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Abstract: Rebars corrosion phenomena can modify the structural behaviour of reinforced concrete
(RC) members and consequently the seismic performance of RC structures. Since many existing
RC structures are affected by this phenomenon, the influence of the reinforcement corrosion on the
seismic performance is still under examination, especially when the corrosive attack is localized in
the dissipative areas of the plastic hinges. In this work, the effect of localized corrosion is numerically
investigated, through the adoption of a suitable finite element model, object of validation with the
outcomes of an experimental campaign carried out in the Laboratory of the University of Rome “Tor
Vergata”, on un-corroded and corroded RC columns subjected to axial load and cyclic horizontal
actions. Particular attention has been paid to the definition of the three-dimensional model and to
the modelling of the corroded rebars and their corrosion morphology. Indeed, different modelling
strategies are proposed with the aim to properly simulate the cyclic behaviour of the corroded
columns. The main results show how more refined strategies taking into account the morphological
aspects of the corrosion phenomenon produce a better fit with the experimental results for both
Damage Control and Life Safety limit states performance.

Keywords: RC corroded columns; localised corrosion; numerical analyses; modelling strategies;
cyclic actions

1. Introduction

Reinforced concrete (RC) columns play a fundamental role on the seismic performance
of the concrete structure, as they represent its main force-transmitting element. One of the
major degradation causes of RC structures consists in the steel reinforcement corrosion, as
witnessed by recent cases worldwide, especially when the corrosive attack is localized in
the dissipative areas of the plastic hinge and pitting phenomena occur. Steel bars in concrete
are naturally exposed to a high pH environment, which allows the formation of a protective
passivating film. As a consequence of a decrease of the pH value or of a high concentration
of chloride ions, this protective film can undergo to a disruption, causing the trigger of
the corrosion process of the steel reinforcement. In presence of localized concentrations
of chlorides, pitting corrosion of the steel bars occur, with a localized reduction of the bar
section through pits, affecting its internal layers. These phenomena represent a cause of
concern for several RC buildings, particularly when low strength concrete is used. Besides
the obvious reduction of the resistant section, a reinforcement ductility reduction can take
place [1,2]. The formation of expansive corrosion products induces concrete cracking and
high stresses, affecting the bond behaviour between concrete and steel bars [3–6].

These phenomena can cause severe damages leading to structural unexpected crisis
and to failure mechanisms of corroded structures very different from the ones of new or
sound constructions.

Therefore, it is fundamental to examine the effect of the corrosion damage, for a
proper assessment of the seismic capacity of RC columns. Since several RC structures have
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nowadays an age close to, or higher than, their design life, this aspect is becoming a worthy
issue, with the need to be clearly underlined and codified, starting from the analysis of
actual structural cases, experimental and theoretical research [7–13].

The interest in the evaluation of the influence of corrosion on the cyclic behaviour of
RC column is witnessed by the many experimental studies available in literature, carried
out for example on columns characterized by square [14–18] and circular [19] cross sections,
and RC moment-resisting frame [20]. In general, the experimental studies show a reduction
in ductility and load-bearing capacity of RC columns, with increasing corrosion of the
steel rebars.

Consequently, in recent years, several modelling approaches for the numerical assess-
ment of the cyclic behaviour of RC columns subjected to corrosion of steel reinforcement
have been proposed, in order to progressively investigate the numerous involved parame-
ters. In [21] fiber-based models carried out with Opensees are used to numerically predict
the cyclic behaviour of RC hollow bridge piers with corroded rebars, showing a reduction
of strength, secant stiffness and energy loss due to corrosion. In [22] a multi-layered shell
Finite Element (FE) model based on the fixed crack approach is used to consider the cor-
rosion effects on RC elements subjected to cyclic loadings, in order to calibrate correction
coefficient for the ultimate rotational capacity prediction, also in presence of buckling.
In [23] some of the authors proposed a three-dimensional (3D) FE model accounting for
steel corrosion and interface decay, highlighting the onset of peculiar mechanism related to
the buckling of the corroded rebars. A 3D non-linear FE approach is also used in [24], in
which the behaviour of corroded RC columns under seismic loading is studied through
a parametric numerical investigation on 240 RC columns, to assess the influence of the
several involved parameters in the lateral load resistance and ultimate drift capacity. In [25]
a FE model is developed and validated using the results obtained from three different sets
of experimental tests available in literature and used to investigate the effect of localised
and uneven distribution of corrosion on the cyclic response of RC columns, showing the
pitting influence on the plastic hinge length.

However, according to recent guidelines [26], the prediction of the bearing capacity of
RC elements affected by reinforcement corrosion can be made with simplified approaches,
based on the reduction of the steel area. It is worth to highlight that these methodologies
could be suitable for predicting the load bearing capacity of the RC element but could
be misleading in the evaluation of the local and global ductility, significantly affected
by corrosion.

