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Abstract: The downstream sectors of the hydrocarbon industry in the Middle East are growing
quickly. Due to their geographical locations, they need to transport products from manufacturing
plants at one port to other hub ports for international shipping, forming complex closed-loop shipping
systems. Such domestic shipping systems are also typical logistics structures in many energy and
heavy industries near coastal regions. The operations in such systems are frequently lagging due
to uncertainties, such as weather and unexpected events, and the lack of effective management
techniques. More reliable and efficient systems require a better vessel operations management policy
than one based on a first-available-first-use policy and constant voyage speed. This study develops a
detailed and realistic simulation model to evaluate the economic and environmental performance
of a closed-loop vessel shipping system, considering various uncertainties from weather and port
operations. Furthermore, the optimization model has been incorporated into the simulation model to
prescribe the optimal number of vessels and voyage speed to minimize the total costs. A new vessel
dispatching policy, large-vessel-first-use, has been proposed and compared with the first-available-
first-use policy using the developed model. Increased use of large vessels and slower voyage speeds
significantly benefited the total costs and environmental effects. The optimal solution presented the
potential to save 26.8% of the total cost and reduce greenhouse gas emissions up to 39% compared
with the current operating condition.

Keywords: closed-loop shipping; simulation; optimization; operating policy; petrochemicals

1. Introduction

The Middle East is well established as a crude oil and natural gas exporter and now is
expanding investment in the refining and petrochemicals market. The International Energy
Agency has reported that refinery output from the Middle East is set to increase by 60% by
2040 [1]. Therefore, it is anticipated that reliance on the supply chain’s ability to facilitate
the transportation of petrochemical products will significantly increase. The particle-type
petrochemical products, such as polyethylene and polypropylene, are usually packaged in
a container and transported by a container ship, allowing transshipment at a port.

The geographical features of the Middle East usually force manufacturers to transport
hydrocarbon products from manufacturing sites near one port to a few hub ports for inter-
national shipping. Such domestic shipping systems generally form a closed-loop shipping
system with dedicated vessels and require infrastructure management. Manufacturers need
integrated management to handle vessel operations and related infrastructure, entailing
various issues and complexity.

In particular, bad weather is one of the most difficult challenges in maritime trans-
portation because it randomly hinders vessels from traveling at sea. At high wind speeds
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above a critical level, vessels cannot start to travel or may need to decrease speed if they
were already at sea [2]. In addition, low visibility increases the risk of collision between
vessels and obstacles. Some common causes of reduced visibility include fog, mist, smoke,
heavy rains, and bright flashes from reflected sunlight [3]. A visibility distance of less than
one nautical mile is hazardous as it reduces a vessel’s ability to sail safely, and a visibility
distance of less than half a mile implies that vessels should not leave port [4].

Moreover, green shipping management has become a vital topic in the shipping
industry. The shipping industry is responsible for a significant environmental footprint as
it accounts for 2.7% of global CO2 emissions [5]. The International Maritime Organization
(IMO) issued the Global Sulfur Cap 2020 regulation to limit sulfur oxide emissions for ships
to below 0.5% compared to the previous limit of 3.5% [6]. The IMO also aims to reduce
greenhouse gas (GHG) emissions by at least 50% by 2050 compared to 2008 [7]. Regulatory
changes related to GHG emissions and waste discharge have generated more pressure for
the shipping industry, requiring better environmental performance [8].

Many studies used simulation tools to address various issues and facilitate and im-
prove related cargo shipping systems in the oil and gas industry and other industries.
Cheng and Duran (2004) addressed a global crude oil transportation model using sim-
ulation [9]. They also formulated a design and control problem as a Markov decision
process incorporating uncertainties such as travel time and crude demand. Using Bayesian
simulation techniques, Merrick et al. (2005) [10] studied the impact of ferry service ex-
pansions, considering uncertainties such as the arrival times of vessels. Franzese et al.
(2006) [11] combined a template modeling with simulator-style development to yield a
customized template for petrochemical supply chain operations, characterizing the down-
stream supply chain elements, including refineries and transportation modes. Almaz and
Altiok (2012) [12] analyzed the risk of three different alternatives for improvement, such as
increasing vessel arrival, deepening the river, and using larger vessels.

Further, Kulak et al. (2013) [13] analyzed terminal operations and detected system
bottlenecks to highlight possible improvements. A simulation-based optimization approach
by Ilati et al. (2014) [14] identified that tugboat deficiency contributed to increased waiting
times for vessels, and low tugboat utilization had economic consequences. Carotenuto et al.
(2014) [15] adopted a simulation-based approach to evaluate the primary supply process of
maritime transport carrying crude oil. They highlighted that reducing inventory variance
impacted the system operations positively and provided economic benefits by reducing
costs. Recently, Rahimikelarijani et al. (2018) [16] used a simulation approach for congestion
avoidance in waterways to operate with shorter waiting times and higher throughput by
applying the Fisher pairwise comparison method.

Mathematical programming is another primary approach used to address vessel
shipping operations. Lababidi et al. (2004) [17] addressed uncertainties in operations
and economic costs in the petrochemical sector using a two-stage stochastic optimization
approach. Saharidis et al. (2009) [18] formulated a mixed-integer linear programming
(MILP) model to determine the unloading and loading times of crude oil at a port and
developed a few valid inequalities to solve the problem effectively. The two-stage stochastic
model in [19] addressed the optimization of investment planning for the distribution of
petroleum products under uncertainty, providing a specific case study in northern Brazil.

