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Abstract: A truncated basis is employed to analyze the influence of the point interaction on the
eigenvalues and eigenfunctions in quantum billiards. The point interaction is numerically confirmed
to cause the shift in the eigenvalue that leads the original eigenfunctions to be superposed to form
the new eigenfunction. The amplitude and nodal-line patterns of the eigenfunctions are found to
vary significantly with the coupling strength. It is further verified that the point-driven Chladni
plates can be employed to analogously manifest the noticeable dependence of the nodal-line pattern
on the coupling strength. More importantly, the dispersion relation between the frequency and the
wave number for the flexural wave can be precisely determined in the process of utilizing the point
interaction to model the modern Chladni plates.

Keywords: point interaction; quantum billiards; Chladni plates

1. Introduction

In the 18th century, Ernst Chladni employed a bow to excite a thin plate, and used
small particles to visualize the nodal lines of the resonance [1,2], as shown in Figure 1a.
Chladni’s work is the first real attempt to explore acoustic properties through experi-
ments [3–6]. The resonant modes excited by a bow are usually the eigenmodes of the plate.
Nowadays, the modern Chladni plate, as shown in Figure 1b, is excited by an electronically
controlled point oscillator to generate the resonant modes systematically. Owing to the
point interaction between the plate and the driving source, the nodal patterns observed in
the modern Chladni plate have been observed to be entirely different from the eigenmodes
of the free plate [7]. The formation of modern Chladni patterns has been explored via
Helmholtz equation, RLC networks, and Kirchhoff–Love equation [7–11]. However, there
is no theoretical model that includes the action of the point interaction between the plate
and the driving source.

The point interaction in terms of the Dirac d-function potential has attracted great
interest in the development and advancement of quantum mechanics [12–14]. The delta-
function potential in two or three dimensions has been widely considered in the litera-
ture because of its usefulness in nuclear [15], atomic [16], solid-state [17], and particle
physics [18]. Šeba [19] firstly explored the coupling interaction between a two-dimensional
integrable billiard and a d-function potential. The strong coupling in quantum billiards
might cause the transition from integrable to chaotic features [20–25]. As the two- or
three-dimensional delta-function potential is plagued with the presence of ultraviolet di-
vergences, renormalization analyses and cutoff regularization [26–30] are usually used to
deal with infinities. An alternative approach to remove the difficulty of the divergence is to
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utilize a truncated basis for expressing the point interaction [31]. From the viewpoint of
physical perspectives, the truncation of the basis can be linked to the real systems in which
the interaction ordinarily originates from a point-like scatterer with a small, but finite size.
So far, the explorations regarding to the point interaction almost all focus on the variation
of eigenvalues, and rarely on the structure of eigenfunctions. It is scientifically important
to verify the influence of the point interaction on the pattern formation of eigenfunctions
through experiment.
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Figure 1. Experimental setups of (a) classical and (b) modern Chladni plates.

In this work, we study the influence of point interaction on the resonant modes in
modern Chladni plates. The structure of the paper is as follows. Section 2 presents the
theoretical model for point interaction. We employ a truncated basis to explore the point
interaction in quantum billiards. Numerical analyses reveal that the point interaction
gives rise to the shift of the eigenvalue that causes the superposition of the unperturbed
eigenfunctions to form the eigenfunction. The variation in the amplitude patterns with
the coupling strength is confirmed to be very significant, as with the nodal-line patterns.
Section 3 presents our findings in modern Chladni plates, followed by applications in
Section 4 and conclusions in Section 5. We systematically verify that the perceptible depen-
dence of the nodal-line pattern on the coupling strength can be analogously manifested
from the point-driven Chladni plates. Furthermore, the dispersion relation between the
frequency and the wave number for the flexural wave can be precisely determined in using
the point-interaction model to analyze the modern Chladni patterns. Since the dispersion
relation contains the information of the flexural rigidity and the Young modulus, the
proposed model is believed to be not only pedagogically beneficial to understanding the
point interaction in quantum systems but also practically useful for measuring the acoustic
properties of plates.