Aim of the paper is the development of a numerical model for the evaluation of the
influence of localized corrosion on the cyclic behaviour and failure modes of RC columns.
The paper follows and completes previous research developed by some of the authors
in experimental [15] and numerical [21] way, on the influence of the corrosion of the
longitudinal rebars on the cyclic response of column specimens.

Indeed, a numerical model is developed, able to catch and highlight all the phenomena
occurring in elements characterized by localised corrosion, under cyclic loads, paying much
care in the definition of the 3D model and in the simulation of the rebar corrosion. To this
aim, different modelling strategies (MS) are adopted, respectively based on: reduction of
constitutive law by uniform or pitting corrosion; bar discretization and section reduction;
bar discretization and morphology based constitutive law reduction. The described models
are validated through a comparison with the results of experimental tests developed at the
Laboratory of the University of Rome “Tor Vergata” on four full-scale square RC columns
subjected to cyclic loads and characterised by localised rebar corrosion [27].

The reference experimental survey on the four full-scale RC columns, cast and tested
under cyclic load is presented in Section 2. The column geometry, the details of the
artificial corrosion process of the steel reinforcement, and the cyclic loading system are
here presented. The main outcomes of the performed tests are outlined, in terms of
effective corrosion amount and morphology evaluated after the tests and in terms of
load-horizontal displacements graphs. Section 3 is devoted to the description of the
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developed numerical models, with particular reference to the definition of the geometry of
the specimen, boundary conditions, material properties (concrete and steel reinforcement)
and load patterns. As previously described, different strategies are proposed and compared
for the modelling of the corroded reinforcement. The section ends with a description of the
modelling of the bond between reinforcement and concrete and of the expectations about
results, on the basis of the visual inspection and morphological study of the reinforcement.
In Section 4 the results of the performed numerical analysis are shown, with reference to
un-corroded and corroded elements, to outline the pros and cons of the different modelling
strategies to study the effect of non-uniform steel rebars corrosion on the cyclic behaviour
of RC columns. Finally, in Section 5 the main findings are summarized, underlining the
sharp effect of localised corrosion on the structural behaviour and failure mode of RC
columns and the importance to perform cyclic analysis for existing structures subjected to
decay phenomena.

2. Reference Experimental Survey

The reference experimental survey was performed at the Laboratory of the University
of Rome “Tor Vergata”, where four RC columns were cast and tested [27]. The specimens,
with a height of 1800 mm and a 300 mm × 300 mm square section, were reinforced with
four Φ16 mm longitudinal bars (Figure 1a). Two spacing values, equal to 250 mm and
300 mm, of the closed Φ8 mm stirrups were considered. The concrete cover was equal to
30 mm. The elements were cast on a 1500 mm × 750 mm × 500 mm foundation (Figure 1a).
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Figure 1. (a) Column geometry; (b) artificial corrosion process.

For each of the two considered stirrups spacing, one column was kept un-corroded
for reference (A), while a second one was subjected to a process of artificial corrosion of
the steel reinforcement (B) at the column base. A 3% saline solution was contained in a
PVC Ø500 mm pipe, placed around the column and fixed to the foundation, up to a height
of about 600 mm from the foundation extrados (Figure 1b). The longitudinal rebars were
connected to the positive pole of the power supply (anode), while a Ø10 diameter steel bar,
placed inside the PVC pipe, acted as the cathode. A current intensity equal to 0.05 A for
each bar was adopted. Table 1 shows the layout of the experimental program.
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Table 1. Layout of experimental program.

Specimen Stirrups Spacing Corrosion

A25
250

-
B25 �
A30

300
-

B30 �

The effective corrosion amount and morphology were evaluated after the tests, by
extracting the steel rebars from the specimens B25 and B30, characterised by stirrup spacing
of 250 mm and 300 mm, respectively. Both the longitudinal and transversal reinforcements
were corroded, and a sharp localization of the corrosive attack took place. In particular,
even if the mass loss was about 24% in both the specimens, deep pits were observed in the
longitudinal bars up to a diameter reduction of more than 30% in the specimen B25, and
up to 50% in the column B30. The corrosion morphology played a fundamental role in
defining the failure mode, as highlighted in the following.

The test set-up is shown in Figure 2. An axial load equal to 300 kN was applied
to the top column with a self-balanced system and with two high strength rebars, each
one connected to a hydraulic jack. After the axial load application, a cyclic horizontal
displacement history, with increasing amplitude, was imposed at a height h from the
foundation extrados equal to 1.5 m, up to the failure. To this aim, an electro-mechanical
jack was fixed to the load frame of the laboratory and linked to the column employing a
hinged bar system, in which a load cell was placed. The loading history consisted of three
complete cycles, for different values of the column drift, defined as the ratio between the
horizontal displacement δ at the load application point and the height h.
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Figure 2. (a) Scheme of Test set-up; (b) test set-up.

