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Abstract: The assessment of rice panicle initiation is crucial for the management of nitrogen fertilizer
application that affects yield and quality of grain. The occurrence of panicle initiation could be
determined via either green ring, internode-elongation, or a 1–2 mm panicle, and was observed
through manual dissection. The quadratic polynomial regression model was used to construct the
model of the trend of normalized difference vegetation index-based vegetation indexes (NDVI-based
VIs) between pre-tillering and panicle differentiation stages. The slope of the quadratic polynomial
regression model tended to be alleviated in the period in which the panicle initiation stage should
occur. The results indicated that the trend of the NDVI-based VIs was correlated with panicle
initiation. NDVI-based VIs could be a useful indicator to remotely assess panicle initiation.

Keywords: hyperspectral; proximal sensing; panicle initiation; normalized difference vegetation
index (NDVI); green ring; internode-elongation

1. Introduction

Rice (Oryza sativa L.) is one of the most important staple foods for more than half of
the world population. Due to the rapid growing of food demand and limited arable land,
improving yield potential to boost up future rice production is an urgent need. Rice yield
is known to be increased by the nitrogen topdressing at the panicle initiation (PI) stage
that is the beginning of the reproductive stage [1–3]. According to the recommendation of
Agricultural Improvement Committee in Taiwan, when the length of the panicle is found
to be 2 mm, the nitrogen fertilizer should be applied within two days. Applying a large
amount of nitrogen fertilizer before PI would easily cause excessive stem elongation and
thus tend to increase lodging risk. On the contrary, applying nitrogen fertilizer after PI is
less effective on rice yield improvement. Therefore, accurate determination of the PI stage
is crucial for rice production.

The PI is generally considered as the turning point between the vegetative phase and
the reproductive phase. When a rice plant has reached maximum tillering, the internodes
of the rice stem start elongating and subsequently panicle initiating. The overlapping
period between maximum tillering and PI is also termed as vegetative-lag phase. The
differences of the rice appearance between the vegetative-lag and PI are obscure to the
naked eye. Therefore, they are difficult to be distinguished directly by human observation.

The general methods to assess PI in the farm are identifying the internode-elongation
and green-ring [4,5], length of young panicle (1–2 mm) in the cross section of dissected
stem [5], and leaf number index/leaf appearance [6]. When 30% of the main culms have
panicles 2 mm or longer, it is considered as the panicle differentiation (PD) stage [3] that
is late for nitrogen topdressing. Those methods are inconvenient and inefficient for large-
scale estimation. Some other convenient, large-scale, and non-destructive approaches that
help to monitor the plant growth stages, such as modified-calendar days and heat units,
are potential candidates to be used for the precise estimation of PI. The calendar days
method is the easiest approach but is not reliable enough as it is largely affected by the
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weather variability during the cultivation period [7–9]. Growing degree day (GDD) is an
excellent heat unit that has been widely applied in corn production [10] since it was first
proposed to describe the timeline of biological development [7]. However, these methods
are rudimentary and are not able to distinguish the variability between fields. Nowadays,
quantitative assessment, real-time and site-specific management of precision agriculture
are the objectives of community.

Spectral remote sensing is another potential approach for the estimation of various vari-
ables that are correlated to plant architecture and physiology, providing high-throughput
information non-destructively and rapidly for precision agriculture. The arithmetic combi-
nations of vegetation spectral reflectance, which usually termed as vegetation indexes (VIs),
became useful indicators for studying plant health and status. The NDVI (normalized
difference vegetation index), which is calculated through a normalization procedure [11],
seems to be the most popular and long-established VI. The NDVI is sensitive to responses
on the green vegetation [12] as it correlates with the biophysical and physiological changes
in plants [13–18]. Moreover, the NDVI has been subsequently developed to the other
NDVI-based VIs, such as NDRE (normalized differential red-edge), GNDVI (green NDVI),
NDSI (normalized difference spectral index), etc. [19–21]. Recent studies put efforts on
the quantification of nitrogen contents in plants through remote sensing to optimize the
fertilization efficiency and increased the yield [22–26]. In the field of rice research, NDVI
is one of the most frequently used vegetation indexes. For example, preceding studies
revealed that the NDVI is useful for in the research of rice breeding, nitrogen use efficiency
monitoring, and rice yield prediction [27–29]. Furthermore, NDVI has also been used to
monitor the rice growth stages, including the panicle development stage [30]. The preced-
ing studies revealed the trend of NDVI changes during the rice growth cycle; however, the
evaluation of PI prediction is currently unavailable.

