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Abstract: Construction and demolition wastes (C&DWs) have raised a large number of ecological
and environmental problems. Recycling C&DWs into arecycled concrete aggregate (RCA) will help
save natural resources effectively and reduce the negative impact of C&DW on the environment.
Innovative pervious concrete (IPC) can mitigate extreme weather disasters, such as rainstorms,
and overcome the low strength and poor durability of traditional pervious concrete. In this study,
innovative recycled pervious concrete (IRPC) is prepared by combining RCA with IPC, which has
broad application prospects and ecological friendliness. This study investigates the effect of RCA
quality grades and replacement rates on the mechanical property, permeability, sulfate resistance and
abrasion resistance of IRPC. IRPC mixtures were prepared with three different quality grades (high,
medium and low qualities) of aggregates named as NA, RCA1 and RCA2. Moreover, the replacement
rate of RCA for NA varied as 0%, 25%, 50%, 75% and 100%. The IRPC specimens were tested
for compressive strength, mass loss and abrasion resistance after different sulfate wetting-drying
cycles of 0, 30 and 60. The results exhibited that the initial compressive strength of all types of IRPC
was more than 40 MPa. The compressive strength and mass of most IRPC increased first and then
decreased slightly with the passage of a number of sulfate wetting-drying cycles, indicating IRPC
has good resistance to sulfate attack. Sulfate attack and the addition of RCA will reduce the abrasion
resistance of IRPC. However, when the replacement rate is lower than 50%, and the RCA quality
is better (attached mortar content < 25%), the abrasion resistance of IRPC will be improved under
sulfate attack. The experimental results might be useful as a reference and design methodology for
employing IRPC in pavement applications in the future.

Keywords: innovative recycled pervious concrete; recycled aggregate; quality grades of aggregate;
replacement rate; abrasion resistance; sulfate attack

1. Introduction

With the acceleration of urbanization, the whole world is facing with shortage of
natural aggregate (NA) and increasing and haphazard piles of construction and demolition
wastes (C&DWs) [1,2]. In order to deal with the continuous destruction and pollution to
the environment caused by the above problems, one of the possible solutions is to recycle
C&DWs into a recycled concrete aggregate (RCA) [3,4]. Using RCA instead of NA will
help save natural resources effectively and reduce the negative impact of C&DWs on the
environment [5,6]. Therefore, the utilization of RCA has been widely promoted all over
the world [7]. On the other hand, extreme weather occurs frequently around the world,
and extraordinary rainstorm brings serious waterlogging to cities, which affects economic

Appl. Sci. 2021, 11, 9647. https://doi.org/10.3390/app11209647 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5327-0026
https://orcid.org/0000-0002-2763-2812
https://doi.org/10.3390/app11209647
https://doi.org/10.3390/app11209647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209647
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209647?type=check_update&version=2


Appl. Sci. 2021, 11, 9647 2 of 13

development and social life [8]. Compared with traditional impervious pavement, pervious
concrete pavement can reduce rainwater runoff, reduce noise, replenish groundwater,
reduce the heat island effect and remove rainwater runoff pollutants [9,10]. However,
the low strength, high likelihood for clogging and poor durability of traditional pervious
concrete limit its potential use in structural applications [11,12]. In order to solve these
defects, a kind of innovative pervious concrete with top-bottom interconnected pores was
designed and prepared by our former research [13]. The results prove that innovative
pervious concrete is superior to traditional pervious concrete in mechanical properties and
frost resistance. The environmental friendliness of innovative pervious concrete can be
further improved by replacing NA with RCA. However, whether it has adverse effects
on mechanical properties and durability of innovative recycled pervious concrete (IRPC)
remains to be studied.