The experimental results in terms of load-horizontal displacements are summarised
in Figure 3a, with reference to the columns A25 and B25, and in Figure 3b for specimens
A30 and B30. In both cases, a decrease of the maximum load of about 30% was measured.
A great influence of the corrosion can be observed in the shape of the cycle and then in the
ductile behaviour of the elements. Mainly with reference to specimen B30 (sharply affected
by very localised corrosion), the pinching effect can be clearly appreciated, due to the onset
of brittle mechanisms. Further details can be found in [27].
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Figure 3. Experimental test results; (a) un-corroded A25-corroded B25 specimens; (b) un-corroded A30-corroded B30 specimens.

3. FEM Model

Non-linear numerical analyses are performed with the FEM code DIANA 10.5 (2021),
to obtain a reliable predictive model for the cyclic behaviour of corroded RC columns. In
this section, the geometry of the specimen, the boundary conditions, the material properties
and the load patterns, all assumed in agreement with the experimental tests, are presented.

3.1. Geometry, Element Assumption and Analysis

The numerical model is shown in Figure 4a. The considered reference system is super-
imposed in the same figure. Concrete elements are modeled with the eight-node structural
solid element. Through a mesh generator, a desired element size of 50 mm for the column
concrete core and the concrete cover is considered, while a size of 100 mm is set for the
foundation concrete. The longitudinal reinforcement is modeled as truss bond-slip rein-
forcement, while the columns transverse reinforcement and the foundation reinforcement
are modeled as embedded reinforcement. The “element by element” discretization method
is used for reinforcement. In Figure 4b the casting position of the corroded reinforcements,
together with the load direction x, is shown.
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Regarding the boundary conditions, translational restraints in the orthogonal direction
to the base and side faces of the foundation are applied, to simulate the foundation clamping
provided during the experimental test. A translational restraint at the column top and
along the load direction is modeled to perform a displacement control non-linear cyclic
analysis. Therefore, a tying constraint for the nodes of the cross-section at the load height
is applied to impose the equality of the x-component of the displacement.

The non-linear structural analyses are performed by applying in a first phase the
axial load of 300 kN at the top of the column, then the displacement histories shown in
Figure 4c is applied in accordance with experimental tests (up to 3.5% Drift for un-corroded
specimens and up to 1.5% drift for corroded specimens). The structural non-linear analyses
are performed using a regular Newton-Raphson iterative method for the solution of the
non-linear equation set (imposing 20 maximum number of iterations for step) with a
convergence norm based on displacement and force (convergence tolerance is assumed
equal to 0.01).

3.2. Concrete Modelling

The concrete elements are modeled through the Total Strain Crack Model (TSCM)
theory [28,29], considering a rotating cracks orientation. The compressive behaviour of
concrete is modeled according to the parabolic curve, based on the fracture energy [30,31].
The compressive strength was assumed equal to 20 MPa, in agreement with the exper-
imental test results. The concrete Elastic Modulus and the compressive fracture energy
are derived from the compressive strength as indicated in [32]. The concrete stress con-
finement was considered by adopting the model proposed in [29], through a pre-strain
concept in which the lateral expansion effects are accounted for with an additional external
loading on the elements. The concrete tensile behaviour is modeled with the exponential
softening law. The tensile strength and the Mode-I fracture energy are calculated as a
function of the compressive strength according to [32]. The crack bandwidth in agreement
with [33] is evaluated as the cube root of the element’s volume. The cracking and spalling
of the concrete cover due to corrosion products are considered by reducing the concrete
cover compressive strength in accordance with [10], in which the model proposed by [28],
based on the average tensile strain in the transverse direction, is used. As regards the
cyclic behaviour, it is to remark that the TSCM is characterized by a secant unloading in
both compression and tension [30], and then the contribution to the energy dissipation of
the concrete could be slightly underestimated. Nevertheless, this model was chosen and
adopted in the numerical simulation for its stability and reliability in non-linear analyses.

3.3. Steel Reinforcement Modelling

The steel reinforcement has been simulated with the isotropic non-linear constitutive
model of Menegotto and Pinto [34]. The constitutive-model parameters were calibrated on
the results of tensile tests on the reinforcements used in previous experimental tests made
by some of the authors [15]. The model parameters for the un-corroded reinforcement are
shown in Table 2. With reference to the corroded reinforcement, one of the goals of this
work is to propose and compare different modelling strategies, presented below.

Table 2. Un-corroded steel reinforcement Menegotto-Pinto parameters.