2. Theoretical Model for the Point Interaction

The present analysis follows the model developed by Šeba [19]. The two-dimensional
Helmholtz equation for the domain Ω with boundary shape δΩ is given by(

∇2
2D + k2

n

)
ψn(r) = 0, (1)

where

∇2
2D =

∂2

∂x2 +
∂2

∂y2 (2)

r = (x, y) and kn and ψn, with the indices of n = 1, 2, 3 · · · , are the eigenvalues and
eigenfunctions, respectively. The issue of quantum billiards is associated with the Dirichlet
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boundary conditions with ψn = 0. Considering a d-function potential at rs inside the
domain, the Helmholtz equation in Equation (1) can be expressed as(

∇2
2D + αδ(r− rs) + k2

)
Ψ(r; k) = 0, (3)

where the parameter α is a real number and its absolute value is directly related to the
coupling strength. Although the singular potential is not an ordinary function, Equation (3)
can be physically analyzed using a truncated basis. The truncation of a basis certainly leads
the effective potential to be equivalent to a scatterer with small finite size accompanied with
Gibbs-like oscillations. Nevertheless, the finiteness of the scatterer size should be applicable
to realistic systems from a physical perspective. In terms of a truncated basis { ψn(r) }
(n = 1, 2, 3 · · · ), the functions δ(r− rs) and Ψ(r) in Equation (3) can be approximately
expressed as

δ(r− rs) =
N

∑
n=0

ψ∗n(rs) ψn(r), (4)

Ψ(r; k) =
N

∑
n=0

an(k) ψn(r), (5)

Substituting Equations (4) and (5) into Equation (3) and using Equation (1), the
eigenfunction of Equation (3) can be derived as

Ψ(r; k) = −α Ψ(rs; k) G(r, rs; k), (6)

where G(r, rs; k) is the Green function given by

G(r, rs; k) =
N

∑
n=0

ψ∗n(rs) ψn(r)
k2 − k2

n
. (7)

The identification δ(r− rs)Ψ(r; k) = δ(r− rs)Ψ(rs; k) was used in deriving Equation (6).
Setting r = rs in both sides of Equation (6), the transcendental equation for solving the
eigenvalues k is given by 1 + α ξ(k) = 0, where ξ(k) = G(rs, rs; k) is a meromorphic func-
tion. It has been discussed [30,31] that a d-function potential in the Helmholtz equation is
problematic in the limit of N → ∞ for a complete basis. The renormalization process from
the self-adjoint extension theory [30,31] is employed to treat short-range singularities in a
proper manner. Based on the renormalization process, the eigenvalues are determined by

α−1
b =

∞

∑
n=0
| ψn(rs) |2

(
1

k2 − k2
n
+

k2
n

k4
n + 1

)
, (8)

where αb is called the renormalized coupling constant. It has been fully discussed [30]
that αb can be related to the physical coupling constant α defined in Equation (3) with a
truncated basis.

We use a square-shape quantum billiard to illustrate the relationship between the
coupling parameter α and the spectrum of eigenvalues. For a free square-shape billiard
with the region in 0 ≤ x, y ≤ L, the eigenfunctions are given by

ψn,m(r) =
2
L

sin
(nπ

L
x
)

sin
(mπ

L
y
)

, (9)

where n = 1,2,3··· and m = 1,2,3···. Using Equation (9), the meromorphic function ξ(k) for a
Dirac’s delta potential at rs can be expressed as

ξ(k) =
N

∑
n=0

N

∑
m=0

∣∣ψn,m(rs)
∣∣2

k2 − [(n2 + m2)π2/L2]
. (10)
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The index N is chosen by the criterion that the eigenvalue k is less than πN/2L. Under
this criterion, the eigenvalues k are numerically confirmed to approach some asymptote.
Figure 2 shows the calculated result for ξ(k) in Equation (10) as a function of k with
rs = (L/2, L/2). For a given α, the eigenvalues are determined by the condition of
ξ(k) = −1/α. In the case of α→ ∞ , the spectrum of eigenvalues corresponds to the zeros
k(z) of the function ξ(k), while the spectrum of the free system is given by the poles k(p)

of ξ(k). The poles k(p) for the square billiard are given by k(p)
n,m L/π =

√
(n2 + m2). For a

positive α increasing from zero to infinity, the eigenvalue can be seen to shift from a pole to
a zero by decreasing.
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Figure 2. Calculated result for ξ(k) in Equation (8) as a function of k with rs = (L/2, L/2) and N = 50.

To demonstrate the trend of approach for computing eigenvalues with respect to
the index N, the calculated results for [1 + α ξ(k)]−1 as a function of k for different N
increasing from 10 to 50 are shown in Figure 3a for a given α = 5 and Figure 3b for
a given α = 10. The eigenvalues k can be found to be located at the abrupt changes
of the spectrum [1 + α ξ(k)]−1. The convergence of the numerical eigenvalues can be
clearly seen as the value of the index N increases from 10 to 50 in the range of kL/π < 20.
Furthermore, the redshift of the eigenvalue subject to the increasing of the coupling strength
α can be observed by comparing the results shown in Figure 3a,b for α = 5 and α = 10,
respectively. We also investigated the influence of the spreading function for the interaction
by considering a Gaussian-type function exp(−r2/a2). The numerical results revealed that
the results obtained with Gaussian-type function are almost the same as those obtained
with d function for a < L/2N.