The main objective of this study, therefore, is to investigate the relationship between
NDVI and PI occurrence. Meanwhile, a non-destructive and high temporal resolution
approach was also expected to be established for PI assessment in this study.

2. Materials and Methods
2.1. Field Experiment Design and Management

Pot experiments were conducted in 2019 at the experimental field (22◦38′ N, 120◦36′ E)
of National Pingtung University of Science and Technology, Pingtung, Taiwan, to examine
the canopy reflectance behavior as a function of panicle initiation on rice (Oryza sativa L.).
A japonica cultivar, Kaohsiung147 (KH147), was planted into 4 groups with 5 replications.
Ammonium sulphate was applied at a rate of 150 kg/ha N in each group (20% for basal,
20% for 1st tillering topdressing, 30% for 2nd tillering topdressing, and 30% for panicle
initiation topdressing).

2.2. Determination of PI through Dissection

The PI stage was determined through manual dissection and features observation.
The entrance of the PI stage was verified via either the green ring (Figure 1A), internode-
elongation, or when 1–2 mm panicle was observed (Figure 1B). The ideal timing for nitrogen
topdressing is the interval of Figure 1A,B. When the length of the panicle was over 2 mm, it
was considered as the panicle differentiation (PD) stage (Figure 1C) that was not included
in PI determination. The PI occurrence of each group was determined if more than 50% of
dissected samples were verified to PI.
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Figure 1. The early stage of panicle initiation (A), and the optimum stage for topdressing (B). The 
green ring disappeared, significant stem elongation, panicle above 2 mm, is considered as panicle 
differentiation stage (C). 

2.3. Spectral Measurement and NDVI Calculations 
The spectral data of the rice canopy was collected by using SpectraPen SP-100 (range 

640–1050 nm, 2 nm scan-range, Photon Systems Instruments, Czech), which is a non-im-
aging, handheld hyperspectral sensor. The data collection period was between 10 DAT 
(days after transplanting) and 80 DAT. The acquisition time was between 10:00 a.m. and 
2:00 p.m., and the sensor was held horizontally at nadir view in the position about 3–5 cm 
above the highest leaf of the plants. The integration time of spectrum collection was set to 
auto-sensitivity to minimize the interference of sunlight intensity variability. The collected 
spectrum data were used to calculate NDVI-based VIs, which can be expressed as follows: 

NDVI⎼based VIs=
λa-λb

λa+λb
 (1)

where the λa and λb respectively denote the reflectance of near-infrared (NIR) and red 
wavelengths. 
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The key wavelengths were selected by some physiologically related reference wave-

lengths with the equation of NDVI that have been used in previous studies (Table 1). 
Those reference wavelengths were recombined and recalculated as the normalized differ-
ence procedure with all samples. 

  

Figure 1. The early stage of panicle initiation (A), and the optimum stage for topdressing (B). The
green ring disappeared, significant stem elongation, panicle above 2 mm, is considered as panicle
differentiation stage (C).