Steel Esteel Density fyielding b0 R0 A1 A2 A3 A4

MPa kN/m3 MPa - - - - - -
B450C 210,000 78 520 0.0062 20 18.5 0.15 0.01 7

3.3.1. Corroded Rebars of the Experimental Test

To better understand the effect of both corrosion localization and pitting phenomenon,
particular attention was paid to the morphology of the corroded reinforcements. Following
the experimental tests, the pieces of the bars subjected to artificial corrosion (i.e., those in
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the plastic hinge regions) were extracted from the concrete and cleaned of the excess rust to
evaluate their mass loss and their corrosion morphology (Figures 5 and 6 for the corroded
specimens B25 and B30, respectively). The steel rebars are named according to Figure 4b.
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The average loss mass of each bar was calculated by weighing the specimens, as
summarized in Table 3. It is worth noting that the asymmetrical cyclic behaviour of the
column B30 (Figure 3b) is due to the difference in the mass loss values of the bars, strongly
corroded on a side and moderately corroded on the other (Table 3 and Figure 4).

Measurements of the bars’ cross-section minimum diameter, carried out repeatedly
along the length of the bars, were performed. These measures are useful for the morphology
evaluations, characterizing the modelling strategies 3 and 4 presented in this section.
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Table 3. Weight and loss mass value of the corroded steel rebars.

Column Bar Lenght Un-Corroded Weight Corroded Weight Mloss%

[mm] [g] [g] -

B-25

1-2 705 1114 840 25%
2-3 698 1103 810 27%
3-4 710 1122 835 26%
4-1 710 1122 920 18%

B-30

1-2 700 1106 750 32%
2-3 696 1100 900 18%
3-4 700 1106 915 17%
4-1 696 1100 760 31%

3.3.2. Modelling Strategy 1: Reduction of Constitutive Law by Uniform Corrosion

The steel constitutive law is broken down according to [35], in which the degradation
relationships for uniform corroded steel rebars are proposed. The reduction of the constitu-
tive parameters occurs for each bar, as a function of the actual mass loss (Table 3). In this
way, only the portions of the longitudinal reinforcements subjected to corrosion, i.e., the
plastic hinge regions, are modeled with a reduced constitutive laws. Table 4 shows the
mechanical parameters reduction for modelling strategy 1.

Table 4. Mechanical parameter reduction for modelling strategies 1 and 2.

Column Bar Mloss% fy,uniform εy,uniform fy,pitting εy,pitting

- MPa - MPa -

B-25

1-2 25% 334 0.16% 261 0.12%
2-3 27% 319 0.15% 240 0.11%
3-4 26% 326 0.16% 250 0.12%
4-1 18% 386 0.18% 333 0.16%

B-30

1-2 32% 281 0.13% 188 0.09%
2-3 18% 386 0.18% 333 0.16%
3-4 17% 393 0.19% 344 0.16%
4-1 31% 289 0.14% 198 0.09%

3.3.3. Modelling Strategy 2: Reduction of Constitutive Law by Pitting Corrosion

The second modelling strategy, in analogy with the first, provides for the reduction of
the steel constitutive law, but in this case considering the phenomenon of pitting corrosion.
Pitting causes localized section reductions in the bar through pits, affecting internal layers
of the steel bar and further reducing the strength and ductility of the reinforcement. Again
in [35], the degradation relationships for pitting corrosion from literature review data
are presented. Table 4 shows the assumed mechanical properties according to modelling
strategy 2 for both corroded specimens.

3.3.4. Modelling Strategy 3: Bar Discretization and Section Reduction

The “macro-morphology” of the reinforcing bars is considered in the third modelling
strategy. In this case, the measurements of the minimum diameter along each corroded bar
developed during the experimental tests, are exploited to discretize the bar in pieces over
its corroded length. Therefore, an equivalent section is considered for each piece identified.
It should be noted that the diameter measurement of bars deformed by test loads, due
to yielding or distortion, is omitted from the discretization process. The longitudinal bar
is then modeled through connected in series truss bond-slip reinforcement elements, to
which a reduced section diameter is assigned. It is remarked that through this strategy no
direct reductions are applied on the constitutive laws of the reinforcements.
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3.3.5. Modelling Strategy 4: Bar Discretization and Morphology-Based Constitutive
Law Reduction

Strategy 4 accounts for both the “macro-morphological” aspects, i.e., the variation of
corrosion along with the reinforcement, and the “micro-morphological” aspects, i.e., pitting
on the cross-section of the bar. The morphology of the bars’ cross-section is considered
using the model proposed by Val and Melchers [36], summarized in Figure 7, in which the
maximum penetration is linked to the net sectional area of the corroded bar, considering a
hemispherical form of pits.
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Then an inverse method was used to iteratively search the “pitting factor” R
(i.e., maximum vs. average penetration ratio) of each bar (Figure 8). Firstly an initial
guess value for the “pitting factor” is assumed and, considering the measured maximum
penetration of the corroded sections of the bar, the mass loss value for each piece of the
corroded bar is evaluated through the Val and Melchers model [36] with Equations (1)–(3).
The “calculated mass loss” of each bar is evaluated as the weighted average on the length
of each bar piece. If this parameter is equal to the experimental mass loss measured after
the tests, the “pitting factor” is then determined. Otherwise, a new “pitting factor” guess
value is set in the iterative procedure, until the satisfaction of the check test.