Figure 4a shows the shift in the eigenvalue with the coupling parameter α for a
specific case of k(p)

7,7 . The dependence of the wave pattern of the eigenfunction Ψ(r; k) on
the parameter α is shown in Figure 4b. The structure of the nodal line corresponding to the
eigenfunction is illustrated in Figure 4c. The wave pattern |Ψ(r; k)| at α = 0 can be seen
to be the feature of the square array, corresponding to the original eigenfunction

∣∣ψ7,7(r)
∣∣;

its nodal-line pattern displays the characteristic of the square lattice. The increase in the
coupling strength α causes the red shift of the eigenvalue, leading the eigenfunction to
be the superposition of the original eigenfunctions ψn,m(r). The weighting coefficient for

the state ψn,m(r) is inversely proportional to k2 − (k(p)
n,m)

2
. The closer the value of k(p)

n,m
to the eigenvalue k, the larger the contribution of the state ψn,m(r). The eigenvalue can
be seen to be significantly decreasing for α < 5 and to gradually saturate for α > 5. As
shown in Figure 4b,c, the variation in the amplitude patterns with the coupling strength
is very conspicuous, as with the nodal-line patterns. Figure 4d shows the contribution of
original eigenfunctions ψn,m(r) in the perturbed eigenfunction Ψ(r; k) shown in Figure 4c.
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The number of contributed eigenfunctions ψn,m(r) in the perturbed eigenfunction Ψ(r; k)
can be clearly seen to increase with the increasing coupling strength α. In the following,
we will verify that the perceptible dependence of the nodal-line pattern on the coupling
strength can be analogously manifested from the point-driven modern Chladni plates.
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3. Exploring the Point Interactions in Modern Chladni Plates

The transverse vibration of a plate is governed by the biharmonic equation [32](
∇4

2D − k4
)
ψ(r) = 0, (11)

where ∇4
2D is the biharmonic operator given by

∇4
2D ψ =

∂4ψ

∂x4 + 2
∂4ψ

∂x2∂y2 +
∂4ψ

∂y4 . (12)



Appl. Sci. 2021, 11, 10094 7 of 12

Equation (11) can be factorized as(
∇2

2D + k2
)(
∇2

2D − k2
)
ψ(r) = 0, (13)

in which the first factor describes propagating dispersive waves, whereas the second one
describes evanescent waves. As the aspect ratio of the thickness to the lateral dimension for
the studied plate is generally less than 0.02, the vibrating eigenmodes can be approximated
with the 2D Helmholtz equation [33]. Even so, the free edge boundary conditions make
the problem particularly difficult, as noted by Rayleigh [34]. As a first approximation, one
can model the plate as a tightly stretched thin elastic membrane by assuming the constant
µ (the ratio of lateral contraction to longitudinal elongation) to be zero, i.e., every point
of the circumference is free to move along lines perpendicular to the plane of the plate.
Under this approximation, the boundary condition can be simplified as the Neumann
boundary conditions with ∂ψn/∂n = 0 on δΩ. Strictly, the Neumann boundary condition
is practically applicable to a stretched membrane, but not to a plate vibrating in virtue of
rigidity. Nevertheless, it has been demonstrated [35] that a hypothetical free membrane can
be used to deduce some of classical Chladni figures successfully. Based on this confirmation,
a free membrane with a point scatter is proposed to model the modern Chladni figures.

A square-shaped aluminum plate with a side length of L = 32 cm and a thickness of
h = 1.0 mm was used to perform the modern Chladni experiment. The frequency response
was measured by a sine function generator with an automatic scanning system with a
resolution of 0.1 Hz. As the conductance of the vibrating system displayed a sharp drop
at each resonant frequency, we accurately measured the resonant frequency by exceeding
the change in conductance of the system [36]. Chladni patterns at resonant frequencies
were exhibited with silica sand of 0.3 mm grain size and were stored with a digital camera.
Fixing the center of the plate on the mechanical oscillator, several resonant patterns could
be precisely observed by scanning the frequency between 200 and 3000 Hz, as shown in
Figure 5a for the nodal-line patterns. All the observed nodal-line patterns are obviously
different from the characteristics of eigenfunctions of free plate.