2.3. Spectral Measurement and NDVI Calculations

The spectral data of the rice canopy was collected by using SpectraPen SP-100 (range
640–1050 nm, 2 nm scan-range, Photon Systems Instruments, Czech), which is a non-
imaging, handheld hyperspectral sensor. The data collection period was between 10 DAT
(days after transplanting) and 80 DAT. The acquisition time was between 10:00 a.m. and
2:00 p.m., and the sensor was held horizontally at nadir view in the position about 3–5 cm
above the highest leaf of the plants. The integration time of spectrum collection was set to
auto-sensitivity to minimize the interference of sunlight intensity variability. The collected
spectrum data were used to calculate NDVI-based VIs, which can be expressed as follows:

NDVI-based VIs =
λa − λb
λa + λb

(1)

where the λa and λb respectively denote the reflectance of near-infrared (NIR) and red
wavelengths.

2.4. Reference Wavelengths and Recombined NDVI-Based VIs

The key wavelengths were selected by some physiologically related reference wave-
lengths with the equation of NDVI that have been used in previous studies (Table 1). Those
reference wavelengths were recombined and recalculated as the normalized difference
procedure with all samples.
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Table 1. Reference wavelengths correlating with plant physiological traits.

Reference Wavelengths Related Components References

NDVI (720, 800) LAI, yield [17]
NDVI (708, 760) Photosynthesis (FPAR) [18]
NDVI (660, 740) NDVIleaf and NDVIcanopy [31]

NDVI (680, 800) Plant N concentration;
Chlorophyll content

[32]
[16]

NDVI (670, 780) Plant N concentration;
Plant N uptake [33]

670, 700, 730 nm N, P, S-related [34]

2.5. Estimation of PI Occurrence through First-Order Differentiation

The trends of NDVI-based VIs scatter plots were changed along the rice plant develop-
ment, and the quadratic slope always gradually decreased after reaching the reproductive
phase. We assumed that the NDVI might have reached maxima during PI, and therefore,
the slope would be zero (Figure 2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 13 
 

Table 1. Reference wavelengths correlating with plant physiological traits. 

Reference Wavelengths Related Components References 
NDVI (720, 800) LAI, yield [17] 
NDVI (708, 760) Photosynthesis (FPAR) [18] 
NDVI (660, 740) NDVIleaf and NDVIcanopy [31] 

NDVI (680, 800) Plant N concentration; 
Chlorophyll content 

[32] 
[16] 

NDVI (670, 780) Plant N concentration;  
Plant N uptake [33] 

670, 700, 730 nm N, P, S-related [34] 

2.5. Estimation of PI Occurrence through First-Order Differentiation 
The trends of NDVI-based VIs scatter plots were changed along the rice plant devel-

opment, and the quadratic slope always gradually decreased after reaching the reproduc-
tive phase. We assumed that the NDVI might have reached maxima during PI, and there-
fore, the slope would be zero (Figure 2). 

 
Figure 2. Estimation of PI occurrence. When the quadratic slope is equal to zero, the actual determi-
nation of PI was GDDA = 771.3 through dissection, and the estimation of PI was GDDE = 800. 

2.6. Temperature and Growing Degree-Days (GDD) 
Temperature data were obtained from Chishan meteorological station (22°35′ N, 

120°36′ E), which is located approximately 7 km away from experimental site. The GDD 
of “Method 1” as stated by preceding study was selected as a substitution to represent the 
cultivation timing, according to which [35]: 

GDD=∑ [ 
Tmax+ Tmin

2 - Tbase] (2)

where the Tmax and Tmin are the daily maximum and minimum air temperature, and the 
Tbase is the base temperature that was set to 10 °C [8]. 

2.7. Statistical Analysis 
The statistical analysis of the data was done by using Microsoft Excel 2013 (Microsoft 

Corporation, Redmond, WA, USA). The quadratic polynomial regression analysis was 
performed in SigmaPlot 10.0 (Systat Software Inc., San Jose, CA, USA). 

The model was validated by leave-one-out (LOO) cross validation. During the LOO 
process, each group was progressively and alternately held out for model validation, 

Figure 2. Estimation of PI occurrence. When the quadratic slope is equal to zero, the actual determination
of PI was GDDA = 771.3 through dissection, and the estimation of PI was GDDE = 800.