In general, the utilization of RCA will contribute to the degradation of mechanical
properties and the durability of recycled concrete [14–16]. Replacing NA with RCA will
lead to a decrease in compressive strength of the concrete, which will continue to decrease
with the increase of the replacement rate of RCA [17–19]. Moreover, the quality grades
of RCA, such as water absorption, crushing index and attached mortar content, play an
important role in the durability of recycled concrete [20]. Furthermore, the strength and
durability of recycled concrete are affected by the interfacial transition zone (ITZ), as it
owns many cracks and pores, low bonding strength and high permeability [21]. Especially
for the traditional recycled pervious concrete, only the very thin layers of cement paste are
used as the binder between its aggregates [22], which causes the mechanical properties to
often depend approximately on the strength of ITZ. EL-Hassan et al. [23] found that the
mechanical properties and abrasion resistance were negatively affected due to the poor
ITZ in traditional recycled pervious concrete. Vieira et al. [17] observed the decrease of
mechanical properties of pervious concrete with the increase of RCA replacement. These
studies showed that the maximum compressive strength of traditional recycled pervious
concrete was less than 10 MPa, and when the RCA replacement rate exceeded 70%, the
compressive strength decreased sharply and approximately had no strength anymore.
However, IRPC is prepared by reserving top-bottom interconnected pores in advance in the
concrete matrix, which makes its initial compressive strength and durability much higher
than traditional ones.

Various durability factors, such as chloride ion erosion, sulfate attack and vehicle
abrasion, will occur in the practical use of IRPC. Coastal and inland saline regions are
rich in caustic ions, such as sulfate ions [24], which will make IRPC exposed to corrosive
environments and more susceptible to potential durability problems [25,26]. Sulfate attack
is one of the most common types of corrosion and can lead to serious internal expansion
failure, strength degradation and durability problems of concrete [26]. The external sulfate
ions penetrate into the concrete and react with the dissolved calcium hydroxide to form
gypsum, and further react with the hydration aluminate products of cement paste to form
ettringite [27]. The volume of ettringite grows inside the pores of the concrete, and then
the expansive stress is exerted on the pore wall, causing micro-cracking and damage to
the concrete [27]. In addition, IRPC pavements are worn by passing vehicles, which could
be exacerbated under sulfate attacks. Therefore, it is worth studying the durability and
abrasion resistance of IRPC under sulfate attack, but it is not receiving enough attention
right now.

This research aims to investigate the feasibility of using RCA with the innovative
pervious concrete to prepare IRPC. Three different quality grades (high, medium and low
qualities) and five different replacement rates (0%, 25%, 50%, 75% and 100%) of RCA were
analyzed. The compressive strength, permeability coefficient and abrasion resistance of
IRPC under different sulfate wetting-drying cycles (0, 30 and 60) were discussed. The
variations of the ITZ of IRPC after sulfate attack were characterized by SEM. The obtained
experimental results and data would be beneficial for future applications of the utilization
of IRPC in pavement engineering.
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2. Experimental
2.1. Materials

Ordinary Portland cement of type P.O 42.5 produced by Jiangsu Yangzi Cement
Company, fly ash (FA) and silica fume (SF) were used as binding materials to prepare IRPC.
The chemical compositions of these binding materials were listed in Table 1. Natural river
sand with a fineness modulus of 2.4 was used as the fine aggregate. Polycarboxylate type
superplasticizer (SP) was used as the water-reducing agent in the IRPC preparation process.

Table 1. Chemical compositions of binding materials. (wt.%).

CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O TiO2 MnO LOI a

Cement 61.03 20.41 7.42 3.74 2.06 1.26 0.75 0.28 0.15 1.39
FA 3.72 51.50 29.33 3.77 1.69 1.16 1.70 0.98 1.16 1.18
SF 0.28 87.04 1.13 0.98 0.85 0.87 - - 0.13 0.86

a LOI: Loss on ignition.