Further, the optimization model in [20] addressed ship routing and scheduling prob-
lems in crude oil transportation with split deliveries. He et al. (2014) [21] formulated
an MILP model for multi-echelon container supply-chain networks to minimize the total
supply-chain service costs. Ghezavati et al. (2015) [22] designed a downstream seg-
ment for a supply chain system in the petroleum industry. Their developed optimization
model coupled with a simulation model prescribed the optimal locations of facilities and
their capacities.

Ye et al. (2017) [23] formulated two MILP models for a scheduling problem to transport
refined oil products using tramp ships. Aydin et al. (2017) [24] adopted a dynamic
programming approach to address the speed optimization problem in liner shipping.
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Recently, An et al. (2019, a) [25] presented a MILP model for integrated scheduling of
vessel dispatching and port operations for the closed-loop shipping system in the context
of deterministic parameters with a constant travel speed.

Few studies addressed the closed-loop container shipping system with uncertainty.
To the best of our knowledge, only Bahamaish et al. (2019) [26] handled the closed-
loop container shipping system with uncertainty using simulation. They considered the
uncertain round-trip time incurred by uncontrollable, unexpected events at destination
ports. Using a fixed number of vessels, they examined the opportunity for cost savings by
adjusting vessel operation policies.

The number of vessels and their voyage speed are vital factors and may have a trade-
off for system performance. Considering additional existing uncertainties such as bad
weather may generate more reliable and realistic estimates. Therefore, this study extends to
the work of Bahamaish et al. (2019) by incorporating new decision factors for the numbers
of each type of vessel and forward and backward travel speeds into the simulation model.
We also consider additional uncertainties from high wind and low visibility to model the
uncertain voyage interruption in the system.

Hence, the first objective of this study is to develop a detailed and realistic simulation
model for the closed-loop vessel dispatching problem to transport petrochemicals with
several uncertainties caused by bad weather and uncontrollable events at destination ports.
The second objective is to devise the best vessel operational policies to reduce operating
costs in an environmentally friendly manner, considering the different number of vessels
and various travel speeds.

The remainder of this paper is organized as follows: Section 2 demonstrates the
problem statement and an approach to solving the current issues. Section 3 describes the
developed simulation and optimization models and presents the newly devised vessel
operating policies. Section 4 provides the cases and data for numerical studies, and
Section 5 analyzes and discusses the results. Finally, Section 6 presents the conclusions.

2. Problem Statement

In the proposed scenario, the geographical location of a petrochemical plant in the
UAE requires transporting products from a manufacturing plant near one port to two other
ports for international shipping. The fundamental system structure is based on the system
studied in [26]. Figure 1 depicts the schematic structure of the considered system. For
domestic shipping, different types of vessels (i.e., small and large) transport products from
the port at the manufacturing plant to other international ports and return to the origin
port for another shipment. Such a back-and-forth voyage continues, forming a closed-loop
system. This study incorporates uncertainties from bad weather and round-trip time into
the system. It also considers new decision factors, such as the number of each type of vessel
and forward and backward travel speeds.

We have employed a few assumptions to construct the problem. First, we assume that
the products are packed in a container and are ready to be loaded onto a ship. Second, the
vessels berthed at the origin port are assumed to wait until they are fully loaded. Third,
according to the field experts’ comments, vessels on the voyage are assumed to continue
to travel to the destination port, regardless of weather conditions. Lastly, we assume that
only one aggregated type of product is transported.

A vessel’s trip begins from the waiting area in near-coastal water from the origin port,
Port A. Because Port A has three docks, up to three vessels of any size can be berthed
simultaneously and load products packaged in a container. The vessels in the waiting
area stay there until any dock becomes available. A specific sea area adjacent to Port A is
dedicated for use by arriving and departing tugging. For safety in the coastal waters of the
origin port, both arriving and departing tugging is performed one by one in each 3 h time
slot like a single runway at an airport.

Once a vessel departs, it travels to Port B or Port C. Because the destination ports are
managed by other organizations and used by many other companies, the manufacturing
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company has no control over the operations at the other ports. In contrast, it can control
and manage all the operations at Port A and related infrastructure. Thus, unloading at
Ports B and C is often delayed due to the uncertainties of terminal availability. Accordingly,
a round-trip time, which includes times for the forward and backward voyages and
unloading at the destination port, is somewhat uncertain. After unloading the products
and loading empty containers, the vessel returns to Port A. Then, one cycle of a vessel trip
is completed. Because the manufactured products always need to be transported to the
international ports (i.e., Ports B and C), the travel cycle is repeated as often as needed.

Figure 1. Schematic structure of the studied closed-loop vessel dispatching system.

The controllable operations at the origin port (e.g., tugging, loading and unloading,
and waiting) follow the operation schedules determined by a manager and the inter-
returning pattern of vessels. Therefore, the uncertain returning pattern may impose
difficulties on scheduling vessel operations at the origin port. In particular, the voyage
could be interrupted by uncertain weather conditions. In the considered system, vessels
cannot depart from ports when a wind speed exceeds 35 km/h or a visibility distance is
less than 1 km. This study also considers such an uncertain voyage interruption along with
the uncertain delay at the destination ports.

Currently, the manufacturing company rents several vessels for a specific period
(three years) and operates vessels at the origin port based on the first-available-first-use
(FAFU) policy. The vessels usually travel at 22.2 km/h (12 knots). Thus, it would be worth
examining the impact of differentiating the numbers of each type of vessel and forward and
backward travel speeds on the system performance compared with the current operating
conditions. Eventually, the optimal operating conditions should be prescribed to minimize
the total costs considering the environmental effect.

Note that the components and structure of the considered system are very similar to
the round-trip aviation transportation system, which includes boarding and operations
at the departing airport terminals, flying, landing and disembarking to the destination
airport, and returning [27]. Such structural similarity implies that the closed-loop shipping
system management is not trivial and may involve as many complicated and challenging
managerial factors as the aviation transportation system. Another type of closed-loop
transportation system can be found in biomass collection using trucks [28].