2.6. Temperature and Growing Degree-Days (GDD)

Temperature data were obtained from Chishan meteorological station (22◦35′ N,
120◦36′ E), which is located approximately 7 km away from experimental site. The GDD of
“Method 1” as stated by preceding study was selected as a substitution to represent the
cultivation timing, according to which [35]:

GDD =∑ [
Tmax+Tmin

2
− Tbase] (2)

where the Tmax and Tmin are the daily maximum and minimum air temperature, and the
Tbase is the base temperature that was set to 10 ◦C [8].

2.7. Statistical Analysis

The statistical analysis of the data was done by using Microsoft Excel 2013 (Microsoft
Corporation, Redmond, WA, USA). The quadratic polynomial regression analysis was
performed in SigmaPlot 10.0 (Systat Software Inc., San Jose, CA, USA).

The model was validated by leave-one-out (LOO) cross validation. During the LOO
process, each group was progressively and alternately held out for model validation,
while the remaining groups were used for model construction. The appropriateness of the
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estimation of PI occurrence and prediction of the NDVI-based VIs was tested based on
relative error (RE) values, where:

RE =

√
∑n

i=1 [(Ai− Pi)/ Ai]2

n
× 100% (3)

in which the Ai and Pi are the actual and predicted value of the ith data point and n is the
number of data points. Estimations were considered excellent if RE is <10%, good between
10% and 20%, fair between 20% and 30%, and poor if it is >30% [34,36].

3. Results and Discussion
3.1. PI Determination through Manual Dissection

The PI of each group was observed through manual dissection. The actual determina-
tion of PI for group 1 was 60 DAT (GDD = 771.3 ◦C), group 2 was 56 DAT (GDD = 713.9 ◦C),
group 3 was 57 DAT (GDD = 783.4 ◦C), and group 4 was 55 DAT (GDD = 791.1 ◦C) (Table 2).
Group 1 encountered low temperature during the tillering stage. As a result, the required
DAT of group 1 for PI was five days longer than group 4, which was thoroughly grown
under warm conditions. Besides this, group 2 encountered low temperature before the
tillering stage. Consequently, the required GDD of group 2 for PI was approximately 80◦C
lower than group 4. These biases indicated that the DAT and GDD are both largely affected
by weather variability.

Table 2. Observation of PI in each group.

Group Date DOY DAT GDD (◦C)

1 4 March 2019 63 60 771.3
2 14 March 2019 73 56 713.9
3 29 March 2019 88 57 783.4
4 10 April 2019 100 55 791.1

DOY: day of year; DAT: days after transplanting; GDD: Growing degree day.

3.2. NDVI-Based VIs Selection

All samples were regressed with quadratic polynomial model, as we assumed that the
trend of this model (when the slope is equal to zero) might be correlated with the entrance
of the PI stage. Considering the ability of explanation, NDVI (700, 720), NDVI (700, 730),
NDVI (708, 730), NDVI (660, 760), NDVI (700, 760), NDVI (708, 760), and NDVI (708,
800) were selected by the R2 value that are above 0.7 of quadratic polynomial regression
model (Table 3). On the other hand, all the NDVI-based VIs of groups were stratified,
where the distribution of groups 1 and 2 were lower than groups 3 and 4 (Figure 3A–G).
The reason could be that group 1 encountered low temperature during the tillering stage,
while group 2 encountered low temperature before the tillering stage. A preceding study
indicated that more uniquely expressed proteins were found at 20/12 ◦C (day/night) and
frequently alternating stress/non-stress temperature changes, leading the rice plant to
complex stress conditions [37]. This also indicated that cold stress at an early stage would
have an irreversible impact to rice plants, since the NDVI-based VIs of groups 1 and 2
remained lower than that of groups 3 and 4.
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Table 3. Recombination and selection of NDVI-based VIs from reference wavelengths. The calculation was [(λa − λb)/(λa +
λb)], and the R2 values of quadratic polynomial regression models were recorded.