Since the different types of RCA for practical application varied in their quality. In
order to explore the effect of RCA quality grades, three different quality grades of coarse
aggregate were used in this study. Natural limestone aggregate, which can approximately
be regarded as high-quality RCA, was used as the control group and compared to two other
types of aggregate. Medium-quality RCA, marked as RCA1, was prepared by crushing and
sieving the waste concrete samples from the laboratory. Low-quality RCA, marked as RCA2,
was provided by Jiangsu lvhe Environmental Technology CO. LTD. The particle sizes of
the three kinds of aggregates range from 4.75 to 9.5 mm. The physical properties and
macro photographs of the three coarse aggregates were displayed in Table 2 and Figure 1,
respectively. It is obvious that NA has the best performance in all aspects and can be
regarded as the high-grade aggregate. The attached mortar can be clearly observed on the
surface of RCA1. Due to the existence of attached mortar, its performance is slightly inferior
to NA. RCA1 is regarded as the medium-grade aggregate. RCA2 not only possesses a large
amount of attached mortar on the surface but also contains complex aggregate composition.
It is evident that RCA2 is mixed with red bricks, which greatly affects its performance.
Therefore, RCA2 has the worst performance and is regarded as the low-grade aggregate.

Table 2. Physical properties of the coarse aggregates.

Aggregate
Types

Apparent
Density (kg/m3)

Water Absorption
at 24 h (%)

Crushing
Index (%)

Attached Mortar
Content (%)

NA 2703 1.8 5.3 -
RCA1 2621 3.1 12.4 24.2
RCA2 2543 6.6 16.1 41.6

Figure 1. Macro photographs of three types of aggregate: (a) NA; (b) RCA1; and (c) RCA2.

2.2. Preparation Process of IRPC

In this study, five different replacement rates, 0%, 25%, 50%, 75% and 100%, were
used by replacing NA with RCA. The mix proportions of the used innovative pervious
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concrete specimens are listed in Table 3. Because the three types of aggregate used have
different apparent densities and water absorptions, NA was replaced by RCA with the
volume fraction under the same w/c ratio, and the additional water was added to ensure
the workability of IRPC. Cube samples, with the dimensions 150 × 150 × 150 mm3, were
cast for compressive strength, mass loss, abrasion resistance and sulfate wetting-drying
tests. The preparation process of IRPC is shown in Figure 2. Firstly, IRPC was prepared by
the two-stage mixing approach, which could improve its compressive strength and reduce
its strength variability [28]. The coarse and fine aggregates and half of the water were
mixed for 60 s and then the binding materials, composed of cement, FA and SF, were added
and mixed for 30 s, and finally, the remaining half of the water and SP were added and
mixed for 120 s. Then the concrete mixtures were poured into the special molds that were
perforated beforehand and with steel rods inserted into the reserved holes. The detailed
schematic diagram of the pore distribution is shown in Figure 3. The gray area in Figure 3
is the actual wear area, and all pores are ensured to be in the wear area. The diameter of the
used steel rod is 3 mm, and these steel rods would be pulled out after the initial setting of
the IRPC. Finally, the IRPC was demolded after 24 h and preserved in the standard curing
room (20 ± 2 ◦C, RH ≥ 95%) for 28 d.

Table 3. Mixture proportions of innovative pervious concrete specimens (kg/m3).

Concrete
Types NA RCA Sand Cement FA SF SP Water Additional Water

INPC 1102 0 962 428 53 53 5.3 248 0

IRPC1-25 827 267 962 428 53 53 5.3 248 3.5
IRPC1-50 551 535 962 428 53 53 5.3 248 7.0
IRPC1-75 276 802 962 428 53 53 5.3 248 10.4
IRPC1-100 0 1069 962 428 53 53 5.3 248 13.9

IRPC2-25 827 259 962 428 53 53 5.3 248 12.5
IRPC2-50 551 519 962 428 53 53 5.3 248 24.9
IRPC2-75 276 778 962 428 53 53 5.3 248 37.4
IRPC2-100 0 1037 962 428 53 53 5.3 248 49.8

INPC: Innovative natural pervious concrete; IRPC: Innovative recycled pervious concrete; NA: Natural aggregate;
RCA: Recycled coarse aggregate; FA: Fly ash; SF: Silica fume; SP: Polycarboxylate type superplasticizer.

Figure 2. Schematic diagram of the preparation process of IRPC.

