.34 30.30 29.22
5 100 30 6 32.98 35.93 36.99 45.65 37.06 33.62 21.29 20.53
5 100 40 6 18.50 21.02 21.64 23.98 21.42 19.55 14.14 13.63
5 100 50 6 19.69 23.73 24.43 28.23 22.68 21.36 19.19 18.50
5 200 30 6 26.49 26.29 27.66 39.61 29.83 24.77 26.50 25.55
5 200 40 6 15.01 14.91 15.35 19.08 16.28 14.90 11.01 10.62
5 200 50 6 25.67 28.63 29.48 33.31 29.19 26.55 17.68 17.05
5 500 30 6 53.74 56.76 58.44 73.33 57.88 52.64 36.23 34.94
5 500 40 6 55.75 55.55 57.20 69.71 59.65 53.63 35.43 34.17
5 500 50 6 43.22 42.37 43.62 55.23 46.38 41.51 23.60 22.76
5 100 30 8 23.37 22.88 23.55 34.36 28.11 25.93 16.95 16.34
5 100 40 8 12.91 15.25 15.70 21.51 18.43 17.53 14.66 14.13
5 100 50 8 27.28 30.22 31.12 37.12 29.63 27.20 20.94 20.20
5 200 30 8 32.68 36.60 37.69 47.78 43.46 40.30 28.25 27.24
5 200 40 8 52.07 53.18 54.76 67.27 57.82 51.16 32.42 31.26
5 200 50 8 39.79 42.05 43.30 52.17 45.00 41.17 30.87 29.76
5 500 30 8 13.78 18.65 19.20 24.48 20.64 19.80 15.01 14.47
5 500 40 8 27.86 26.19 26.96 33.95 29.73 26.41 18.14 17.49
5 500 50 8 32.65 33.74 34.75 39.64 37.96 34.47 23.02 22.20

10 100 30 4 29.60 31.11 32.03 38.46 35.52 32.19 19.82 19.12
10 100 40 4 45.50 44.04 45.35 53.25 49.56 44.10 25.93 25.01
10 100 50 4 49.07 47.68 49.10 55.52 45.70 39.44 21.63 20.86
10 200 30 4 45.82 47.69 49.11 53.88 44.99 39.63 22.34 21.54
10 200 40 4 25.92 27.02 27.82 33.28 28.76 25.91 17.76 17.13
10 200 50 4 27.61 34.35 35.37 44.02 36.05 34.01 24.29 23.42
10 500 30 4 37.90 41.87 43.11 51.38 41.84 38.23 25.91 24.99
10 500 40 4 56.38 60.21 62.00 68.23 54.72 48.43 28.21 27.20
10 500 50 4 28.26 29.98 30.87 35.75 31.20 28.24 17.58 16.95
10 100 30 6 24.88 28.32 29.16 34.85 29.29 26.62 16.93 16.33
10 100 40 6 37.98 38.85 40.00 44.41 38.07 33.11 21.18 20.42
10 100 50 6 33.79 36.90 38.00 44.58 36.98 33.77 22.89 22.08
10 200 30 6 35.92 33.67 34.67 41.10 37.17 31.85 21.99 21.20
10 200 40 6 37.25 35.82 36.88 42.21 36.17 31.53 20.65 19.92
10 200 50 6 38.04 37.59 38.71 45.01 36.10 32.61 21.49 20.72
10 500 30 6 46.53 47.79 49.21 61.79 50.37 45.47 29.42 28.37
10 500 40 6 23.74 24.24 24.96 30.50 28.26 24.42 18.70 18.03
10 500 50 6 64.63 64.65 66.57 70.69 57.97 50.29 28.49 27.47
10 100 30 8 54.00 52.63 54.20 60.53 50.90 44.14 25.66 24.75
10 100 40 8 34.09 35.23 36.28 41.28 35.28 30.99 20.93 20.19
10 100 50 8 57.45 55.22 56.86 71.34 62.21 55.35 32.63 31.47
10 200 30 8 46.02 46.46 47.84 62.84 48.94 44.18 26.87 25.91
10 200 40 8 52.85 50.98 52.49 66.10 56.25 50.27 29.48 28.43
10 200 50 8 47.07 48.29 49.72 61.41 50.43 45.62 30.37 29.28
10 500 30 8 42.35 43.19 44.48 54.72 46.69 41.91 25.91 24.98

