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Abstract: As an emerging technology, low-temperature plasma (LTP) is widely used in medical fields
such as sterilization, wound healing, stomatology, and cancer treatment. Great achievements have
been made in tumor therapy. In vitro and in vivo studies have shown that LTP has anti-tumor effects,
and LTP is selective to tumor cells. Studies in recent years have found that LTP can activate dendritic
cells (DC), macrophages, T cells, and other immune cells to achieve anti-tumor effects. This paper
reviews the current status of tumor immunotherapy, the application of LTP in antitumor therapy, the
activation of antitumor immunity by LTP, the possible mechanism of LTP in antitumor immunity,
and meanwhile analyses the prospect of applying LTP in tumor immunotherapy.
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1. Introduction

Recent years have seen great breakthroughs in tumor immunotherapy, which has
become an optional treatment for patients with metastatic and recurring tumors. Im-
munotherapy improves the body’s immune response by adjusting its natural defense
mechanism, thereby achieving anti-tumor effects. Low-temperature plasma is an ionized
gas close to room temperature, which can generate a large amount of reactive oxygen and
nitrogen species (RONS). LTP can directly fight tumors by damaging DNA, inhibiting cell
proliferation, and causing cell apoptosis [1]. It can also stimulate anti-tumor immunity by
regulating the functions of immune cells [2,3]. Therefore, LTP has become a new treatment
of tumors. This article will review the research advances and application prospect of LTP
in cancer immunotherapy.

2. Current Status of Cancer Immunotherapy

As a major public health hazard, cancer is a devastating disease. A variety of therapies
such as surgery, radiotherapy, chemotherapy have been developed. However, the side
effects of these therapies are often unavoidable and debilitating. Tumor immunotherapy has
recently gained attention. Significant advances have been made in tumor immunotherapy,
which has the advantages of few side-effects and solid curative effects. Immunotherapy can
activate the immune response to eradicate tumor cells. It can generate systemic, specific,
and long-term anticancer immunity. Vaccines, cytokines, antibodies, and immune cells
are used in tumor immunotherapy to enhance the specificity and memory of the immune
system against tumor cells, so as to achieve durable treatment with minimal toxicity [4].
Tumor vaccines can activate and expand tumor-specific T cells [5]. Identified key players
in the anti-tumor immune response are dendritic cells (DCs), natural killer (NK) cells,
and T cells. As DCs can activate T cells, DC vaccines have become one of the promising
methods for tumor immunotherapy. NK cells can kill tumor cells without damaging
normal tissues. The expansion and adoptive transfer of allogeneic NK cells have been
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used in patients with acute myeloid leukemia and has achieved therapeutic results [6]. In
adoptive T cell therapies, patients’ T cells are obtained and cultured in vitro, which then
reenter the patients’ body to produce an immune-mediated anti-tumor response [7]. At
present, many antibodies against cellular immune checkpoints (such as PD-1/PD-L1) have
been developed to promote the activation of T cells and to control tumors. This treatment
strategy has been proven to be particularly effective for tumors with high numbers of
mutations [8]. With deepening understanding on the immune system and continuous
improvement in technology, immunotherapy will play an increasingly important role in
tumor treatment.

3. Applications of LTP in Anti-Tumor Therapy

As one of the four states of the basic matter of the universe, plasma is an ionized gas
produced by the decomposition of polyatomic gas molecules or the removal of electrons
from a monoatomic gas shell. It is composed of ions, electrons, atoms, ultraviolet, visible
light, infrared radiation, neutral molecules, and free radicals [9]. The temperature of
plasma is determined by thermal motions of electrons and heavy particles such as atoms
and ions. In common thermal plasma, when the density of particles is high, due to intensive
collisions among electrons and heavy particles, all particles reach thermal equilibrium. The
temperature in such plasma is high, over several thousand degrees. If the atmospheric
pressure plasma discharge is fast, the electrons and heavy particles are in a thermal non-
equilibrium. In this case, the temperature of the particles is much lower than that of the
electrons. We call such plasma low-temperature plasma [10].

Since the first report on the killing effect of LTP on melanoma in 2007 [11], the ap-
plication of LTP in cancer treatment has experienced fast growth. We have previously
demonstrated that in vitro LTP inhibited cell viability of HepG2 in a dose- and time-
dependent manner and induced HepG2 cell autophagy [12]. In our previous study, a
helium atmospheric pressure plasma jet (APPJ) was used to generate plasma-activated
saline (PAS) and plasma-activated medium (PAM). PAS was injected subcutaneously to
treat B16-tumor bearing mice in vivo and PAM was used to treat B16 cells in vitro. The
results demonstrated that LTP induced melanoma apoptosis in vitro and in vivo [13]. Other
studies have reported that local treatment of mice with LTP can shrink tumors and increase
survival time [14–16]. Compared with other anti-cancer methods such as chemotherapy
and radiation therapy, LTP is advantageous in its selective anti-cancer ability [17]. That is,
when treating tumor cells and normal cells with the same defined dose of LTP, LTP can
kill tumor cells without damaging normal ones (Figure 1). Meanwhile, LTP-based cancer
therapy is unlikely to result in drug resistance, but able to accurately kill tumors deep in
the body [18]. Therefore, LTP has become a new means of treating tumors.
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4. Activation of Anti-Tumor Immunity by LTP