3. Methods

This section describes the methods used in this study for simulation modeling, the
optimization model embedded in simulation, and the environmental analysis.
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3.1. Simulation Modeling

This study uses Simio simulation software to build a simulation model. The following
subsections provide detailed descriptions of the developed simulation model, validation
procedure, output, and new scheduling policies tested by the developed model.

3.1.1. Model Description

We model the proposed problem as a continuous, discrete event simulation model.
The product is modeled as a continuous entity, and all other events such as bad weather,
vessel, and port operations are modeled as discrete events. A schematic diagram of our
developed model is shown in Figure 2 to convey the developed logic clearly. The source,
the “Production plant”, creates a metric ton of the products as a continuous entity according
to its production rate. The products created in the Production plant leave the system at
the “Outflow sink”. Our model employs the transporter module in Simio to simulate
vessel operations. Two transporter modules in Figure 2 represent vessels with different
capacities (large and small). The model attempts to transport all produced products,
making the shipment demand proportional to the production volume. Hence, it operates
as a push system.

Figure 2. Schematic diagram of the simulation model for the closed-loop vessel shipping system.

The product first flows to (and is stored in) the “Yard tank,” which supplies the
product to three docks. The movement of the containerized product from the “Yard tank”
to three docks is approximately modeled using flow paths. Empty vessels initially wait
at the waiting area until a dock becomes available and move through the tugging path to
any one of the available docks at the origin port (i.e., Port A). The tugging module only
allows one vessel movement for either arrival or departure during a specified duration
(i.e., three hours). The first berthed vessel is loaded first under the current FAFU vessel
priority policy. If there is a sufficient amount of product in the Yard tank, several vessels can
be loaded simultaneously. Once a vessel is fully loaded, it can be tugged if a tugging path
is available. Otherwise, the vessel waits at the dock until a tugging path becomes available.

After going through the tugging path, the vessel departs with the destination infor-
mation and moves to the destination port through the predefined route. Upon arrival
at the destination, the vessel may wait some time to be berthed, following the specified
distribution at the destination port. On berthing at the terminal of the destination port, the
duration of the operation follows the average estimated time (due to a lack of actual data),
which includes tie-up, unloading of products, and departure time. After unloading the
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products, the empty vessel returns to Port A and waits in the waiting area until there is an
available dock at Port A. The unloaded entities at the two destination ports are stored in
the “Virtual tank” to estimate the amounts of products transported easily and animate the
transported volume.

A few unique logic conditions, such as resource restriction, vessel selection, and
routing requirements, have been incorporated in the developed model. To implement the
resource restriction in the system, we employed two resource modules. The “Dock capacity”
resource size is set to be three, representing the number of docks. It is decremented by
one whenever a dock is seized (i.e., berthed) by a vessel and incremented whenever
released. Therefore, according to the current available room in the Dock capacity, the
model determines if another vessel waiting at the waiting area can be berthed or should
wait longer. Similarly, the “Tug capacity” resource monitors and allows one vessel in the
tugging paths at any time. Hence, only one arriving or departing vessel can move through
the tugging paths at a time.

The predefined vessel ranking in the model determines which vessel is tugged to a
dock from the waiting area. The destination assignment for each fully loaded vessel is
implemented in the routing logic at each dock by randomly assigning a specific destination
port using the current cargo volume shipped to each destination: 85% of the products are
transported to Port B and 15% to Port C.

The vessel waiting times at the Port A waiting area are controllable by managers.
Thus, these values are not entered but are determined by the simulation logic. However,
the uncontrollable vessel waiting times at destination Ports B and C are input, following
the specified distribution functions fitted to historical data. Furthermore, the voyage times
between ports are set to be constants using average values from the assumption that the
voyage time between ports is relatively stable. The model also considers the regularly
scheduled maintenance time (e.g., six hours every three months) for vessels by using the
reliability logic in the transporter module.

The bad weather conditions for high wind and low visibility are modeled as discrete
random events following the distribution according to the historical weather data. For
example, a high-wind weather entity randomly arrives in the system according to the
distribution for interarrivals. Then, it stays in the “High wind” condition during the period
specified by the fitted distribution. While the high wind condition is in effect, the vessels
are unable to leave port. However, vessels already underway will continue to move to
the destination port regardless of the weather condition. Once the high wind condition
is cleared, all voyage operations return to normal. The same logic is applied to a low
visibility random event with the different distributions for interarrival and duration, using
the “Visibility” condition. The bad weather conditions are illustrated in the upper part
of Figure 2.

The developed model assesses several performance metrics of the system. It provides
details on the amount of product produced and transported, counts the number of trips by
each vessel, accounts for operating costs (including voyage and port dues), and estimates
GHG emissions. To estimate such performance metrics which are not provided by Simio,
several variables are defined as user-defined statistics in the model.

The generation of a simulation model that mimics a real-world situation requires a
set of data. The used data have been collected from the internal documents of the studied
company, the public weather database, and interviews with field experts. The following is
a list of data used in the designing process of the simulation model: production volume;
vessel operating times (i.e., voyage and tugging times); loading and unloading times at
terminals; vessel capacity, and operating costs (i.e., fuel cost per round trip and port dues).
Processes probability distributions are fitted to each of the following processes: vessel
waiting at the destination ports; high-speed wind (interarrival time and duration), and low
visibility (interarrival time and duration) (see the details in Section 4.2).
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3.1.2. Simulation Logic for Large-Vessel-First-Use Policy

Our preliminary analysis estimated the unit fuel cost of a vessel for one round-trip
voyage between the origin and destination ports using the average fuel cost per round trip
divided by the vessel capacity. Due to the confidentiality of the information, we can only
mention that a large vessel has a lower unit fuel cost than a small vessel, indicating that
using a large vessel first would reduce the operating cost as proposed by [29]. On the other
hand, a small vessel takes less loading and unloading time than a large vessel. Thus, using
a small vessel first would more often improve the operational agility of the whole shipping
system. Therefore, it would be worthwhile to investigate the impact of using a large vessel
first on both operating costs and overall system performance.