Appl. Sci. 2021, 11, 10102 19 of 26

Table 7. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 500 40 8 33.77 36.02 37.09 41.90 34.89 30.75 19.49 18.80
10 500 50 8 25.67 27.33 28.15 33.70 28.23 25.67 17.94 17.30
15 100 30 4 45.58 41.72 42.96 49.30 42.42 37.24 22.85 22.03
15 100 40 4 37.12 41.78 43.02 48.80 39.68 36.02 23.45 22.61
15 100 50 4 26.73 26.14 26.92 32.19 28.31 25.40 17.58 16.95
15 200 30 4 41.30 42.56 43.83 52.07 45.60 41.01 26.03 25.10
15 200 40 4 38.14 41.52 42.75 50.08 41.41 37.85 25.60 24.69
15 200 50 4 32.87 29.61 30.49 37.92 32.99 28.26 19.83 19.12
15 500 30 4 30.84 32.48 33.45 43.74 36.42 33.12 22.05 21.27
15 500 40 4 33.79 31.78 32.73 41.74 38.04 32.94 22.99 22.17
15 500 50 4 33.97 33.86 34.87 41.54 37.61 33.56 21.89 21.11
15 100 30 6 50.00 50.54 52.04 63.44 55.40 49.58 30.39 29.30
15 100 40 6 37.24 38.07 39.20 47.16 43.02 38.93 25.14 24.24
15 100 50 6 31.99 32.12 33.08 42.17 37.02 33.53 23.45 22.62
15 200 30 6 46.42 49.68 51.16 57.21 47.41 41.07 23.68 22.84
15 200 40 6 37.18 37.59 38.71 48.40 41.36 36.98 24.93 24.04
15 200 50 6 22.07 25.67 26.43 32.98 26.90 25.00 18.22 17.57
15 500 30 6 36.18 36.69 37.78 49.21 41.73 37.80 26.71 25.75
15 500 40 6 40.22 40.41 41.61 49.63 43.93 39.38 24.02 23.16
15 500 50 6 37.83 40.38 41.58 52.01 43.47 39.74 27.10 26.13
15 100 30 8 28.52 28.29 29.13 36.98 36.98 33.98 23.22 22.40
15 100 40 8 35.13 36.47 37.55 45.88 41.64 38.30 25.34 24.43
15 100 50 8 48.44 49.52 50.99 59.18 52.38 47.24 28.95 27.92
15 200 30 8 34.93 39.03 40.18 45.89 38.40 34.53 22.35 21.55
15 200 40 8 30.64 34.72 35.75 40.93 34.33 31.45 22.20 21.40
15 200 50 8 26.77 28.68 29.53 35.95 29.46 26.75 16.96 16.36
15 500 30 8 46.30 44.56 45.88 59.87 49.81 44.39 26.53 25.58
15 500 40 8 53.77 52.40 53.96 64.99 59.12 52.58 30.33 29.24
15 500 50 8 42.17 43.07 44.35 59.72 47.71 43.28 27.58 26.59

average 36.42 37.64 38.76 46.72 39.78 35.76 23.57 22.73

Table 8. The Descriptive Statistics Achieved by the Friedman Test at C = 40 and α = 0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 3.43 4050.00 0.93 0.87 0.00 4.44
PSO 4.22 4050.00 1.11 0.96 0.00 5.98
BA 3.06 4050.00 0.79 0.76 0.00 4.67

IHBA 2.94 4050.00 0.77 0.75 0.00 4.71
p-value 0.00

The results obtained from the Wilcoxon paired signed test are shown in Table 9.
The p-values in the last column are all equal to 0, which is less than 0.05. It shows that
the differences between these algorithms are statistically significant, and that there are
significant differences between IHBA and the other algorithms. This also reconfirms
the conclusion that C = 20. More definitely, it explains that IHBA is an effective group
intelligence algorithm with outstanding performance.

Appl. Sci. 2021, 11, 10102 20 of 26

Table 9. The Wilcoxon paired signed test result at C = 40 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 671 3280 99 0.00
IHBA VS BBO 2434 220 1396 0.00
IHBA VS EDA 3879 100 71 0.00

IHBA VS TDIWO 1933 710 1407 0.00
IHBA VS GA 3198 804 48 0.00
IHBA VS PSO 2149 540 1361 0.00
IHBA VS BA 3050 948 52 0.00

Finally, in this section, EDA is excluded from the mean plot. The reason is that the
algorithm is too intrusive and its performance is too poor. As can be seen in Figure 2, IHBA
is once again stronger than the other metaheuristic algorithms by a margin. Once again,
the variability between the algorithms is proven to be at a significant level. Since the LSD
test has the highest sensitivity, Figure 2 verifies from the side that IHBA is an algorithm
that performs well and can reach Pareto optimality.