Following this procedure, the influence of the pitting phenomenon has been evaluated
for each bar and then the loss mass value assigned to each section of the bar has been
optimized according to the pitting factor. In order to significantly compare the numerical
results, the same discretization along the bars adopted in the strategy 3 was also applied in
this case. Tables 5 and 6 summarize the results obtained with the methodology previously
described for all corroded bars, relating to specimens B25 and B30 respectively.
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Table 5. Pitting factor and lost mass assumed for strategy 4, column B25.

Column Bar Measured Mloss% Pitting Factor Piece Lenght Piece Mloss%

[mm]

B-25

1-2 25% 1

115 27%
200 14%
30 40%

285 16%
70 40%

2-3 27% 1

22.5 12%
52.5 40%
300 29%
200 15%
115 35%

3-4 26% 1
20 12%

250 40%
430 14%

4-1 18% 1
275 13%
300 5%
125 22%

Figures 9 and 10 resume the modelling assumptions made for the “macro-morphology”
and “micro-morphology”, respectively. Indeed, the bars’ discretization is shown through
the comparison between measured diameter and assumed diameter. Furthermore, the
results of the morphology-based mass loss evaluation are reported through a comparison
between the measured mass loss and the assumed mass loss. In these figures, the 0 cm
progressive distances of the bar correspond to the column-foundation interface, while
the progressive 70 cm corresponds to the top of the corroded bar piece. The longitudinal
reinforcement is then modeled through connected in series truss bond-slip reinforcement
elements, to which reduced constitutive laws are also set, according to [35] in the case of
uniform corrosion, as a function of the calculated loss mass of each bar piece.
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Table 6. Pitting factor and lost mass assumed for strategy 4, column B30.

Column Bar Measured Mloss% Pitting Factor Piece Lenght Piece Mloss%

[mm]

B-30

1-2 32% 2.6

155 25%
200 40%
80 28%

135 40%
120 20%

2-3 18% 6.5

275 11%
65 24%

150 11%
135 40%
65 15%

3-4 17% 5.9

210 11%
215 21%
85 15%
65 31%

115 12%

4-1 31% 4.8
575 35%
115 15%
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3.4. Bond Modelling

The bond between reinforcement and concrete is modeled according to [32], consider-
ing splitting failure and good bond conditions. The differences in the bond laws between
the two un-corroded specimens are considered by the different confinement effects given
by the stirrups. The expansion of corrosion oxides and the cracking of the concrete cover
have a deterioration effect on the bond. Several experimental studies and analytical for-
mulations are available in the literature for the evaluation of the bond between concrete
and corroded bars [4,37–39]. In this paper, the law proposed by [40], based on regression
analyses of experimental data is adopted for the bond degradation as a function of the
corrosion penetration. The model accounts for the amount of transverse reinforcement
and predicts the residual bond strength, in relationship to either corrosion penetration or
surface crack width. These analyses refer to medium-low corrosion levels, i.e., corrosion
penetration up to 0.5 mm. In fact, when the corrosion increases, the bond is reduced until
the collaboration between steel and concrete is almost negligible. For this reason, beyond a
penetration value equal to 1 mm, a perfect plastic frictional bond behaviour with a bond
strength value equal to 0.1 MPa [41,42] is considered. In Figure 11 an example of the bond
law reduction assumed for the bars of corroded specimens is presented. As regards the
unloading/reloading behaviour, the model unloads with a linear stiffness, that is equal to
the initial stiffness, until the opposite residual stress value is reached. This stress value is
kept until the back-bone curve in the opposite direction can be picked up [30].
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3.5. Expectations about Results

Based on the visual inspection of the reinforcement (Figures 5 and 6) and of the pitting
factors R identified through the morphological study described in the previous section
(Tables 5 and 6), it is highlighted that the pitting phenomenon is more pronounced for
specimen B30. Vice versa specimen B25 shows a rather uniform corrosion morphology.
Based on this evidence, the following authors’ expectations for the B25 specimen are made:

• Modelling strategy 1 could be suitable for capturing the ultimate behaviour of the
specimen, while for the pre-yield behaviour there could be some differences with the
real response, as an average loss mass value is considered and the influence of the
corrosion localization is neglected.

• Modelling strategy 2 should underestimate the capacity of the specimen since the
degradation relationships for pitting are too severe in the case of uniform corrosion,
as for specimen B25.

• Modelling strategy 3 should improve the result of strategy 1 since the section reduction
that is modeled is intrinsically a uniform reduction. Furthermore, considering the
geometry of the bar along its length and the relative bond degradation, the stresses in
the reinforcement and at the concrete interface should be better understood.