The proposed large-vessel-first-use (LVFU) policy requires selecting a large vessel
first among all the available vessels in the waiting area. We can implement this relatively
easily by assigning a higher ranking to large vessels than small vessels in the list of vessels.
In addition, under the LVFU policy, when large and small vessels are loading products
simultaneously at the origin port, large vessels should be filled first whenever possible.
Because implementing such loading priority control is not trivial, we demonstrate our
implementation logic as depicted in Figure 3.

Figure 3. Simulation logic for LVFU policy.

We added six virtual docks to simulate the three physical docks with the LVFU policy.
Three docks (S1, S2, and S3) are used only for small vessels, and the other three (L1, L2,
and L3) are only used for large vessels. Because the “Dock capacity” resource restricts the
number of vessels that can be berthed to be three, only up to three of six virtual docks
can be used, making the terminal capacity the same as the three physical docks. Then,
by controlling the flow priority on the paths connecting the Yard tank to each dock, three
docks for large vessels will prioritize loading products over the other three docks for small
vessels. The three paths connected to the same group of docks have equal priority.

We explain the presented logic further using an example. Suppose that two large
vessels are berthed at Docks L1 and L2, and one small vessel is berthed at Dock S1. Then,
no other vessels can enter the terminal area, and all must wait at the waiting area. When the
inventory in the Yard tank is sufficient, large and small vessels can be loaded simultaneously.
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If the inventory in the Yard tank is not sufficient, products will be supplied from the Yard
tank to Dock L1 and L2 first until two large vessels are fully loaded. Then, products will be
provided to Dock S1 to load the small vessel. If any one of three vessels finishes loading
and departs via a tugging path, then another vessel (large vessel first) at the waiting area
can be berthed and begin to load products. The maximum number of vessels berthed is
three, and a large vessel will always have a higher priority for loading products. This
pattern will be retained continuously throughout the simulation run.

3.1.3. Model Validation

To ensure that the model reflects an actual process, we employ a few procedures to
validate its correctness. First, we have developed several other small test models, each of
which includes only one specific logic. These test models have been examined by running
them step-by-step.

After checking the correctness of the developed logic, the entire model was tested
further by simplifying the input data. For example, by using the infinite initial inventory at
the origin port, the waiting time of a vessel for products was eliminated. Then, after running
the model with such simplified input, several performance measures were examined and
compared with the manually calculated estimates. These performance measures include
the total amounts of product transported, the total number of trips by each vessel, and the
average cycle time for trips.

For example, in the real operating data, the average round-trip time of each type of
vessel ranges 52–57 h for a small vessel and 57–62 h for a large vessel. The round-trip
times of the tested simulation model were 57–58 h and 62–63 h for small and large vessels,
respectively. Even though there is a slight difference, such estimates may be considered
sufficiently close, considering variability from weather uncertainty. The developed model
is also expected to transport most of the produced products, as happens in the real-port
situation. Therefore, we conducted several experiments with different production rates to
confirm that the simulation model transported most products with the appropriate number
of trips by each vessel as expected.

3.2. Optimization of the Number of Vessels and Travel Speed

This study seeks to find the optimum number of large and small vessels and deter-
mine the most economical travel speed to reduce the total costs. The developed optimiza-
tion model is incorporated into the simulation model to prescribe such decisions while
satisfying all the required system constraints. Table 1 defines all notations used in the
optimization model.

By using the notations defined in Table 1, we formulate an optimization model
as follows.

Minimize z = CRLxL + CRSxS+CPLtL + CPStS+{CVL(2 + S0 ∗VR ∗ (sF − 1)+

S0 ∗VR ∗ (sB − 1))}tL+{CVS(2 + S0 ∗VR ∗ (sF − 1) + S0 ∗VR ∗ (sB − 1))}tS
(1)

Subject to:
y ≥ LT (2)

0 ≤ xL ≤ MNL (3)

0 ≤ xS ≤ MNS (4)

SFl ≤ sF ≤ SFm (5)

SFl ≤ sB ≤ SFm (6)

xL, xS : integer (7)

sF, sB : 0.1 ∗ integer (8)
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The objective function (1) is to minimize the sum of three types of costs: rental costs,
port dues, and the operating costs of large and small vessels. The first two terms are the
rental costs of large and small vessels. The third and fourth terms are port dues of large and
small vessels. The last two terms are the voyage costs, which are the sum of the forward
and backward voyage costs. The voyage cost is a function of the number of trips and speed
factors. A speed factor (sF and sB) of 1.0 means the speed at S0.

Table 1. Notations for the optimization model.