CMA BBO TDIWO EDA GA PSO BA IHBA

R
P

D

20

25

30

35

40

45

50

Figure 2. Mean plot and 95% LSD interval of the bat algorithm at C = 40.

5.2.3. Comparative Analysis at C = 60

Table 10 presents the results of the calculations at C = 60. Table 10 shows the validity of
the IHBA, which yielded an overall mean RPD value of 31.55%. The results of the Friedman
test in Table 11, the results of the Wilcoxon paired sign test in Table 12, and the mean plot
in Figure 3 again show that the proposed IHBA performed best in the comparison.

Appl. Sci. 2021, 11, 10102 21 of 26

Table 10. The Average RPD Values at C = 60. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 21.03 21.53 21.14 22.70 22.35 19.26 20.68 20.84
5 100 40 4 45.06 46.69 45.56 47.61 45.75 46.63 40.83 40.08
5 100 50 4 37.12 37.79 37.41 41.04 39.73 40.82 34.18 33.43
5 200 30 4 47.20 49.43 47.57 50.02 47.74 49.63 42.30 41.33
5 200 40 4 11.03 12.18 11.01 13.06 11.75 9.04 9.69 9.66
5 200 50 4 53.25 54.80 53.76 55.71 55.59 55.49 47.22 46.29
5 500 30 4 34.70 36.10 34.82 37.18 36.60 35.23 29.30 28.58
5 500 40 4 31.75 32.82 32.21 33.83 34.12 31.45 26.98 26.47
5 500 50 4 42.52 43.67 42.61 44.96 43.45 43.58 39.09 38.53
5 100 30 6 34.71 36.05 34.81 37.16 36.76 35.19 29.28 28.57
5 100 40 6 20.98 21.90 20.95 23.25 21.89 20.05 18.20 17.91
5 100 50 6 23.38 23.98 23.58 25.45 24.73 22.48 22.43 22.41
5 200 30 6 31.96 35.07 37.00 39.41 38.96 40.95 34.61 35.04
5 200 40 6 16.42 17.30 16.77 18.65 17.45 15.14 13.98 13.78
5 200 50 6 27.68 28.91 27.69 30.09 28.80 27.43 23.77 23.27
5 500 30 6 54.30 55.62 54.94 56.61 57.10 56.33 48.11 47.22
5 500 40 6 54.49 56.34 55.21 57.09 56.11 57.05 48.51 47.50
5 500 50 6 41.94 43.79 42.47 44.65 43.88 43.44 34.55 33.48
5 100 30 8 25.59 26.71 26.03 28.52 27.71 26.63 22.52 22.01
5 100 40 8 17.68 18.42 17.70 20.40 19.22 17.77 17.30 17.20
5 100 50 8 29.38 30.33 29.67 31.41 30.96 28.81 26.43 26.14
5 200 30 8 38.13 39.23 37.99 41.76 39.92 41.60 36.36 35.72
5 200 40 8 52.43 53.78 52.29 54.87 54.22 54.77 45.26 44.12
5 200 50 8 41.91 43.09 42.34 44.51 43.33 43.64 39.47 38.96
5 500 30 8 19.50 20.11 19.62 22.39 21.30 19.79 18.05 17.81
5 500 40 8 27.99 29.62 28.36 30.23 29.02 27.91 24.85 24.40
5 500 50 8 34.15 35.61 34.35 37.10 34.76 35.59 30.98 30.35