• Modelling strategy 4, which is assumed to be the most complete, should provide
the best results, in fact, even if the morphological study did not show strong pitting
phenomena, the reduction of the constitutive law is still more refined than the section
reduction, as the microscopic effects of corrosion on the bars are considered.

Otherwise, for the B30:

• Modelling strategy 1 should overestimate the ultimate behaviour of the experimental
test since medium-high pitting factors were detected for the specimen. Furthermore,
it is believed that the results related to the post-cracking behaviour could not be able
to provide reliable predictions, since average values of loss mass are used.

• Modelling strategy 2 should better fit the experimental response, with particular
reference to the ultimate behaviour, since specific regressions for pitting corrosion
are used.

• Modelling strategy 3 should not be suitable for pitting. In particular, the numerical
solution could diverge from the real one as the pitting factor could be not representa-
tive of the actual condition. Indeed, since the assumption on the section reduction is
intrinsically uniform and based on the minimum diameter, generally, the rebar area
introduced in the numerical model could be lower than the actual one.

• Modelling strategy 4 should provide better results also in the case of pitting corrosion
since the evaluation of the loss mass of each section of the bar is calibrated with the
morphological model.



Appl. Sci. 2021, 11, 9761 14 of 22

4. Results
4.1. Un-Corroded Specimens

The results of the non-linear numerical analyses, relating to the un-corroded speci-
mens, are shown in Figure 12.
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As regards column A25, the main results in terms of load capacity and drift at the
maximum capacity are in perfect agreement with the experimental results, as shown in
Table 7. For column A30, even if it was not possible to catch the slight asymmetry of the
cyclic behaviour, the results of the numerical analyses, reported in Table 7, can be considered
satisfactory. Overall, the force-drift cyclic curves obtained through the numerical model
show a good fit with the experimental results. The goodness of the results in terms of
capacity, displacement, and energy dissipation means that the numerical model is validated
by the experimental test and that it represents a reliable base for evaluations regarding the
modelling of corroded bars and their effect on the cyclic behaviour of the columns.

Table 7. Main results of un-corroded specimens, experimental vs. numerical.

Specimen Max. Load (+) Drift at Max. Load (+) ∆load (+) Max. Load (−) Drift at Max. Load (−) ∆load (−)

kN kN

A25
Exp. 59.2 1.51% −4.10%

−60.7 −1.83% −6.18%Num. 56.8 1.30% −56.9 −1.73%

A30
Exp 63.7 2.94% −11.97%

−58.7 −1.85% −3.75%Num 56.0 1.43% −56.5 −1.43%

4.2. Corroded Specimen

In this section, the numerical results of corroded specimens, with reference to each
of the considered modelling strategies, are reported and compared with the reference
experimental tests (Section 2). In Tables 8 and 9 the main results for the different modelling
strategies are summarized respectively for columns B25 and B30, in terms of maximum
load, drift at the maximum load, and percentage difference of the numerical load capacity
with respect to the experimental one.



Appl. Sci. 2021, 11, 9761 15 of 22

Table 8. Main results of corroded specimens B25, experimental vs. numerical.

Specimen Max. Load (+) Drift at Max.
Load (+) ∆load (+) Max. Load (−) Drift at Max.

Load (−) ∆load (−)

kN kN

B25

Experimental 43.96 0.78% −38.42 −1.00%
MS-1 40.85 1.17% −7.07% −40.47 −1.10% 5.33%
MS-2 38.58 1.10% −12.25% −36.20 −1.03% −5.76%
MS-3 42.99 1.00% −2.20% −37.39 −0.011 −2.68%
MS-4 42.77 0.80% −2.70% −37.53 −1.30% −2.32%

Table 9. Main results of corroded specimens B30, experimental vs. numerical.

Specimen Max. Load (+) Drift at Max.
Load (+) ∆Load (+) Max. Load (−) Drift at Max.

Load (−) ∆Load (−)

kN kN

B30

Experimental 41.65 0.88% −42.00 −0.75%
MS-1 40.76 0.93% −2.12% −46.15 −1.23% 9.88%
MS-2 36.33 0.67% −12.76% −43.82 −1.03% 4.32%
MS-3 31.51 1.00% −24.34% −35.76 −1.10% −14.87%
MS-4 38.64 0.87% −7.22% −42.11 −1.17% 0.25%