The development of cancer immunotherapy provides patients with better hope for
treatment. Studies have shown that LTP has an effect on the activity of immune cells and
immune response [19–21]. Two lines of research are currently pursued to disentangle the
effects of plasma treatment in anti-cancer immunity: the ability of LTP to affect immune
cells directly [22], and indirect activation of immune cells via LTP-mediated tumor cell
death and pro-inflammatory signals in the microenvironment [23].

4.1. The Impact of LTP on Non-Specific Immune Responses

Dendritic cells, macrophages, monocytes, NK cells are involved in the non-specific
immune response against tumors [24].

4.1.1. LTP Promotes Antigen Presentation of DCs

Dendritic cells have been recognized as the most potent antigen presenting cells, and
the initiator and regulator of the body’s immune response. Van Loenhout et al. [25] treated
pancreatic cancer cells with LTP-activated phosphate buffered saline solution four hours
and then co-cultured with the treated-cells with DC at a ratio of 1:1. They found that
the maturity and antigen presentation of DCs were enhanced, but their viability was not
affected. Miebach et al. [26] recently reported that colorectal cancer cells treated with
an argon-based plasma jet upregulated the expressions of CD80 and CD86 of monocyte-
derived DCs (moDCs) in co-culture. Tomic et al. [27] demonstrated that PAM-A375 lysate
potentiated the maturation of DCs by up-regulating the expressions of CD83 and CD86.
Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased
the proportion of cytotoxic T cells. Bekeschus et al. [28] found that moDCs treated with
Argon plasma expressed high levels of the costimulatory molecules, including CCR7,
CD25, CD40, CD86, CD83 and HLA-DR. Therefore, LTP can be used in vitro to promote
the maturation of DCs, increase their number, enhance the functions of mature DCs, and
activate immunotoxic T cells, so as to achieve anti-tumor effects.

4.1.2. LTP Enhances the Anti-Tumor Effects of Macrophages

Macrophages are one of the important components of the innate immune system,
essential for the local balance of inflammation and anti-inflammation. They have anti-
tumor effects [29]. Macrophages have the characteristics of high plasticity, local tissue
function specificity, and abnormal differentiation induced by inflammatory factors. Tumor-
associated macrophages can develop into either cytotoxic M1 or M2 macrophages depend-
ing on the tumor microenvironment. M1 macrophages are able to kill tumor cells, while
M2 macrophages produce factors that suppress T cell proliferation and activity [30]. By
reducing M2 and enhancing the function of M1, tumors caused by an impaired immune
response can be controlled. Nagendra et al. [31] found that LTP acted as an immunomodu-
lator for immune cell activation, stimulating the polarization of M1/M2 macrophages. The
co-cultivation of tumor cells and LTP-activated macrophages reduced the invasiveness of
tumor cells, and polarized macrophages weakened the maintenance ability of tumor stem
cells. LTP-treated medium increased the number of macrophages and decreased that of
M2. Liedtke et al. [32] injected plasma-activation solution into pancreatic mice abdominal
cavities, and found that the expression of CD206 (M2 marker) was significantly reduced.
Miller et al. [33] found that low-plasma-treated macrophages showed an increased mi-
gratory activity and mediated tumor cell killing in a TNF-α-mediated manner. Khabipov
et al. [34] studied plasma exposure of pancreatic ductal adenocarcinoma (PDA), and sub-
sequent co-culture with macrophages significantly reduced the number of macrophage
clusters compared to untreated PDA cells. Therefore, tumor therapy by targeting pro-
inflammatory macrophages may become an attractive anti-tumor treatment strategy.
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4.1.3. LTP Effects Other Non-Specific Immune Cells

Neutrophils are one of the immune cells existing in the tumor microenvironment.
Tumor-associated neutrophils have been proven to have functional plasticity, whose func-
tions and phenotypes are polarized differently at different stages of the tumor [35]. The
formation of neutrophil extracellular traps (NETs) increased after LTP treatment [36]. Xu
Dehui et al. [37] used LTP-activated water to gavage immunodeficient mice, and found
that neutrophils and monocytes in the blood slightly increased. Liedtke et al. [32] injected
PAM into mice seven days after tumor challenge and analyzed the changes in intratumoral
immunological profile. The results demonstrated the number of neutrophils increased
in the treatment group. However, there are no reports on the effects of LTP on other
innate immune cells such as NK cells and mast cells. Our team has explored the effects of
plasma-activated saline on NK cells and found that an appropriate dose of LTP-activated
saline promoted the vitality and killing activity of NK-92MI cells, while excessive doses
inhibited their viability and killing activity.