Indices
i = L, S (L: large vessel, S: small vessel)
k = B, F (B: backward, F: forward)

Parameters
CPi: port dues per trip of type i vessel
CRi: rental cost per year of type i vessel
CVi: voyage cost per one-way trip of type i vessel at speed S0
LT: minimum target of throughput (transported amount per year)
MNi: maximum number of type i vessel
S0: current speed (22.2 km/h (12 knots))
SFl : minimum value of speed factor (0.7)
SFm: maximum value of speed factor (1.3)
VR: voyage cost change rate per voyage speed (4.3% per km/h (8% per knot))

Decision variables
sk: speed factor, integer*0.1
xi: the number of type i vessels, integer

Outcomes
ti: the number of trips per year by type i vessel
y: throughput (transported amount per year)
z: total cost per year

Constraint (2) restricts the amount of product transported to be at least the target
volume. Constraints (3) and (4) impose the possible range of the number of large and small
vessels, respectively. Constraint (5) specifies the range of the forward speed factor, and
Constraint (6) specifies the range of the backward speed factor. Constraints (7) and (8)
invoke integer restrictions on decision variables. Note that the decision variables sF and sB
have discrete values with a step size of 0.1.

3.3. Environmental Impact

The proposed operating policy must care about GHG emissions while being cost-
efficient. Therefore, carbon dioxide (CO2) and sulfur dioxide (SO2) emissions are estimated
and compared with the current system emissions. The emission factors of CO2 and SO2
for marine diesel oil and the method of calculating the total emissions in this study are
adopted from [30]. Their method requires multiplying the fuel consumption of a vessel by
the emission factors of CO2 and SO2. Detailed calculations using the data are provided in
Section 5.5. Estimating the environmental effects according to the fuel consumption is a
typical technique in transportation systems, as shown in [31].

4. Numerical Study

This section provides numerical studies to assess the performance of the proposed
operating policies. The study investigates the optimal number of each type of vessel and
forward and backward voyage speeds using the developed simulation model.

4.1. Design of Experiments

We designed experiments under two different vessel priority policies, FAFU and
LVFU, as shown in Table 2. Columns #LV and #SV mean the number of large and small
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vessels used, respectively. Case C0 represents the current operating condition, in which
two large and two small vessels are utilized at the constant voyage speed of 22.2 km/h
(12 knots). The first four cases (C0, C1, C2, and C3) used the FAFU policy for vessel priority,
and the other four cases (C4, C5, C6, and C7) used the LVFU policy. The simulation model
ran for one year with 20 replications. The OptQuest simulation optimization engine was
used for the optimization model with the following parameters: default replications: 10,
max replications: 30, max scenarios: 3000, confidence level: 0.95, and relative error of the
confidence level: 0.05.

Table 2. Design of experiment.

Case #LV #SV Vessel Priority
Voyage Speed Factor

FS BS

C0 2 2 FAFU 1 1

C1 2 2 FAFU 0.7~1.0 (*) 0.7~1.0 (*)

C2 0~3 (*) 0~4 (*) FAFU 1 1

C3 0~3 (*) 0~4 (*) FAFU 0.7~1.6 (*) 0.7~1.6 (*)

C4 2 2 LVFU 1 1

C5 2 2 LVFU 0.7~1.0 (*) 0.7~1.0 (*)

C6 0~3 (*) 0~4 (*) LVFU 1 1

C7 0~3 (*) 0~4 (*) LVFU 0.7~1.6 (*) 0.7~1.6 (*)
(*): decision factor.

Case C1 uses the same number of vessels as case C0. It investigates the impact of
the lower voyage speed determined by the optimization model by examining the forward
speed (FS) and backward speed (BS) factors with a decrement of 0.1 from 1.0 to 0.7. Speed
factor 0.7 represents 70% (15.6 km/h) of the current speed (22.2 km/h), and speed factor
1.6 represents 160% (35.6 km/h) of the current speed. In case C2, the optimization model
determines the number of each type of vessel while the speed factors remain constant
at the current operating speed. Our preliminary tests to transport most of the produced
products determined the ranges for the number of each type of vessel (i.e., 0~3 for #LV and
0~4 for #SV).

In particular there may be a trade-off between the number of vessels and voyage speed,
such that a higher voyage speed may need a smaller number of vessels and vice versa.
Thus, we designed case C3 to find the optimal number of each type of vessel and optimal
speed factors simultaneously, considering the FS and BS factors from 0.7 to 1.6. Cases
C4–C7 have the same structure as cases C0–C3 except that they follow the vessel priority
policy of LVFU.

4.2. Data

Tables 3 and 4 summarize the data collected from the practical working conditions
used in the simulation model. However, due to the confidentiality of the information, the
cost values in Table 4 are replaced by symbols. The production rate in the model was set
at 8,901 metric tons per day by taking the average value of the real production rate. In
particular, the waiting times at Ports B and C are estimated as the gamma distribution,
which is fitted to the limited historical data.

According to the field experts who manage the system studied in this research, wind
speeds greater than 35 km per hour and low visibility of less than 1 km are the stopping
conditions for vessel operations. We collected the wind-speed and visibility–distance
hourly data from 2014 to 2019 from the world weather online database (World Weather
Online) [32]. From the collected historical data, we extracted the interarrival time and
duration of high-speed wind (>35 km/h) and low visibility (<1 km). Table 5 shows the
distributions fitted to the extracted data.



Appl. Sci. 2021, 11, 9626 11 of 18

Table 3. Time duration for operations.

Location Operations
Time (h)

Small Vessel Large Vessel

A

Tugging for arrival 3 3

Loading 12 16

Tugging for departure 3 3

Sea
Voyage A<->B 18 (=9 × 2) 18 (=9 × 2)

Voyage A<->C 22 (=11 × 2) 22 (=11 × 2)

B, C
Waiting at B, C 2 + Gamma(3.86, 1.43)

(shape: 3.86, scale: 1.43)
2 + Gamma(3.86, 1.43)

(shape: 3.86, scale: 1.43)

Unloading at B, C 14 16

Table 4. Vessel information.