2.3. Testing Procedures
2.3.1. Coarse Aggregate Property

The properties of the three types of aggregate used were measured by ASTM C33 [29]
and the Chinese standard GB/T 25177-2010 [30].

2.3.2. Permeability

The performance of pervious concrete was characterized by the permeability coef-
ficient. The innovative pervious concrete used in the present study was measured by
the constant-head method according to the Chinese standard CJJ/T 135-2009 [31]. The
permeability coefficient was determined by the following Equation (1):
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K =
Q · L

A · H · t
(1)

where: K is the permeability coefficient, in mm/s; Q is the amount of water flowing out of
the outlet in t seconds, in mm3; L is the thickness of test specimen, in mm; A is the area of
the top surface of the test specimen, in mm2; H is the difference between the internal and
external head, in mm.

Figure 3. Schematic diagram of the pore distribution.

2.3.3. Compressive Strength

The compressive strength test of INPC and IRPC was performed according to ASTM
C109 [32].

2.3.4. Abrasion Resistance

The abrasion resistance was tested according to the Chinese standard JC/T 421-
2004 [33]. The abrasion resistance of specimens is defined by abrasion loss per unit area.
Abrasion loss per unit area is calculated according to the following Equation (2):

G =
m1 − m2

0.0125
(2)

where: G is the abrasion loss per unit area, in kg/m2; m1 is the mass of the specimen before
abrasion, in kg; m2 is the mass of the specimen after abrasion, in kg; 0.0125 is the area of
the abrasion area.

2.3.5. Sulfate Wetting-Drying Test

The sulfate wetting-drying test was carried out according to the Chinese standard
GB/T 50082-2009 [34]. A wetting-drying cycle of 24 h consisted of the following four steps.
The IRPC specimens were immersed in a 5% (by wt%) sodium sulfate (Na2SO4) solution
for 15 h, followed by air drying for 1 h, drying for 6 h at 80 ◦C and finally by air cooling for
2 h. Sulfate wetting-drying cycles ranged from 0, to 30 to 60 days.

2.3.6. SEM Analysis

The microstructures of IRPC were characterized by SEM. SEM analysis was performed
by a Zeiss SUPRA55 scanning electron microscope to focus on the ITZ of IRPC.

3. Results and Discussion
3.1. Compressive Strength

The compressive strength of IRPC with variable replacement rates (0%, 25%, 50%,
75% and 100%) after different sulfate wetting-drying cycles (0, 30 and 60) was displayed in
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Figure 4. It can be found that the initial compressive strength of IRPC was excellent. The
compressive strength of all groups of IRPC before sulfate attack was more than 40 MPa.
After 30 sulfate wetting-drying cycles, the compressive strength of most groups of IRPC
increased slightly, except in the case of 100% replacement with RCA2. The possible reason
for this phenomenon is that the hydration reaction of the IRPC matrix was still going on at
the initial stage of the sulfate wetting-drying cycle [35]. The secondary hydration products
improved the compactness and strength of the IRPC. In addition, the high-temperature
drying of the wetting-drying cycles could also promote the hydration reaction of the IRPC
matrix [36]. When sulfate enters the concrete, the erosion products, such as gypsum and
ettringite, will be generated, and these erosion products will accumulate in the pores
and cracks of IRPC, especially in its ITZ [37]. However, at the initial stage of sulfate
wetting-drying cycles, the erosion products can fill up the pores and cracks and improve
the compactness of IRPC. Therefore, the compressive strength of IRPC increased slightly
after 30 sulfate wetting-drying cycles. However, due to the poor performance of RCA2 and
its weak ITZ, the compressive strength of IRPC2 with a 100% replacement rate decreased
slightly after 30 cycles, but the reduction was very small. This indicates that the reduction in
strength due to the utilization of RCA is playing the leading role. On the whole, secondary
hydration and filling of sulfate erosion products can slightly increase the compressive
strength of IRPC at the early stage of sulfate wetting-drying cycles.

Figure 4. Compressive strength of IRPC with variable replacement rates after different sulfate
wetting-drying cycles.