4.2. The Impacts of LTP on Specific Immune Responses

T cells and B cells play an important role in the specific immune response. Freund et al. [38]
found that LTP-treated saline increased the activity of T cells. Long-time LTP treatment
caused the death of many cells, whereas T cells still maintained the ability to activate
and divide. Haertel et al. [19] analyzed the effect of dielectric barrier discharge (DBD)
on subsets of lymphocytes and found that after a short time (5 s) of LTP exposure, the
number of T cells increased slightly, indicating that short-term LTP exposure promoted
the proliferation of T cells. However, with an increase in treatment time, the number of T
cells began to decrease after 20 s, while the number of Th cells started to decrease after 60 s.
The increase of B cells indicated that the lymphocytes were selectively sensitive to LTP
depending on the time of LTP treatment. Liedtke et al. [32] identified a significant increase
of T cells in murine tumors repeatedly exposed to plasma-treated medium.

4.3. The Effects of LTP on Other Immune Cells

In addition to effecting the function of non-specific and specific immune cells, LTP can
also promote activity of mixed cells extracted from immune organs and enhance anti-tumor
effects. A study reported that LTP-treated prostate cancer cells increased the viability
and toxicity of bone marrow cells [39]. Rödder et al. [40] found when LTP-treated mouse
spleen cells were co-cultured with B16-F10 cells, spleen cells produced more inflammatory
cytokines and enhanced the anti-tumor effects.

5. Anti-Tumor Immune Mechanism of LTP
5.1. The Oxidative Stress Toxicity of LTP

LTP produces oxidative stress. RONS, charged particles, ultraviolet radiation and
electromagnetic fields, all of which can play a role and produce synergy in the therapy of
cancer [41]. Among them, RONS is the most important element of LTP to kill tumors. LTP
treatment increased intracellular ROS [42], which causes DNA double strands to break [43].
DNA damage results in cell apoptosis [44] and decreases the cell viability of tumor [45]
(Figure 2).

5.2. The Relationship between RONS and Immune Response

Studies have shown that RONS participated in immune response. For example, H2O2,
O2

−, OH, NO, ONOO− and NO2
− participated in the phagocytosis of microorganisms

of macrophages. NO affected the synthesis and secretion of cytokines (TNF-α, IFN-γ,
IL-1, IL-6, etc.) of immune cells (macrophages, NK cells, T cells). RONS increased the
number of macrophages [46]. Some RONS affected the cross-presentation antigen of den-
dritic cells, migration of macrophages, and regulation of cytokine receptor expression [7].
Mizuno et al. [47] treated B16-F10 melanoma with plasma. The tumor grew on both legs,
but only the tumor on the right side was directly exposed to the plasma. It found that
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the tumor growth on both sides was inhibited. This result indicated that plasma could
trigger the innate immune response through signal transmission. Therefore, we infer
that RONS produced by LTP would cause changes in the immune response via related
signaling pathways.

Appl. Sci. 2021, 11, 9618 5 of 9 
 

 

Figure 2. The oxidative stress toxicity of LTP. LTP cause the increase of intracellular ROS, which 

leads to DNA damage and mitochondrial damage, thus leading to the cell apoptosis. 

5.2. The Relationship between RONS and Immune Response 

Studies have shown that RONS participated in immune response. For example, H2O2, 

O2
−, OH, NO, ONOO− and NO2

− participated in the phagocytosis of microorganisms of 

macrophages. NO affected the synthesis and secretion of cytokines (TNF-ɑ, IFN-γ, IL-1, IL-

6, etc.) of immune cells (macrophages, NK cells, T cells). RONS increased the number of 

macrophages [46]. Some RONS affected the cross-presentation antigen of dendritic cells, 

migration of macrophages, and regulation of cytokine receptor expression [7]. Mizuno et al. 

[47] treated B16-F10 melanoma with plasma. The tumor grew on both legs, but only the 

tumor on the right side was directly exposed to the plasma. It found that the tumor growth 

on both sides was inhibited. This result indicated that plasma could trigger the innate 

immune response through signal transmission. Therefore, we infer that RONS produced by 

LTP would cause changes in the immune response via related signaling pathways. 

5.3. LTP Induces Immunogenic Cell Death 

Immune tolerance refers to the fact that tumor cells lack one or more components 

which are necessary to effectively stimulate the body’s immune system. When some 

physical and chemical factors induce the apoptosis of tumor cells, tumor cells are 

transformed from non-immunogenic to immunogenic, which is called immunogenic cell 

death (ICD). ICD activates specific T lymphocytes and specific immune response to 

eliminate tumors. When ICD occurs, immunostimulatory molecules damage associated 

molecular patterns (DAMPs), are released from or displayed by the dying cells. 