From Equations (6) and (7), the eigenfunctions of the square plate with the point
interaction at rs can be directly expressed as the Green function:

G(r, rs; k) =
N

∑
n=0

N

∑
m=0

ψ̃n,m(rs) ψ̃n,m(r)
k2 − [(n2 + m2)π2/L2]

, (14)

where the free eigenfunctions ψ̃n,m(r) are given by

ψ̃n,m(r) =
2
L

cos
(nπ

L
x
)

cos
(mπ

L
y
)

, (15)

where n = 0,1,2,3··· and m = 0,1,2,3···. The eigenvalues are determined from the transcen-
dental equation 1 + α ξ(k) = 0 with ξ(k) = G(rs, rs; k). For a given α, the eigenvalue k can
be solved to one-to-one correspond to the free eigenvalue of k(p)

n,m = π(n2 + m2)
1/2/L. We

numerically confirmed that all experimental nodal-line patterns can be excellently recon-
structed by scanning the value of a for the best fit and using rs = (0.5L, 0.5L). Figure 5b
shows the numerical nodal-line patterns corresponding to the experimental results shown
in Figure 5a. The value of α for the best reconstruction and the eigenvalue k are specified
for each case in Figure 5b. The excellent agreement not only confirms the point-interaction
model, but also validates the present analysis for explaining the coupling strength of the
modern Chladni figure.
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The square plate was experimentally driven by a mechanical oscillator located at
rs = (0.57L, 0.57L) instead of the center to further confirm the theoretical model. Using
Equations (14) and (15), numerical calculations were performed under the same procedure
of finding the value of α and the corresponding k to make the best reconstruction for the
experimental results. Figure 6a,b show experimental and numerical nodal-line patterns,
respectively. The off-center excitation can be found to introduce the effect of symmetry
breaking into the driven system, leading the nodal-line structure to be more intricate.
Numerical patterns can be found to be similar to the experimental results for global
structures, except for some differences in the crossing and anti-crossing of nodal lines.
Nevertheless, the overall theoretical nodal-line patterns are rather in agreement with the
counterparts of experimental figures. This agreement indicates that the proposed model
can be universally applied to an arbitrary location for the point interaction. Figure 7 depicts
the dependence of the coupling strength α on the resonant frequency f by means of the
best reconstruction of experimental patterns. The coupling strength α can be seen to be
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linearly proportional to the resonant frequency. The value of α is significantly greater than
5 for the frequency higher than 1000 Hz. This result indicates that the point interaction
in modern Chladni plate generally approaches the strong-coupling regime. Based on the
quantum-acoustic analogy, it has been outlined [37] that the interpretation of Chladni
figures of irregularly shaped plates is intimately connected with the quantum mechanics of
chaotic billiards. In this work, we originally demonstrate that the modern Chladni plate
can be employed to analogously manifest the point interaction in quantum billiards.
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4. Applications

More importantly, the point-interaction model can be exploited to precisely determine
the dispersion relation between the frequency and the wave number for the flexural wave.
From the Kirchhoff–Love plate theory, the dispersion relation between the frequency and
the wave number is given by [38]

f (k) =
C

2π
k2, (16)

where C =
√

D/ρh, D is the flexural rigidity given by

D =
Eh3

12(1− ν2)
, (17)

where E is the Young modulus, ν is the Poisson ratio, ρ is the mass density, and h is the
thickness of the plate. The material properties for aluminum are as follows: E = 70 GPa,
ν = 0.33, and ρ = 2700 kg/m3 [38]. Using these material properties and h = 1 mm, the
theoretical coefficient C/2π can be calculated to be 0.248. We employed the parabolic
formula in Equation (16) to make the best fit to the experimental results obtained in
Figures 5 and 6. The fitting coefficient C/2π is approximately 0.228, as shown in Figure 8.
The experimentally determined coefficient C/2π can be found to agree with the theoretical
value very well. This good agreement validates that the point-interaction model can be
utilized not only to explore the formation of modern Chladni patterns, but also to determine
the dispersion relation between the resonant frequency and the wave number for the
vibration of plates. As the dispersion relation in Equation (16) includes the information of
the flexural rigidity D as well as the Young modulus E, the proposed theoretical model is
believed to be practically useful for measuring the acoustic properties of plates.
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5. Conclusions

In summary, we have exploited a truncated basis to explore the influence of the
point interaction on the eigenvalues and eigenfunctions in quantum billiards. We have
numerically found that the shift in the eigenvalue leads the eigenfunction of the point
interaction to be the superposition of the unperturbed eigenfunctions. It has been confirmed
that the variation in the amplitude patterns with the coupling strength is very conspicuous,
as with the nodal-line patterns. We have further verified that the noticeable dependence of
the nodal-line pattern on the coupling strength can be analogously manifested from the
point-driven Chladni plates. Moreover, utilizing the point-interaction model to analyze
the modern Chladni patterns can precisely obtain the dispersion relation between the
frequency and the wave number for the flexural wave. The proposed theoretical model is
believed to be useful for understanding the point interaction in quantum systems and for
measuring the acoustic properties of plates [39,40].
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