After 60 sulfate wetting-drying cycles, the compressive strength decreased compared
with its initial compressive strength. It is worth noting that the decline of compressive
strength increased with the growth of the replacement rate. This is because the positive
effects mentioned above had peaked when the wetting-drying cycles increased. The
volume of sulfate erosion products expanded further, and cracks occurred in the IRPC
matrix, especially in ITZ, resulting in the decline of strength. To sum up, the change of
compressive strength under sulfate attack can be divided into a strengthening stage and a
degradation stage.

Another point of concern is that there was little difference between IRPC1-25 and INPC
in sulfate resistance at the 25% RCA1 replacement rate. IRPC1-25 even had a slightly higher
compressive strength than INPC. This might be on account of the good properties of RCA1,
and appropriately attached mortar provided space for the accumulation of sulfate corrosion
products. Therefore, the appropriate addition of high-quality RCA will have a positive
effect on the sulfate resistance of concrete.
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3.2. Permeability

According to our former research [13], the matrix of the innovative pervious concrete
has a very low porosity; its permeability mainly depends on the reserved top-bottom
interconnected pores. Therefore, its permeability coefficient is almost entirely determined
by the size and distribution of the pores and has little relationship with the mix proportion.
The advantage is that the permeability coefficient of IRPC is higher and more controllable
than traditional pervious concrete. The permeability coefficients of IRPC under abrasion
and sulfate attack were revealed in Figure 5. The permeability coefficients of all groups
were about 7 mm/s, much higher than the minimum requirement of pervious concrete
(0.5 mm/s). With the increase of sulfate wetting-drying cycles, the permeability coefficients
of IRPC slightly reduced. This may be due to the slight expansion of IRPC’s volume after
sulfate attack [38], leading to the reduction of its pore volume and permeability coefficients.
Moreover, it can be found that the abrasion slightly reduced the permeability of IRPC. This
is caused by the accumulation of debris in the pores from abrasion, but the reduction in the
permeability coefficient is quite slight. Compared with the top-bottom interconnected pores
of IRPC, the zigzag pores of traditional pervious concrete are more likely to be clogged by
debris accumulation [39], resulting in the decline of permeability.

Figure 5. Permeability coefficients of IRPC before and after the abrasion after different sulfate
wetting-drying cycles.

Traditional pervious concrete cannot guarantee both strength and permeability perfor-
mance. Lu et al. [22] prepared recycled pervious concrete using waste glass and RCA. When
NA was fully replaced by RCA, the compressive strength and permeability coefficient of
recycled pervious concrete are about 20 MPa and 2.3 mm/s, respectively. When using
50% waste glass cullet and 50% RCA as aggregates, the compressive strength of recycled
pervious concrete increased to 22 MPa, but the permeability coefficient was reduced to
1.2 mm/s. IRPC can possess the compressive strength of 40 MPa and the permeability
coefficient of 7 mm/s even at a 100% replacement rate. Therefore, in terms of the strength
and permeability performance, the combined use of innovative pervious concrete as the
matrix and RCA as the aggregate is attractive and promising to produce IRPC with good
strength and permeability.

3.3. Mass Loss

The mass-loss rates of INPC and IRPC specimens are revealed in Figure 6. It can be
clearly observed that the mass of all specimens increased firstly and then gradually de-
creased with the increasing number of wetting-drying cycles. This is because the generation
of sulfate erosion and hydration products increased the mass [40], and with the continu-
ous accumulation of these products, a huge expansion force is generated inside of IRPC.
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Then micro-cracks and angle loss occurred in IRPC, which made the mass decrease [41].
These two stages correspond well with the two stages present in compressive strength.
Moreover, the fluctuation range of mass change also becomes larger with the increase of
wetting-drying cycles. The reason for this phenomenon is that with the growth of the
replacement rate, there was more space for corrosion products to accumulate in IRPC, and
the compactness of IRPC decreased, which accelerated the generation and accumulation of
sulfate erosion products.

Figure 6. Mass-loss rate of IRPC with variable replacement rates after different sulfate wetting-
drying cycles.