10 100 30 4 31.67 33.18 31.67 34.69 32.85 33.03 27.60 26.88
10 100 40 4 43.96 46.09 44.36 46.88 44.68 46.02 37.74 36.66
10 100 50 4 43.84 46.31 44.35 45.13 44.90 42.43 33.92 32.84
10 200 30 4 42.87 44.87 43.17 44.57 44.00 41.96 33.59 32.56
10 200 40 4 27.34 28.72 27.49 29.64 28.52 27.10 23.92 23.48
10 200 50 4 33.34 33.74 33.22 36.41 35.74 35.00 30.23 29.70
10 500 30 4 39.57 40.71 39.83 41.94 41.52 40.24 34.40 33.72
10 500 40 4 52.70 54.68 53.09 54.06 54.32 51.76 41.54 40.34
10 500 50 4 29.19 30.54 29.38 31.66 30.37 29.12 24.41 23.79
10 100 30 6 27.57 28.64 27.42 30.04 29.20 27.50 23.03 22.46
10 100 40 6 36.71 38.24 36.72 38.26 37.51 35.65 30.23 29.51
10 100 50 6 35.13 36.28 35.43 37.48 36.72 35.36 30.41 29.81
10 200 30 6 35.05 36.48 25.00 36.74 35.55 34.76 30.63 30.04
10 200 40 6 34.94 36.12 35.38 36.55 35.66 33.93 28.12 28.19
10 200 50 6 35.39 36.64 36.45 37.23 36.67 34.44 29.26 28.63
10 500 30 6 46.59 48.16 47.09 49.07 48.84 48.23 40.39 39.48
10 500 40 6 26.68 27.32 26.11 28.68 27.47 26.53 24.27 23.91
10 500 50 6 56.43 59.00 57.28 57.13 57.08 54.35 43.68 42.38
10 100 30 8 48.53 51.05 49.11 49.84 49.34 47.57 38.91 37.82
10 100 40 8 34.03 35.49 34.05 35.77 34.99 33.26 28.97 28.39
10 100 50 8 55.22 57.60 55.79 58.18 56.95 58.49 47.45 46.11
10 200 30 8 45.36 46.91 46.02 47.81 48.24 46.78 37.80 36.78
10 200 40 8 50.53 52.60 51.26 53.33 52.42 52.97 42.70 41.47
10 200 50 8 46.91 48.40 47.51 49.32 48.93 48.44 41.12 40.28
10 500 30 8 42.52 44.27 42.80 45.17 44.25 44.08 36.49 35.56
10 500 40 8 33.76 35.52 33.71 35.51 34.98 32.76 27.86 27.22

Appl. Sci. 2021, 11, 10102 22 of 26

Table 10. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 500 50 8 27.20 28.20 27.44 29.46 28.55 26.81 23.54 23.11
15 100 30 4 40.34 42.38 41.45 42.08 40.91 39.70 33.27 32.44
15 100 40 4 38.10 39.33 38.25 40.20 39.79 37.87 31.88 31.17
15 100 50 4 26.98 28.40 27.39 29.22 27.89 26.61 23.70 23.28
15 200 30 4 41.62 43.31 41.89 44.27 42.96 43.04 36.18 35.32
15 200 40 4 39.16 40.30 39.57 41.55 40.85 39.73 33.99 33.32
15 200 50 4 31.61 33.30 31.82 33.23 32.38 30.95 27.72 27.25
15 500 30 4 33.42 34.77 33.52 36.15 35.46 34.69 29.66 29.04
15 500 40 4 34.80 35.60 34.57 36.97 35.72 35.69 31.01 30.37
15 500 50 4 34.45 36.19 34.63 36.96 35.38 35.24 30.42 29.76
15 100 30 6 49.72 51.74 49.98 52.56 51.34 52.26 43.13 42.01
15 100 40 6 38.52 40.11 38.74 41.52 39.67 40.49 34.42 33.64
15 100 50 6 33.84 35.10 34.11 36.57 35.26 35.23 30.97 30.42
15 200 30 6 45.12 47.58 44.69 46.53 46.53 44.27 36.10 35.07
15 200 40 6 38.20 39.92 38.36 40.61 39.75 39.31 34.10 33.44
15 200 50 6 25.76 26.65 25.79 28.29 27.58 25.86 23.07 22.72
15 500 30 6 38.25 39.53 38.53 40.94 40.10 40.06 35.15 34.55
15 500 40 6 39.85 41.62 40.20 42.54 41.07 41.15 34.07 33.17
15 500 50 6 40.03 41.27 40.32 42.78 42.04 41.74 35.87 35.17
15 100 30 8 31.73 33.10 31.92 35.37 32.58 34.68 30.51 29.92
15 100 40 8 37.13 38.34 37.53 40.40 38.45 39.45 33.64 32.91
15 100 50 8 47.43 49.14 47.96 50.25 48.62 49.35 40.65 39.58
15 200 30 8 36.42 37.90 36.33 38.59 37.95 36.38 30.83 30.14
15 200 40 8 32.89 33.95 33.01 35.20 34.33 32.91 28.94 28.45
15 200 50 8 28.05 29.29 28.26 30.40 29.69 27.74 23.28 22.72
15 500 30 8 45.08 47.09 45.61 47.71 47.22 46.99 38.27 37.22
15 500 40 8 52.01 54.39 52.37 55.12 53.16 55.11 44.53 43.21
15 500 50 8 43.50 44.99 43.91 46.29 46.34 45.72 37.83 36.93