4.2.1. Modelling Strategy 1

It is worth reminding that in this strategy the constitutive laws of steel are reduced
as a function of the loss mass, that was measured directly on the bars, following the
experimental tests. The numerical results, compared with the experimental ones, are
reported in Figure 13.
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The cyclic behaviour, characterized by pinching, is well-caught thanks to the bond re-
duction, which in the loading and unloading phase reduces the collaboration between steel
and concrete. The latter aspect, however, in a modelling strategy that does not consider the
variation of the section along the bar, leads to excessive slip of the bars with the consequent
over-estimation of the yield drift. The crack patterns obtained through numerical simula-
tions are in good agreement with the experimental observations, with the formation of base
cracks that open and close during the cycles as shown below. This crack is precisely due
to the bond losses and reinforcement sliding, which also reduces the energy dissipation.
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Similar comments can be drawn for column B30: a good approximation of the ultimate
load, but a poor prediction of the pre-yield behaviour are found. Furthermore, given the
reduction of the mechanical properties due to uniform corrosion, an overestimation of the
capacity was expected for the column with pitting phenomenon, as B30. As a matter of
fact, this outcome is obtained in the negative load direction only. The main results for the
numerical cyclic behaviour of modelling strategy 1 are reported in Tables 8 and 9.

4.2.2. Modelling Strategy 2

In this case, the constitutive law of the reinforcement rebars was reduced with the
pitting corrosion degradation relationship as a function of the mass lost by the reinforce-
ment. The numerical cyclic responses for specimens B25 and B30 are reported in Figure
14a, b respectively. Results for B25, reported in Table 8, showed an incorrect prediction of
the cyclic behaviour. Neither the ultimate behaviour nor the one preceding the reinforce-
ment yielding are accurately captured and the cyclic dissipation is underestimated. All
these results were expected since the reduction of the bond by pitting is too severe for a
column that has shown signs of roughly uniform corrosion. The analyses for specimen B30
are not entirely satisfactory. In fact, for this column, which is most affected by pitting, a
good fit with the ultimate behaviour was expected. Instead, the numerical result slightly
underestimates the experimental one in the positive load direction, while in the negative
direction a good fit is obtained. This result may be acceptable since the degradation re-
lationships for pitting used in [35] are made by data regression on several experimental
campaigns, therefore a slightly lower reliability of the results is attended when the bars are
heavily corroded (i.e., positive load direction). As regards the cyclic behaviour, the same
considerations made for specimen B25 apply. This outcome demonstrates/confirms that in
case of localization of corrosion in the bar, assuming an average value of mass loss for the
whole bar can be misleading and can lead to results different from the real behaviour in
the pre-yielding stage.
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4.2.3. Modelling Strategy 3

In this strategy, every single corroded bar was modeled with connected in series
truss bond-slip elements, having attributed to each one an equivalent section based on
the measurements performed directly on the bar. The numerically predicted behaviours
for specimens B25 and B30 are reported in Figure 15. The main results are listed in
Tables 8 and 9 respectively.
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It can be noted that for specimen B25 the results of the numerical analyses improve
if compared to the two previous modelling strategies. A better fit of the post cracking
behaviour is identified. Indeed, if the bar is discretized in pieces and constitutive law and
bond law are assigned to each part, the stresses in the bar and at the interface with the
concrete are better predicted. Furthermore also cyclic dissipation and crack patterns are
better described than in previous strategies.

As expected, the result of specimen B30 excessively underestimates the observed
experimental response. This outcome was predictable since the section reduction was
based on the minimum measured diameter, neglecting the actual pitting morphology
(Figure 7). In any case, the results of the numerical analysis, even if they are not able
to validate this model for the pitting, confirm that column B30 is affected by the pitting
phenomenon and what emerged from the morphological analysis reported in Section 3.

4.2.4. Modelling Strategy 4

The aim of strategy 4 is the modelling of the phenomenon as detailed as possible,
considering both the corrosion localization along the bar (macro-morphology) and the
corrosion morphology in the cross-section of the bar (micro-morphology). The benefits in
terms of fitting the numerical curves emerge from the comparison with the experimental
results (Figure 16). About the B25 column, it can be noted that the behaviour in the post-
cracking phase has been improved. In fact, both the capacity and the drift for which
the first crack and the yielding of the reinforcements occur are captured. Likewise, the
ultimate behaviour of the column has been correctly identified. The cyclic dissipation is in
agreement with the experimental results, as well as the cracking pattern as shown below.
The latter is, also in this case, governed by the formation of the main crack at the base of
the column, in which the reinforcements, given the reduction of the bond, slide exchanging
minimum stresses with the concrete. This aspect is found in the pinching that characterizes
the response curves. In conclusion, the results of the analyses confirm that the numerical
model is very suitable for the prediction of the cyclic behaviour of reinforced concrete
columns subjected to roughly uniform corrosion. The considerations made concerning
column B25 are also valid for column B30. The model provides satisfactory results and is
therefore validated by the experimental test. Compared to the other modelling strategies,
the results considerably improve, confirming the importance of the morphological study
explained in Section 3. Still, a slight underestimation of the capacity in the positive load
direction is observed for column B30, but it is considered acceptable.
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5. Discussion