λb 660 670 680 700 708 720 730 740 760 780 800
λa

660
670 0.24
680 0.31 0.47
700 0.37 0.33 0.38
708 0.51 0.45 0.47 0.57
720 0.62 0.58 0.60 0.71 0.58
730 0.68 0.64 0.65 0.73 0.74 0.55
740 0.67 0.64 0.64 0.68 0.69 0.43 0.29
760 0.71 0.69 0.69 0.73 0.75 0.64 0.68 0.26
780 0.66 0.64 0.64 0.66 0.66 0.43 0.34 0.41 0.00
800 0.67 0.65 0.65 0.68 0.70 0.49 0.43 0.37 0.10 0.10
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3.3. Estimation of PI Occurrence through First-Order Differentiation

The seven NDVI-based VIs were then tested with first-order differentiation in each
group to compare the estimated GDD with the actual GDD of PI occurrence (Table 4).
Due to the excellent estimation of GDDs for PI occurrence (RE < 10%), NDVI (700, 720),
NDVI (700, 730), NDVI (708, 730), NDVI (700, 760), NDVI (708, 760), and NDVI (708,
800) were considered as the suitable NDVI-based VIs for PI determination. Among these
combinations, NDVI (708, 760), which was proposed by Tan et al. (2018), coincidentally had
the lowest RE value (RE = 5.63%) [18]. This indicated that the entrance of the reproductive
phase might have influenced the photosynthetic capacity of the rice plant, such as a lower
rate of crop growth and absorption of photosynthetically active radiation (PAR). The other
suitable combinations of NDVI-based VIs have not been researched in previous studies.
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Table 4. Seven selected NDVI-based VIs were tested by first-order differentiation in each group.

NDVI−Based VIs Equation Estimated GDDs Actual GDDs R2 RE (%)

700, 720

y = −5.52 × 10−7x2 + 0.0008x − 0.161 724.6 771.3 0.77

5.82
y = −4.15 × 10−7x2 + 0.0006x − 0.099 722.9 713.9 0.71
y = −5.40 × 10−7x2 + 0.0009x − 0.160 833.3 783.4 0.85
y = −5.29 × 10−7x2 + 0.0009x − 0.171 850.7 791.1 0.82

700, 730

y = −7.50 × 10−7x2 + 0.0012x − 0.149 800 771.3 0.79

6.29
y = −6.65 × 10−7x2 + 0.0010x − 0.100 751.9 713.9 0.77
y = −7.44 × 10−7x2 + 0.0012x − 0.139 806.5 783.4 0.84
y = −6.30 × 10−7x2 + 0.0011x − 0.125 873 791.1 0.8

708, 730

y = −5.74 × 10−7x2 + 0.0009x − 0.162 784 771.3 0.79

6.23
y = −4.45 × 10−7x2 + 0.0007x − 0.123 786.5 713.9 0.78
y = −5.98 × 10−7x2 + 0.0010x − 0.171 836.1 783.4 0.88
y = −5.16 × 10−7x2 + 0.0008x − 0.165 775.2 791.1 0.84

660,760

y = −1.11 × 10−6x2 + 0.0018x − 0.608 810.8 771.3 0.8

10.38
y = −9.10 × 10−7x2 + 0.0014x − 0.449 769.2 713.9 0.69
y = −9.93 × 10−7x2 + 0.0018x − 0.530 906.3 783.4 0.84
y = −9.20 × 10−7x2 + 0.0016x − 0.522 869.6 791.1 0.8

700, 760

y = −1.03×10−6x2 + 0.0016x − 0.505 776.7 771.3 0.79

6.36
y = −8.88 × 10−7x2 + 0.0013x − 0.435 732 713.9 0.79
y = −1.00 × 10−6x2 + 0.0017x − 0.472 850 783.4 0.86
y = −8.11 × 10−7x2 + 0.0014x − 0.435 863.1 791.1 0.82