average 36.68 37.88 39.01 37.08 38.54 37.28 39.54 38.60

Table 11. The Descriptive Statistics Achieved by the Friedman Test at C = 60 and α = 0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 4.39 4050.00 0.98 0.85 0.00 4.46
PSO 4.44 4050.00 0.99 0.94 0.00 4.78
BA 4.33 4050.00 0.98 0.85 0.00 4.44

IHBA 3.53 4050.00 0.42 0.50 0.00 5.28
p-value 0.00

Table 12. The Wilcoxon paired signed test result at C = 60 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 639 3314 98 0.00
IHBA VS BBO 2428 205 1417 0.00
IHBA VS EDA 3840 100 110 0.00

IHBA VS TDIWO 1981 650 1419 0.00
IHBA VS GA 3222 755 72 0.00
IHBA VS PSO 2181 493 1376 0.00
IHBA VS BA 3099 879 72 0.00

Appl. Sci. 2021, 11, 10102 23 of 26

CMA BBO TDIWO EDA GA PSO BA IHBA

R
P

D

30

32

34

36

38

40

42

Figure 3. Mean plot and 95% LSD interval of the bat algorithm at C = 60.

5.3. VND Method

In this section, the proposed VND3BA and VND2BA are compared with VNDH12,
VNDH22, and VNDH32, proposed by Hatami et al. These are 3 different versions of the
VND method using H12, H22 and H32 to generate the initial solution. The VND method
uses product local search to improve the product sequence and part local search to improve
the part sequence for each product. Tables 13 and 14 show the computational results and
CPU time for the 5 VND algorithms.

As the table shows, VND3BA and VND2BA perform significantly better than VNDH12,
VNDH22 and VNDH12 in terms of solution quality and computational effort. The best
overall average RPI value of 15.233% for all instances obtained by the existing VND algo-
rithm is more than three times higher than the best overall average RPI value obtained
by VND3BA and VND2BA. For all values of n, m, f and s, the proposed VND algorithm
produces better results than the existing VNDH12, VNDH22, and VNDH32. The VND
method shows stable advantages without considering the different n, m, f , and s involved.
The proposed VND algorithm is also very fast, with an overall average CPU time of 0.009
and 0.057 s for VND3BA and VND2BA, respectively, compared with an overall average
CPU time of more than 5 s for the existing algorithms.

Table 13. Average RPD value of VND method.

RPD
Algorithms

VNDH12 VNDH22 VNDH32 VND3BA VND2BA

n
100 19.177 14.919 16.791 4.656 4.365
200 16.752 16.180 19.497 4.957 4.423
500 12.746 14.599 18.129 4.743 4.074

m
5 17.606 15.753 18.614 4.181 3.977
10 16.616 15.345 18.731 5.015 4.520
20 14.463 14.599 17.072 5.151 4.365

f
4 13.095 11.824 13.706 4.462 3.919
6 16.859 15.627 18.449 4.821 4.317
8 18.731 18.246 22.262 5.063 4.627

s
30 14.608 14.928 18.246 5.160 4.695
40 15.850 15.423 18.449 4.860 4.326
50 18.217 15.355 17.722 4.336 3.841

average 16.226 15.233 18.139 4.784 4.287

Appl. Sci. 2021, 11, 10102 24 of 26

Table 14. CPU time of VND method.

CPU
Algorithms

VNDH12 VNDH22 VNDH32 VND3BA VND2BA

n
100 0.459 0.508 0.525 0.004 0.009
200 1.836 1.786 1.798 0.007 0.027
500 13.424 13.885 13.417 0.016 0.135

m
5 4.765 4.591 4.326 0.008 0.028
10 5.001 5.313 5.114 0.010 0.051
20 5.953 6.274 6.300 0.011 0.091

f
4 3.662 3.522 3.668 0.012 0.083
6 4.993 5.610 5.615 0.008 0.050
8 7.065 7.045 6.457 0.008 0.037

s
30 5.321 5.836 5.763 0.007 0.049
40 5.224 5.354 5.084 0.009 0.058
50 5.173 4.989 4.894 0.012 0.064