3.4. Abrasion Resistance

Since the surface layer of the concrete is made up almost entirely of cement mortar,
only when the grinding is carried out to a certain extent, the aggregate inside will be ground.
The purpose of this study is to explore the effect of aggregate grades and replacement rate
on abrasion resistance. Therefore, abrasion resistance is divided into two parts, the surface
layer and the internal layer, for analysis. First, IRPC was ground for 30 cycles to explore
the abrasion resistance of the surface layer and then IRPC was continued to be ground for
40 cycles to explore the abrasion resistance of the internal layer.

3.4.1. Surface Layer

Figure 7 displays the abrasion loss per unit area on the surface layer of IRPC with five
replacement rates under sulfate attack. It is clearly reflected in Figure 7 that the abrasion
loss per unit area of the specimens decreased after 30 sulfate wetting-drying cycles but
increased significantly after 60 wetting-drying cycles, except for the specimens with 75%
and 100% RCA2 replacement rates. This is because the sulfate erosion products produced
in the early stage of sulfate attack had the filling effect on the pores and cracks of the
specimen [42]. In addition, the secondary hydration reaction occurred and improved the
strength of the specimen [43]. Therefore, the compactness and abrasion resistance of the
surface layer were enhanced. After 60 wetting-drying cycles, the volume of sulfate erosion
products accumulated inside the specimens expanded, resulting in micro-cracks in the
specimens. The expansion stress made the surface mortar become brittle, resulting in a
decline in abrasion resistance.
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Figure 7. Abrasion loss per unit area on the surface layer of IRPC with variable replacement rates
after different sulfate wetting-drying cycles.

3.4.2. Internal Layer

The abrasion loss per unit area on the internal layer of different IRPC under sulfate
attack is shown in Figure 8. The abrasion resistance of the internal layer was different from
that of the surface layer. When the replacement rate is greater than 25%, the abrasion loss
per unit area of IRPC increases with the increase of the replacement rate and the number
of wetting-drying cycles. Therefore, it can be seen that the influence of aggregate grades
and replacement rate on the abrasion resistance of the internal layer of IRPC was more
significant than that of the surface layer. This is because the surface layer was mainly
the compact mortar layer on the specimen surface, while the inner layer contained weak
links, such as RCA, attached mortar and ITZ. Sulfate erosion products mainly accumulated
and expanded from the ITZ inside the specimen, which could easily affect the abrasion
resistance of the internal layer.

Figure 8. Abrasion loss per unit area on the internal layer of IRPC with variable replacement rates
after different sulfate wetting-drying cycles.
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3.5. SEM Analysis

To further investigate the effect of the aggregates’ quality grades on the sulfate attack
mechanism of IRPC, an SEM analysis on the ITZ of IRPC was carried out. Figure 9 shows
the SEM images of the IRPC prepared from three kinds of aggregates with different quality
grades. First of all, Figure 9(a1,a2) displayed the ITZ of INPC before and after the sulfate
attack. As can be seen in Figure 9(a1), the initial ITZ of INPC was relatively smooth, and
no obvious cracks and pores were observed in the paste. After the sulfate attack, the ITZ of
INPC expanded slightly and widened, as shown in Figure 9(a2). The little white spots on
the ITZ were the erosion products, which were small in volume. NA possessed the best
properties and was regarded as the high-quality RCA. Therefore, INPC prepared from NA
possessed the best compressive strength, abrasion resistance and sulfate resistance, which
was consistent with the results obtained in macroscopic experiments.

Figure 9. SEM images of (a1) INPC, (b1) IRPC1-100 and (c1) IRPC2-100 before sulfate attack, and (a2) INPC, (b2) IRPC1-100

and (c2) IRPC2-100 after 60 sulfate wetting-drying cycles.