708, 760

y = −8.20×10−7x2 + 0.0012x − 0.504 731.7 771.3 0.8

5.63
y = −6.41 × 10−7x2 + 0.0010x − 0.447 780 713.9 0.82
y = −8.20 × 10−7x2 + 0.0013x − 0.491 792.7 783.4 0.89
y = −6.71 × 10−7x2 + 0.0011x − 0.463 819.7 791.1 0.86

708, 800

y = −8.24 × 10−7x2 + 0.0012x − 0.373 728.2 771.3 0.77

5.8
y = −7.27 × 10−7x2 + 0.0011x − 0.341 756.5 713.9 0.78
y = −8.48 × 10−7x2 + 0.0014x − 0.375 825.5 783.4 0.82
y = −5.95 × 10−7x2 + 0.0010x − 0.320 840.3 791.1 0.75

3.4. Leave-One-Out (LOO) Cross-Validation

The leave-one-out cross-validation procedure was subsequently performed to test the
accuracy of the quadratic polynomial regression of NDVI (700, 720), NDVI (700, 730), NDVI
(708, 730), NDVI (700, 760), NDVI (708, 760), and NDVI (708, 800). The LOO regression
line of groups 1, 3, and 4 showed the highest plateau, while groups 1, 2, and 4 the lowest
(Figure 4A–F). Due to the great variabilities of the plateau distribution, neither setting up
an absolute threshold value nor extended the range for the PI occurrence determination
seems to be an ideal method. Although the plateau of regression curve between groups
was different, the trend of the slopes was relatively similar. This was in agreement with
preceding research [38]; however, the plateau of the curve in this study was different,
which was at the PI stage rather than the booting-heading stage. The stability between
the trend of the slopes and PI occurrence were tested through first-order differentiation
in the leave-one-out cross-validation model. The results showed that NDVI (700, 720)
was the most reliable NDVI-based VIs for PI determination since it had the lowest RE
value (RE = 4.9%). A previous study represented NDVI application on wheat phenology
monitoring and obtained satisfying results that achieved the lowest error of 4.61 days
during the jointing stage [39]. Our study performed a slightly better approach with the
application of NDVI (700, 720) with a quadratic polynomial regression model, which
represented a maximum error of 68.9 GDDs (approximately three days) (Table 5). The
others, NDVI (700, 730), NDVI (708, 730), and NDVI (708, 800), are potential candidates that
are competent for PI assessment (Table 5). At this point, the relationship between NDVI-
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based VIs and PI occurrence could be confirmed through the first-order differentiation of
quadratic polynomial regression model.
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which was at the PI stage rather than the booting-heading stage. The stability between the 
trend of the slopes and PI occurrence were tested through first-order differentiation in the 
leave-one-out cross-validation model. The results showed that NDVI (700, 720) was the 
most reliable NDVI-based VIs for PI determination since it had the lowest RE value (RE = 
4.9%). A previous study represented NDVI application on wheat phenology monitoring 
and obtained satisfying results that achieved the lowest error of 4.61 days during the joint-
ing stage [39]. Our study performed a slightly better approach with the application of 
NDVI (700, 720) with a quadratic polynomial regression model, which represented a max-
imum error of 68.9 GDDs (approximately three days) (Table 5). The others, NDVI (700, 
730), NDVI (708, 730), and NDVI (708, 800), are potential candidates that are competent 
for PI assessment (Table 5). At this point, the relationship between NDVI-based VIs and 
PI occurrence could be confirmed through the first-order differentiation of quadratic pol-
ynomial regression model. 
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Figure 4. Leave-one-out cross-validation of the six selected PI-related NDVI-based VIs: (A) NDVI (700, 720); (B) NDVI (700,
730); (C) NDVI (708, 730); (D) NDVI (700, 760); (E) NDVI (708, 760); and (F) NDVI (708, 800). The black line is the validation
of group 1, the red line is the validation of group 2, the green line is the validation of group 3, and the yellow line is the
validation of group 4.
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Table 5. Leave-one-out cross-validation of the six selected PI-related NDVI-based VIs by first-order differentiation.