average 5.240 5.393 5.247 0.009 0.057

6. Conclusions

To address the challenge that existing heuristic algorithms and meta-heuristic algo-
rithms cannot fundamentally solve the three-stage distributed assembly permutation flow
shop optimization problem, this paper proposes a hybrid bat algorithm optimization algo-
rithm based on variable neighborhood structure and two learning strategies to minimize
the completion time of this problem. The algorithm designs a search-based and capture-
based two populations to solve the difficult trade-off between convergence and diversity
of the bat algorithm in solving the scheduling optimization problem. Moreover, by fully
mining the population information, a new selection mechanism and a new velocity and
location update strategy are designed to solve the difficult trade-off between exploration
and exploitation when the bat algorithm solves the scheduling optimization problem.
The Gaussian learning strategy and elite learning strategy are used to assist the whole
population to jump out of the local optimal frontier. Simulation results show that IHBA
can solve the optimization problem of three-stage distributed assembly permutation flow
shop scheduling well, and performs better than existing algorithms in the literature.

In future research, the algorithm is extended to more complex multi-objective opti-
mization problems to further improve the efficiency of iterative search, and the proposed
algorithm is applied to other scheduling problems.

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; software, Y.W.; validation,
Y.W. and J.Z.; formal analysis, Y.W.; investigation, Y.W.; resources, Y.W. and J.Z.; data curation,
Y.W.; writing—original draft preparation, Y.W.; visualization, Y.W. and J.Z.; supervision, Y.W. and
J.Z.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
under Grant No. CUSF-DH-D-2018050 (18D310804).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The benchmark of instances for the permutation flowshop scheduling
problem can be found here: http://soa.iti.es/problem-instances, accessed on 1 September 2021.

Acknowledgments: We gratefully acknowledge the anonymous reviewers for their insightful com-
ments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

http://soa.iti.es/problem-instances

Appl. Sci. 2021, 11, 10102 25 of 26

References
1. Chen, X.; Zhang, B.; Gao, D. An Improved Bat Algorithm for Job Shop Scheduling Problem. In Proceedings of the 2019 IEEE

International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 439–443.
2. Shareh, M.B.; Bargh, S.H.; Hosseinabadi, A.A.; Slowik, A. An improved bat optimization algorithm to solve the tasks scheduling

problem in open shop. Neural Comput. Appl. 2021, 33, 1559–1573. [CrossRef]
3. Chen, P. S.; Tsai, C. C.; Dang, J. F.; Huang, W. T. Developing Three-phase Modified Bat Algorithms to Solve Medical Staff

Scheduling Problems While Considering Minimal Violations of Preferences and Mean Workload. Technol. Health Care 2021, 1–22.
[CrossRef]

4. Tolouei, K.; Moosavi, E.; Hossein, A.; Tabrizi, B.; Afzal, P. Application of an improved Lagrangian relaxation approach in the
constrained long-term production scheduling problem under grade uncertainty. Eng. Optim. 2021, 53, 735–753. [CrossRef]

5. Hatami, S.; Ruiz, R.; Andrés-Romano, C. The Distributed Assembly Permutation Flowshop Scheduling Problem. Int. J. Prod. Res.
2013, 51, 5292–5308. [CrossRef]

6. Hatami, S.; Ruiz, R.; Andrés-Romano, C. Simple constructive heuristics for the Distributed Assembly Permutation Flowshop
Scheduling Problem with sequence dependent setup times. In Proceedings of the 2014 International Conference on Control,
Decision and Information Technologies (CoDIT), Metz, France, 3–5 November 2014; pp. 19–23.

7. Hatami, S.; Ruiz, R.; Andrés-Romano, C. Heuristics and metaheuristics for the distributed assembly permutation flowshop
scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 2015, 169 , 76–88. [CrossRef]

8. Ying, K.C.; Pourhejazy, P.; Cheng, C.Y.; Syu, R.S. Supply chain-oriented permutation flowshop scheduling considering flexible
assembly and setup times. Int. J. Prod. Res. 2020, 58, 1–24. [CrossRef]

9. Gonzalez-Neira, E.M.; Ferone, D.; Hatami, S.; Juan, A.A. A biased-randomized simheuristic for the distributed assembly
permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 2017, 79, 23–36. [CrossRef]

10. Wang, K.; Li, Z.; Duan, W.; Feng, X.; Liu, B. Variable neighborhood based memetic algorithm for just-in-time distributed assembly
permutation flowshop scheduling. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Banff, AB, Canada, 5–8 October 2017; pp. 3700–3704.