Calreticulin (CRT), Adenosine Triphosphate (ATP) and High Mobility Group Box 1 

(HMGB1) are well-known DAMPs that are released outside cells in response to ICD. More 

and more studies have shown that the oxidation produced by LTP induces immunogenic 

death of cells, causing an increase of DAMPs. In fact, ATP serves as a “Find Me” signal 

and CRT acts as an “Eat Me” signal for immune cells [48]. The DAMPs stimulate an 

immune response by stimulating antigen-presenting cells. The uptake of tumor antigens 

by dendritic cells was increased. Then, DCs presented tumor antigens to anti-tumor T cells 

[41] (Figure 3). Lin [49] et al. used non-thermal plasma to induce ICD in A549 lung cancer 

cells, and found secreted danger signals from cells undergoing immunogenic death 

enhanced the anti-tumor activity of macrophages. 

Figure 2. The oxidative stress toxicity of LTP. LTP cause the increase of intracellular ROS, which leads to DNA damage and
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5.3. LTP Induces Immunogenic Cell Death

Immune tolerance refers to the fact that tumor cells lack one or more components
which are necessary to effectively stimulate the body’s immune system. When some physi-
cal and chemical factors induce the apoptosis of tumor cells, tumor cells are transformed
from non-immunogenic to immunogenic, which is called immunogenic cell death (ICD).
ICD activates specific T lymphocytes and specific immune response to eliminate tumors.
When ICD occurs, immunostimulatory molecules damage associated molecular patterns
(DAMPs), are released from or displayed by the dying cells. Calreticulin (CRT), Adenosine
Triphosphate (ATP) and High Mobility Group Box 1 (HMGB1) are well-known DAMPs
that are released outside cells in response to ICD. More and more studies have shown
that the oxidation produced by LTP induces immunogenic death of cells, causing an in-
crease of DAMPs. In fact, ATP serves as a “Find Me” signal and CRT acts as an “Eat Me”
signal for immune cells [48]. The DAMPs stimulate an immune response by stimulating
antigen-presenting cells. The uptake of tumor antigens by dendritic cells was increased.
Then, DCs presented tumor antigens to anti-tumor T cells [41] (Figure 3). Lin [49] et al.
used non-thermal plasma to induce ICD in A549 lung cancer cells, and found secreted
danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity
of macrophages.
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5.4. LTP Regulates the Tumor Microenvironment

Immune escape is one of the important mechanisms of malignant tumors. The tumor
microenvironment (TME) is considered the main reason for immune suppression and
evasion of immune surveillance. The tumor microenvironment plays an important role
in the survival, growth, invasion, and metastasis of tumor cells. The immunosuppressive
molecules and inhibitory molecules in the TME can affect the function of immune cells [50].
Due to the tumor microenvironment, many targeted therapies have failed to achieve
desired results. LTP not only affects the tumor cells themselves, but also regulates the TME.
It has been observed that long-term LTP treatment inhibited cell viability and collagen
production of murine fibroblasts [51]. LTP could lead to increased cytotoxicity and a sharp
decrease in the release of VEGF. Nagendra et al. [31] found plasma exposure not only
decreased M2 macrophages, but also remarkably increased the expressions of IL-1α, IL-1β,
IL-6 and TNF-α. The microenvironment is changed by LTP to prevent the growth and
metastasis of tumors, and to inhibit immune cells, achieving a lasting therapeutic effect.

6. Prospects and Challenges

It has been proven that LTP can treat a variety of malignant cancers. LTP can kill
tumors directly, and can kill cancer cells by affecting the functions of immune cells such
as DC, macrophages and T cells. LTP can induce immunogenic cell death of tumor cells,
regulate tumor microenvironment, and increase immune response to kill tumors. There-
fore, LTP stimulating the immune response is key to improving the cure rate of patients.
However, current research on LTP in cancer immunotherapy has the following problems.
First, studies of LTP in immunotherapy are still in their infancy, most of which are in vitro
tests. Further animal or clinical experiments are needed to explore the anti-tumor effects of
LTP by activating immune cells. Second, the underlying mechanism of LTP stimulating
the immune response is still unclear. Third, as immune cells are affected by LTP in a
time-/dose-dependent manner, it is difficult to determine the optimal LTP dose to activate
the body’s immune response. Our team [19] treated peripheral blood lymphocyte samples
of 20 healthy adult volunteers with LTP, and found that when low doses of LTP were used,
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lymphocyte activity was activated. Fourth, immune cells have different sensitivities to LTP.
Therefore, when LTP is used to stimulate the immune response, the key is to use the best
time and method to treat different immune cells. This is also a huge challenge for LTP in
tumor immunotherapy.
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