NDVI−Based VIs Equation Estimated GDDs
Actual

R2
RE

GDDs (%)

700, 720

y = −4.51 × 10−7x2 + 0.0007x − 0.131 776.1 771.3 0.7

4.9
y = −5.11 × 10−7x2 + 0.0008x − 0.157 782.8 713.9 0.77
y = −4.51 × 10−7x2 + 0.0007x − 0.130 776.1 783.4 0.73
y = −4.37 × 10−7x2 + 0.0007x − 0.124 800.9 791.1 0.68

700, 730

y = −6.18 × 10−7x2 + 0.001x − 0.107 809.1 771.3 0.72

9.08
y = −6.6 × 10−7x2 + 0.0011x − 0.127 833.3 713.9 0.77
y = −6.08 × 10−7x2 + 0.001x − 0.107 822.4 783.4 0.75
y = −6.40 × 10−7x2 + 0.001x − 0.111 781.3 791.1 0.71

708, 730

y = −4.83 × 10−7x2 + 0.0008x − 0.143 828.2 771.3 0.74

5.76
y = −5.26 × 10−7x2 + 0.0008x − 0.157 760.5 713.9 0.78
y = −4.64 × 10−7x2 + 0.0007x − 0.137 754.3 783.4 0.77
y = −4.83 × 10−7x2 + 0.0008x − 0.139 828.2 791.1 0.72

700,760

y = −8.19 × 10−7x2 + 0.0014x − 0.430 854.7 771.3 0.73

12.3
y = −8.65 × 10−7x2 + 0.0015x − 0.453 867.1 713.9 0.76
y = −7.98 × 10−7x2 + 0.0013x − 0.433 814.5 783.4 0.76
y = −8.55 × 10−7x2 + 0.0014x − 0.445 818.7 791.1 0.71

708, 760

y = −6.59 × 10−7x2 + 0.0011x − 0.456 834.6 771.3 0.76

11.03
y = −7.00 × 10−7x2 + 0.0012x − 0.471 857.1 713.9 0.77
y = −6.28 × 10−7x2 + 0.001x − 0.453 796.2 783.4 0.78
y = −6.7 × 10−7x2 + 0.0011x − 0.461 820.9 791.1 0.72

708, 800

y = −6.61 × 10−7x2 + 0.0011x − 0.333 832.1 771.3 0.7

7.46
y = −6.87 × 10−7x2 + 0.0011x − 0.342 800.6 713.9 0.72
y = −6.26 × 10−7x2 + 0.0010x − 0.326 798.7 783.4 0.73
y = −7.17 × 10−7x2 + 0.0011x − 0.345 767.1 791.1 0.69

4. Conclusions

This study revealed the relationship between rice panicle initiation and NDVI-based
VIs by the first-order differentiation of quadratic polynomial regression. The results showed
that NDVI (700, 720), NDVI (700, 730), NDVI (708, 730), NDVI (700, 760), NDVI (708, 760),
and NDVI (708, 800) are potential candidates to determine PI stage. Although the observed
values had great variabilities between groups, the trend is stable—when the population of
the target reached their plateau of NDVI-based VIs distribution, PI occurred. Due to the
synchronistic correlation between PI and plateau of the trend, the PI estimation might be
achieved through determining the increasing proportional of saturated values of NDVI-
based VIs. Cooperating with the UAV-mounted multispectral or hyperspectral camera and
pixel-based analysis of the region of interest, NDVI-based VIs could be a useful indicator
to assess rice plant PI stage, thus optimizing the management of fertilization practice.
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