11. Zhang, Z.Q.; Qian, B.; Jin, H.P.; Wang, L. A matrix-cube-based estimation of distribution algorithm for the distributed assembly
permutation flow-shop scheduling problem. Swarm Evol. Comput. 2021, 60, 100785. [CrossRef]

12. Zhang, G.; Xing, K.; He, Z. Memetic Algorithm with Meta-Lamarckian Learning and Simplex Search for Distributed Flexible
Assembly Permutation Flowshop Scheduling Problem. IEEE Access 2020, 8, 96115–96128. [CrossRef]

13. Pan, Q.K.; Gao, L.; Li, X.Y.; Jose, F.M. Effective constructive heuristics and meta-heuristics for the distributed assembly permutation
flowshop scheduling problem. Appl. Soft Comput. 2019, 81, 105492. [CrossRef]

14. Ochi, H.; Driss, B. Scheduling the distributed assembly flowshop problem to minimize the makespan. Procedia Comput. Sci. 2019,
164, 471–477. [CrossRef]

15. Yang, S.L.; Xu, Z.G. The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch
delivery. Int. J. Prod. Res. 2021, 59, 4053–4071. [CrossRef]

16. Liu, B.; Wang, K.; Zhang, R. Variable neighborhood based memetic algorithm for distributed assembly permutation flowshop.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 1682–1686.

17. Huang, Y.Y.; Pan, Q.K.; Huang, J.P.; Suganthan, P.N.; Gao, L. An improved iterated greedy algorithm for the distributed assembly
permutation flowshop scheduling problem. Comput. Ind. Eng. 2021, 152, 107021. [CrossRef]

18. Hu, R.; Wu, X.; Qian, B.; Mao, J.L.; Jin, H.P. An Enhanced Differential Evolution Algorithm with Fast Evaluating Strategies for
TWT-NFSP with SSTs and RTs. Complexity 2020, 2020, 8835359. [CrossRef]

19. Seidgar, H.; Fazlollahtabar, H.; Zieh, M. Scheduling two-stage assembly flow shop with random machines breakdowns: integrated
new self-adapted differential evolutionary and simulation approach. Soft Comput. 2020, 24, 8377–8401 [CrossRef]

20. Li, M.; Su, B.; Lei, D. A Novel Imperialist Competitive Algorithm for Fuzzy Distributed Assembly Flow Shop Scheduling . J.
Intell. Fuzzy Syst. 2021, 1, 4545–4561. [CrossRef]

21. Al-Behadili, M.; Ouelhadj, D.; Jones, D. Multi-objective Particle Swarm Optimization for Robust Dynamic Scheduling in a
Permutation Flow Shop. Intell. Syst. Des. Appl. 2017, 557, 498–507.

22. Zhang, X.; Li, X.T.; Yin, M.H. An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling
problem. Int. J. Bio-Inspired Comput. 2020, 15, 113–124. [CrossRef]

23. Li, X.; Zhang, X.; Yin, M.; Wang, J. A genetic algorithm for the distributed assembly permutation flowshop scheduling problem.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 3096–3101.

24. Mao, J.; Hu, X.; Pan, Q.K.; Miao, Z.; He, C.; Tasgetiren, M.F. An improved discrete artificial bee colony algorithm for the
distributed permutation flowshop scheduling problem with preventive maintenance. In Proceedings of the 2020 39th Chinese
Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 1679–1684.

25. Song, H.B.; Lin, J. A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling
problem with sequence dependent setup times. Swarm Evol. Comput. 2021, 60, 100807. [CrossRef]

26. Tozkapan, A.; Kırca, Ö; Chung, C.S. A branch and bound algorithm to minimize the total weighted flowtime for the two-stage
assembly scheduling problem. Comput. Oper. Res. 2003, 30, 309–320. [CrossRef]

http://doi.org/10.1007/s00521-020-05055-7
http://dx.doi.org/10.3233/THC-202547
http://dx.doi.org/10.1080/0305215X.2020.1746295
http://dx.doi.org/10.1080/00207543.2013.807955
http://dx.doi.org/10.1016/j.ijpe.2015.07.027
http://dx.doi.org/10.1080/00207543.2020.1842938
http://dx.doi.org/10.1016/j.simpat.2017.09.001
http://dx.doi.org/10.1016/j.swevo.2020.100785
http://dx.doi.org/10.1109/ACCESS.2020.2996305
http://dx.doi.org/10.1016/j.asoc.2019.105492
http://dx.doi.org/10.1016/j.procs.2019.12.208
http://dx.doi.org/10.1080/00207543.2020.1757174
http://dx.doi.org/10.1016/j.cie.2020.107021
http://dx.doi.org/10.1155/2020/8835359
http://dx.doi.org/10.1007/s00500-019-04407-3
http://dx.doi.org/10.3233/JIFS-201391
http://dx.doi.org/10.1504/IJBIC.2020.106443
http://dx.doi.org/10.1016/j.swevo.2020.100807
http://dx.doi.org/10.1016/S0305-0548(01)00098-3