In the previous section, the main results relating to the numerical models for both
specimens B25 and B30 and the proposed modelling strategies have been reported. In
general, the authors’ expectations regarding the model responses were largely met. From
the comparison with the experimental results, it emerged that the modelling strategies
based on the constitutive law and bond law reduction as a function of the average loss
mass of the corroded bars (i.e., modelling strategies 1 and 2) are suitable for the prediction
of the ultimate capacity of the structure. Furthermore, it is noted how, attributing distinct
values of the bars’ mass loss (instead of a single value for all the bars of the column), allows
to catch the cyclic asymmetrical behaviour due to corrosion, as in the case of the column
B30. As regards the post-cracking behaviour, it emerged that these strategies (MS 1 and 2)
may underestimate the capacity and overestimate the yielding displacement. The authors
believe that this deficiency is linked to the fact that the variation of corrosion along the bar
is neglected and therefore neither the possible localized bar section reductions nor good
bond areas are considered. These strategies risk being not accurate for the prediction of
the Damage Control Limit State in the seismic performance assessment, especially as the
corrosion degree increases, since the formulations available in the literature are affected by
high results’ dispersion. The authors also noted that the results for pitting corrosion could
be more inaccurate than those for uniform corrosion and therefore believe that, given the
danger of the phenomenon, new experimental campaigns must be conducted for the pitting
degradation relationship of reinforcements, focusing on the localization of the corroded
areas and the influence of the pits. The results relating to modelling strategies 3 and 4
showed that considering detailed micro and macro morphological aspects allows improv-
ing the predictivity of the model in main aspects related to the cyclic behaviour of the
corroded columns. While strategy 3 proved to be suitable only for columns characterized
by roughly uniform corrosion, strategy 4 proved to be very suitable for both specimens and
therefore for both types of corrosion. It is also underlined that in addition to the force-drift
curves, the numerical models are in agreement with the experimental results with regard to
the cracking pattern. This, for corroded columns, is characterized by the opening of a main
crack close to the base of the column and by the cyclic slipping of the reinforcement, with a
reduction of the collaboration between steel and concrete and of the energy dissipation, as
it is emphasized by the pinching in the force-drift curves. Figure 17 shows an example of
comparison between the cracking pattern numerically and experimentally obtained.
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The results of the four strategies of numerical analyses and the experimental response
have been superimposed in terms of monotonic load-displacement curves, obtained as
envelopes of the cyclic ones in Figure 18a,b relatively for B25 and B30.
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From the comparison, the coherence between the models emerges. In particular,
strategy 4 stands out for being close to 1 in the case of uniform corrosion and instead
tends to migrate towards strategy 2 in the case of pitting corrosion. It should be noted
that numerical models tend to underestimate the energy dissipated by the specimens. As
mentioned in Section 3.2, this can be due to the model adopted for the concrete (TSCM),
that tends to underestimate the energy dissipation of the concrete, and also due to some
asymmetric sliding shear phenomena verified during the tests, not fully captured by the
numerical model. Finally, it is also noted that almost no model is able to capture the cyclic
degradation of strength by a shear mechanism, which can be seen in the last cycles of the
experimental tests of corroded columns. These results can be justified by the numerical
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assumption of considering an average corrosion level in the stirrups, since no detailed
measurements are available for the transversal reinforcement.

6. Conclusions

In this work, the cyclic behaviour of RC columns subjected to localized corrosion in
the plastic hinge regions was investigated through FE modelling and non-linear analyses.
The validation of the numerical models was performed through the comparison with
the results of an experimental campaign carried out by some of the authors. Particular
attention was paid to the modelling of the corroded rebars and their corrosion morphology.
The comparison between the numerical results showed how the most common modelling
strategies, which operate according to the section or constitutive law reduction as a func-
tion of the average corrosion of the bars, are suitable for the evaluation of the ultimate
capacity. Nevertheless, given the uncertainties that characterize the phenomenon from the
morphological point of view, they may present deficiencies in the seismic performance
assessment (i.e., at the Damage Control performance stage). The strategies based on the
morphological study of the corroded bars show, instead, a very good fit for all the cyclic
behaviours. The results, therefore, demonstrated how the behaviour of the RC corroded
columns depends both on the nature of corrosion (uniform vs. pitting) and on the local-
ization of damage along with the structural element, both on aspects of a random nature
that affect the structural response. However, it must be considered that the most refined
modelling strategies are difficult to implement for the assessment of real existing structures,
as they make use of detailed data and measurements that cannot be obtained with the same
precision through on-site surveys. The authors, therefore, believe that to maintain the easy
application approach based on the reduction of the constitutive law as a function of the
mean mass loss, a new experimental campaign for the mechanical behaviour of corroded
bars, which focuses on pitting and localization, is necessary. Furthermore, the assessment
of corroded existing RC structures should take into account the probabilistic aspects of the
morphology of the corrosion phenomenon.
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