Type Small Vessel Large Vessel

Number 2 2

Capacity in the specification (TEU) 650 950

Current utilized max capacity (t) 7444 10,880

Average fuel cost per round trip (USD) a b

Port dues (USD) c d

Table 5. High-speed wind and low visibility data and fitted distribution.

# Data Points Mean Std dev. Distribution Expression Square Error p-Value

High-speed
Wind

Interarrival
time (day) 62 30.1 52.2 0.999 + Weibull (12, 0.38)

(Scale: 12, Shape: 0.38) 0.0018 <0.005

Duration
(hour) 63 2.76 2.5 0.5 + 15*Beta (0.544, 3.07)

(alpha: 0.544, beta: 3.07) 0.0071 0.238

Low
Visibility

Interarrival
time (day) 43 34.9 59.8 0.999 + Weibull (5.76, 0.259)

(Scale: 5.76, Shape: 0.259) 0.0016 <0.005

Duration
(hour) 44 5.5 2.93 0.5 + 12*Beta (1.4, 1.9)

(alpha: 1.4, beta: 1.9) 0.0293 0.213

The best-fitted distribution for the interarrival times of both high-speed wind and low
visibility is the Weibull distribution. The beta distribution is weakly fitted to the duration
data of high-speed wind and low visibility. We employed the beta distribution for those
rather than using an experimental distribution to reduce simulation runtime.

This study also estimates CO2 and SO2 emissions as a performance metric of environ-
mental effect. The total amounts of CO2 and SO2 emissions are calculated by multiplying
the emission factors of CO2 or SO2 by the fuel consumption. According to Wei and Zhao
(2010), the emission factors of CO2 and SO2 are 3,179 g/kg marine diesel oil and 7 g/kg
marine diesel oil, respectively.

5. Results and Discussions

This section presents and analyzes the results of our numerical studies from five
different analytical perspectives.

5.1. Impact of Lowering Voyage Speed with the Current Number of Vessels

Table 6 provides the results of lowering voyage speed with the current number of
vessels (two large and two small vessels) on the system performance. The column “Product
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volume” gives the produced amounts and transported amounts of products in metric
kilo-tonnes (KT). The column “Costs” provides total cost and cost breakdown, including
rental cost, port dues, and voyage cost. In case C1, the forward and backward speed factors
are decision factors determined by the optimization model. Table 6 also includes the results
of some examined cases for the voyage speed factors to identify a meaningful pattern.

Table 6. Impact of lowering voyage speed with the current number of vessels.

Case No

Voyage Speed Factor Product Volume (KT) Costs (USD/Year)

FS BS Produced Transported Total
Cost

Rental
Cost

Port
Dues

Voyage
Cost

C0 - 1 1 3274.83 3259.32 10,020,600 4,258,330 1,889,720 3,872,540

C1

1 1 0.9 3274.83 3260.30 9,836,700 4,258,330 1,890,240 3,688,120

2 0.9 1 3274.83 3258.92 9,839,440 4,258,330 1,891,120 3,689,990

3 1 0.8 3274.83 3258.12 9,639,210 4,258,330 1,886,680 3,494,200

4 0.8 1 3274.83 3259.67 9,643,280 4,258,330 1,887,840 3,497,110

5 1 0.7 3274.83 3260.58 9,450,080 4,258,330 1,885,480 3,306,270

6 0.7 1 3274.83 3260.70 9,445,440 4,258,330 1,883,960 3,303,150

7 0.9 0.9 3274.83 3257.89 9,648,830 4,258,330 1,889,720 3,500,780

8 0.8 0.8 3274.83 3257.95 9,261,100 4,258,330 1,884,220 3,118,550

9 0.7 0.7 3274.83 3258.18 8,894,980 4,258,330 1,886,080 2,750,570

Within the considered range of the speeds, all cases could transport more than the tar-
get volume (3248 KT), which is 99% of the produced product. As the forward and backward
speeds decrease, the total costs decrease proportionally due to lower fuel consumption.
The lowest speed with the FS factor of 0.7 and BS factor of 0.7 is the most economical,
saving 11% (1,125,620 USD per year) compared with the total cost of case C0. However,
there is no meaningful difference between lowering forward and backward speeds: the
cost reduction from reducing 0.1 of the FS factor is similar to that obtained by lowering the
BS factor by the same amount.

5.2. Impact of the Number of Vessels at the Current Voyage Speed under FAFU

Figure 4 illustrates the results of case C2, in which the optimization model determines
the number of each type of vessel at the current travel speed. #LV in Figure 4 represents
the number of large vessels, and #SV is that of small vessels. Figure 4a shows the system
throughput, which is equivalent to the transported volume per year. A few cases could
not meet the target throughput (3248 KT). Either three large vessels or small vessels could
transport the target product volume. As one fewer large vessel is used, one more small
vessel is needed to meet the throughput target.

In addition, we analyze the cost breakdown structure of case C2 as shown in Figure 4b
only for the feasible cases that meet the target throughput. The left y-axis is the total cost,
and the right y-axis is the ratio of the total cost of each case of large and small vessels to the
highest total cost when (#LV, #SV) = (3, 4).

In most cases, the port dues ratios are similar and vary slightly from 0.13 to 0.16.
Port dues decrease slightly as the number of large vessels increases. Total dues decrease
because a large vessel needs fewer trips than a small vessel to transport the same amount
of products. Similarly, the voyage cost decreases slightly as the number of large vessels
increases because a large vessel has a lower unit voyage cost than a small vessel.

However, the rental cost of a large vessel is larger than that of a small vessel. Thus, as
the number of large vessels increases, the rental cost increases. There is a trade-off between
the operating cost (voyage cost and port dues) and rental cost according to the number
of large and small vessels. The smallest total cost occurs when only three large vessels
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and no small vessels are used, that is, (#LV, #SV) = (3, 0). From the result, we infer a large
vessel’s economic benefit from saving voyage cost and port dues may be better than the
disadvantage from the increasing rental cost under the considered cost structure.