Appl. Sci. 2021, 11, 10102 26 of 26

27. Luo, J.; Ren, R.; Guo, K. The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm
and its application in geotechnical engineering. PLoS ONE 2020, 15, e0233398. [CrossRef]

28. Cools, S.; Cornelis, J.; Vanroose, W. Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate
Gradient Method. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2507–2522. [CrossRef]

29. Hansen, P.; Mladenović, N. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 2001, 130, 449–467.
[CrossRef]

30. Peng, K.K.; Pan, Q.K.; Gao, L.; Li, X.Y.; Das, S.; Zhang, B. A multi-start variable neighbourhood descent algorithm for hybrid
flowshop rescheduling. Swarm Evol. Comput. 2019, 45, 92–112. [CrossRef]

31. Zhao, F.Q.; Liu, Y.; Zhang, Y.; Ma, W.M.; Zhang, C. A hybrid harmony search algorithm with efficient job sequence scheme and
variable neighborhood search for the permutation flow shop scheduling problems. Eng. Appl. Artif. Intell. 2017, 65, 178–199.
[CrossRef]

32. Wang, Z.Q.; Broccardo, M. A novel active learning-based Gaussian process meta modelling strategy for estimating the full
probability distribution in forward UQ analysis. Struct. Saf. 2020, 84, 101937. [CrossRef]

33. Mornell, A.; Osborne, M.S.; McPherson, G.E. Evaluating practice strategies, behavior and learning progress in elite performers:
An exploratory study. Music. Sci. 2020, 1, 130–135. [CrossRef]

34. Deng, J.; Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem.
Swarm Evol. Comput. 2017, 32, 121–131. [CrossRef]

35. Huang, J.L.; Gu, X.S. Distributed assembly permutation flow-shop scheduling problem with sequence-dependent set-up times
using a novel biogeography-based optimization algorithm. Eng. Optim. 2021, in press. [CrossRef]

36. Deng, C.; Hu, R.; Qian, B.; Jin, H.P. Hybrid Estimation of Distribution Algorithm for Solving Three-Stage Multiobjective Integrated
Scheduling Problem. Complexity 2021, 2021, 5558949. [CrossRef]

37. Sang, H.Y.; Pan, Q.K.; Wang, P.; Han, YY.; Gao, K.; Duan, P. Effective invasive weed optimization algorithms for distributed
assembly permutation flowshop problem with total flowtime criterion. Swarm Evol. Comput. 2019, 44, 64–73. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0233398
http://dx.doi.org/10.1109/TPDS.2019.2917663
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1016/j.swevo.2019.01.002
http://dx.doi.org/10.1016/j.engappai.2017.07.023
http://dx.doi.org/10.1016/j.strusafe.2020.101937
http://dx.doi.org/10.1177/1029864918771731
http://dx.doi.org/10.1016/j.swevo.2016.06.002
http://dx.doi.org/10.1080/0305215X.2021.1886289
http://dx.doi.org/10.1155/2021/5558949
http://dx.doi.org/10.1016/j.swevo.2018.12.001

	Introduction
	Literature Review
	Problem Description
	Materials and Methods
	Mathematical Expression of the Feasible Solution of the Three-Stage DAPFSP
	Population Classification
	Search-Type Population
	Captive Population

	Selection Mechanism
	Three Neighborhood Structures Based on Insert Operator
	Local Search Method Based on Variable Neighborhood Structure
	VND3BA Local Search Method Based on Three Neighborhood Structures
	VND2BA Local Search Method Based on Two Neighborhood Structures

	Gaussian Learning Strategy and Elite Learning Strategy

	Simulation Results
	Test Questions and Parameter Settings
	The Results and Discussion
	Comparative Analysis at C = 20
	Comparative Analysis at C = 40
	Comparative Analysis at C = 60

	VND Method

	Conclusions
	References