In addition, the SEM images of IRPC1 prepared from the medium quality of RCA1
were revealed in Figure 9(b1,b2). Figure 9(b1) showed that the initial ITZ of IRPC1 was
slightly undulating and uneven, and there were some micro pores in the paste of IRPC1.
After sulfate wetting-drying cycles, the short columnar crystals of gypsum [44] were
observed in the ITZ of IRPC1 in Figure 9(b2). The formation of erosion products, such as
gypsum, further expanded the volume of the ITZ and reduced its bonding strength [45],
which had an adverse effect on the mechanical properties and abrasion resistance of IRPC.

Finally, Figure 9(c1,c2) showed the SEM images of IRPC2 prepared from the low
quality of RCA2. As shown in Figure 9(c1), the initial ITZ of IRPC2 was rough and uneven
on the surface with a straight crack in it. After sulfate attack, large columnar crystals of
gypsum and needle-like phase crystals of ettringite [46] were observed in Figure 9(c2). The
massive sulfate erosion products made the ITZ expand rapidly in volume and become
loose. The ITZ of IRPC2 was the most cracked and loosest after the sulfate attack. The
compressive strength and abrasion resistance of IRPC2 were the worst among all three
types. This was because that the quality grade of RCA2 was the low-grade, indicating a
large amount of attached mortar was attached to the surface of RCA2. The new ITZ formed
between the old attached mortar and the new mortar had a low bonding strength and a
large number of cracks and pores [47]. Therefore, after sulfate attack, erosion products
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tended to accumulate in these cracks and pores. The volume of sulfate erosion products
gradually expanded and made the weak ITZ more fragmented [48], resulting in a further
reduction in the strength of IRPC2.

However, the accumulation of these sulfate erosion products was not all negative.
When the replacement rate of RCA was low, and the quality of RCA was better (attached
mortar content of RCA is low), the sulfate erosion products could fill the micro pores
and cracks in the ITZ and even in the attached mortar of RCA. This filling effect could
improve the compactness of IRPC; thus, improving its strength and abrasion resistance.
This phenomenon was consistent with what was observed in the macroscopic experiment.

4. Conclusions

In this study, the mechanical properties, permeability and abrasion resistance of
innovative recycled pervious concrete (IRPC) with three RCA quality grades and five
replacement rates under sulfate attack was investigated. Based on the experimental results
and microscopic analysis, the following conclusions can be drawn:

• IRPC can not only reach a higher compressive strength but also meet a higher perme-
ability coefficient at the same time, even at a 100% replacement rate. After 60 sulfate
wetting-drying cycles, the compressive strength and permeability coefficient of IRPC
slightly decreased. With the increase of the replacement rate and the decrease of
aggregate quality, their drops continued to increase. However, overall, the decline of
compressive strength and permeability coefficient of IRPC was modest, representing
the sulfate resistance of IRPC was fine.

• The abrasion resistance of IRPC was mainly influenced by the RCA replacement rate.
The abrasion loss of IRPC increased with the increase of the replacement rate. Yet,
up to a 50% RCA replacement rate could be adopted without significantly affecting
the abrasion resistance of IRPC. However, when the RCA quality grade was high
(attached mortar content < 25%), this threshold replacement rate can be increased to
100%.

• The influence of sulfate attack on the compressive strength and abrasion resistance of
IRPC could be divided into two stages. The first stage was the enhancement or slow
declining stage. In this stage, the sulfate erosion products could fill the micro pores
and cracks in the ITZ and the attached mortar. This filling effect could improve the
compactness of IRPC; thus, improving its strength and abrasion resistance. The next
stage was the declining stage. In this stage, the volume of sulfate erosion products
gradually expanded and made the ITZ and matrix of IRPC loose and fragmented,
resulting in a reduction in the strength and abrasion resistance of IRPC.

The experimental results, in terms of compressive strength, permeability and abrasion
resistance, show that IRPC made with even 100% RCA was acceptable under sulfate attack.
When the replacement rate was less than 50%, the performance of IRPC was very close
to that of INPC. With the improvement of RCA quality, this threshold replacement rate
could be further increased. The existing traditional pervious concrete can only be used
in applications with low abrasive forces. However, IRPC can be used for applications
with medium or even high abrasive forces, which greatly expands the application range of
pervious concrete.
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