Figure 4. Impact of the number of vessels at the current voyage speed under FAFU (case C2): (a) transported volume;
(b) cost breakdown.

5.3. Impact of the Number of Vessels and Voyage Speeds under FAFU

In case C3, the number of each type of vessel and forward and backward voyage
speed factors are decision variables. Even though the optimization model gives the optimal
solutions, we investigate the entire range of solution space to obtain insight into the
decision factors.

For the given numbers of each type of vessel, the voyage speed factors may or may
not affect the throughput. Such a pattern is illustrated in Figure 5a. It shows the minimum,
maximum, and average amounts of the transported products. When the number of vessels
is not sufficient: (#LV,#SV) = (0,1), (0,2), (1,0), (1,1), even higher travel speeds cannot
transport the target product volume. At the same time, when the number of vessels is
sufficient, the travel speed does not affect the throughput. However, when the number of
vessels is tight: (#LV,#SV) = (0,3), (2,0), the target transportation volume can be achieved
only at high voyage speeds.
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Figure 5. Impact of the number of vessels and voyage speeds under FAFU: (a) transported volume; (b) cost breakdown at
the optimal travel speeds.

Figure 5b shows the cost breakdown at the optimal travel speed for the number of
each type of vessel. The smallest total cost is acquired when (#LV, #SV) = (3,0), which is
the same as case C2. The variation in the port dues is also relatively minor, such as in
case C2 (see Figure 4b). However, when (#LV,#SV) = (0,3) and (2,0), the portions of the
voyage cost are 0.32 and 0.37, respectively, which are higher than that of other numbers
of vessels (0.20~0.27). This outcome is because only high speeds could meet the target
throughput when (#LV,#SV) = (0,3) and (2,0), incurring higher fuel consumption than other,
lower-speed cases.

5.4. Best Solutions and Impact of LVFU

Finally, Table 7 summarizes the best solutions for each case. In the columns #Vessel
and Speed factor, the underscored values mean that they are decision factors and have been
prescribed as the best solutions by the optimization model. Several subcolumns under
“Costs” provide detailed information for the economic performance metrics. The total cost
is the sum of the rental and operating (voyage cost and port due) costs. Column Saving
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gives the cost savings from the difference between the total costs of case C0 and the case in
each row. Column Saving (%) is calculated by the cost-saving of each case divided by the
total cost of case C0. The undercored values in #Vessel and Speed Factor mean that they
are prescribed by the optimization model.

Table 7. Comparison of vessel selection rule from the best results of all cases.

Case
Vessel

Priority

#Vessel Speed
Factor

Product Volume
(KT/Year) Costs (USD/Year)

LV SV FS BS Produced Transported Total Saving Saving (%) * Rental Operating

C0 FAFU 2 2 1 1 3275.2 3262 10,034,800 - - 4,258,330 5,776,450

C4 LVFU 2 2 1 1 3275.2 3263 9,909,600 125,200 1.2% 4,258,330 5,651,270

C1 FAFU 2 2 0.7 0.7 3275.2 3261 8,892,090 1,142,710 11.4% 4,258,330 4,633,750

C5 LVFU 2 2 0.7 0.7 3275.2 3265 8,866,310 1,168,490 11.6% 4,258,330 4,607,980

C2 FAFU 3 0 1 1 3275.2 3264 8,306,520 1,728,280 17.2% 3,285,000 5,021,520

C6 LVFU 3 0 1 1 3275.2 3264 8,306,520 1,728,280 17.2% 3,285,000 5,021,520

C3 FAFU 3 0 0.7 0.7 3275.2 3264 7,342,390 2,692,410 26.8% 3,285,000 4,057,390

C7 LVFU 3 0 0.7 0.7 3275.2 3264 7,342,390 2,692,410 26.8% 3,285,000 4,057,390

*: Saving (%) = 100 × (Total cost of C0 − Total cost of the case)/Total cost of C0.

In case C4, we applied the LVFU policy using the current number of vessels and speed.
The LVFU policy shows potential for a cost saving of 1.2% (125,200 per year) compared to
case C0. All such cost saving is from the savings in the operating costs. In case C5, which
also utilizes two large and two small vessels, the optimization model prescribed the same
speed factors as case C1 (0.7 for the FS factor and 0.7 for the BS factor). Case C5 could show
a slight cost saving of 0.2% compared to case C1. The cost savings by applying the LVFU
policy are 1.2% from case C0 to C4 at the current voyage speed and 0.2% from case C1 to
C5 at the lowest voyage speed. We infer that lowering the voyage speed may provide less
opportunity to select a large vessel from the idle vessels in the waiting area by making
most vessels travel slowly somewhere in the system.

However, the optimal number of vessels in case C6 is the same as that in case C2.
Moreover, case C7 has the same optimal number of vessels and speed factors as case C3.
The LVFU policy has not affected any results of cases C6 and C7 because the optimal
solutions for cases C6 and C7 use three large vessels only, making no difference between
FAFU and LVFU.

Overall, cases C3 and C7 generated the same best results among all cases tested, saving
26.8% (2,692,410 USD/year) of total costs compared with case C0. The number of vessels
and speed factors significantly affected the total costs. The LVFU policy has a limited effect
when the number of large and small vessels is mixed and the voyage speed is not slow.
However, the LVFU policy is still a recommendable operating option because it can be
adopted easily for practical operations.

5.5. Environmental Effect

Table 8 presents the detailed performance metrics of all cases about the number
of trips by each type of vessel, fuel consumption in metric tons (T), GHG emissions in
metric tons (T), and % reduction compared with case C0. The GHG emissions are directly
converted from the marine diesel oil consumption using the conversion factors described
in Section 4.2. Lowering the voyage speed reduces the fuel consumption significantly up
to around 30% (see cases C1 and C5). Moreover, utilizing large vessels more also shows
good environmental benefits by reducing GHG emissions by 14% (see cases C2 and C6).
Finally, our proposed optimal solutions reduce the GHG emissions up to 39% compared
with case C0 (see cases C3 and C7).
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Table 8. Fuel consumption and GHG emissions.

Case
Vessel

Priority

#Vessel Speed Factor #Trips Marine Diesel Oil
Consumption (T) Emissions (T)

Reduction (%) *
LV SV FS BS LV SV LV SV Total CO2 SO2

C0 FAFU 2 2 1 1 168 190 2589 2741 5632 17,903 39 -

C4 LVFU 2 2 1 1 190 159 2924 2285 5503 17,494 39 2%

C1 FAFU 2 2 0.7 0.7 173 183 1892 1882 3988 12,676 28 29%

C5 LVFU 2 2 0.7 0.7 180 174 1971 1781 3963 12,600 28 30%

C2 FAFU 3 0 1 1 299 - 4596 - 4856 15,437 34 14%

C6 LVFU 3 0 1 1 299 - 4596 - 4856 15,437 34 14%

C3 FAFU 3 0 0.7 0.7 299 - 3272 - 3457 10,991 24 39%

C7 LVFU 3 0 0.7 0.7 299 - 3272 - 3457 10,991 24 39%

*: Reduction (%) = (Fuel consumption of C0 − Fuel consumption of the case)/Fuel consumption of C0.

In particular, by applying the LVFU policy in case C4, GHG emissions could be
reduced 2% compared with case C0. Even though the large vessel’s fuel consumption per
trip is greater than a small vessel’s, the total number of trips could be reduced by using
large vessels more often under the LVFU policy. Accordingly, the total fuel consumption
could be decreased. However, as the voyage speeds are lowered in cases C1 and C5, the
impact of the LVFU policy on GHG emissions becomes smaller. It may be related to the
inference discussed in Section 5.4 that slowing voyage speeds may let most vessels travel
slowly somewhere, reduce the vessels idling in the waiting area, and lower the chance of
selecting a large vessel from those. From cases C6 and C7, we do not see the impact of the
LVFU policy as only large vessels are utilized.

5.6. Larger Production Volumes for Future Scenarios

The studied company has a plan to increase its production capacity in a few years.
Thus, it would be valuable to examine larger production volume cases. Table 9 presents
three additional test cases and results for double (C8), triple (C9), and quadruple (C10)
production volumes using the LVFU policy. The prescribed number of vessels and speed
factors in cases C8 and C9 show a similar pattern to the current production volume: (1) only
large vessels are utilized, and (2) the lowest speed is best.

Table 9. Large production volume cases.

Case #LV #SV
Vessel

Priority
Voyage Speed Factor Product Volume (KT) #Vessel Speed Factor

FS BS Produced Transported LV SV FS BS

C8 0~6 0~8 LVFU 0.7~1.6 0.7~1.6 6603 6580 5 0 0.7 0.7

C9 0~9 0~12 LVFU 0.7~1.6 0.7~1.6 9904 9860 8 0 0.7 0.7

C10 0~12 0~16 LVFU 0.7~1.6 0.7~1.6 12,942 - - - - -

However, in case C10, the model could not find any solution to transport more than
99% of the produced products to the destinations even with a sufficient number of vessels.
The current capacity of the plant-side port (i.e., three docks) is not sufficient to handle
such a large transportation volume, making many vessels wait to enter the port. Thus, to
quadruple the production volume, the company should invest not only in its manufacturing
facilities and vessels but also in the port infrastructure to accommodate more vessels.

6. Conclusions

The present study has successfully developed a simulation model for a closed-loop
vessel shipping system considering various uncertainties from weather and uncontrollable
delays at destination ports. Furthermore, the developed optimization model embedded in
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the simulation model prescribes the optimal number of each type of vessel and forward
and backward voyage speeds to minimize the total costs. To the best of our knowledge,
this is the first simulation and optimization study to address the proposed closed-loop
vessel dispatching problem. Further, we have devised a new vessel-use priority policy
(LVFU) and compared it with the current policy (FAFU).

The numerical studies showed that the optimal solution prescribed uses only three
large vessels at the lowest voyage speed to transport the target product volume. It could
save 26.8% (2,692,410 USD/year) of the total cost and reduce GHG emissions up to 39% com-
pared with the current operating condition. Lowering voyage speed showed a significant
impact on system performance. Additionally, a large vessel has good economic benefits
from saving the voyage cost and port dues, which are greater than the disadvantage of the
increased rental fee. Furthermore, even though the LVFU policy has a moderate effect, it
would still be a recommendable operating option to be used with the current number of
vessels and travel speed. The larger volume test results indicate that quadruple produc-
tion volume may require additional investment on the plant-side port to accommodate
more vessels.

The present study provides a useful insight and decision-support tool for industrial
managers to determine the most economical and environmentally friendly operating
conditions for a closed-loop vessel shipping system. The structure of the considered
logistics system from the manufacturing facility at a coastal area to a hub port for long-
distance transportation can be found easily in many energy and heavy industries around
the world. Thus, the presented modeling concept and approach may be applicable to
many business cases in other countries. The fruitful contribution of this study could
be strengthened by further work that may integrate the production plant maintenance
schedule and dynamic vessel speed optimization in every trip.
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