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Abstract: To solve the challenge of single-channel blind image separation (BIS) caused by unknown
prior knowledge during the separation process, we propose a BIS method based on cascaded
generative adversarial networks (GANs). To ensure that the proposed method can perform well
in different scenarios and to address the problem of an insufficient number of training samples, a
synthetic network is added to the separation network. This method is composed of two GANs: a
U-shaped GAN (UGAN), which is used to learn image synthesis, and a pixel-to-attention GAN
(PAGAN), which is used to learn image separation. The two networks jointly complete the task
of image separation. UGAN uses the unpaired mixed image and the unmixed image to learn the
mixing style, thereby generating an image with the “true” mixing characteristics which addresses the
problem of an insufficient number of training samples for the PAGAN. A self-attention mechanism is
added to the PAGAN to quickly extract important features from the image data. The experimental
results show that the proposed method achieves good results on both synthetic image datasets
and real remote sensing image datasets. Moreover, it can be used for image separation in different
scenarios which lack prior knowledge and training samples.

Keywords: blind image separation; generative adversarial networks; visual attention; remote sensing
images

1. Introduction

Any image that is disturbed or polluted can be regarded as the superposition of two
unknown types of source information. For instance, a reflection image can be regarded as
the superimposition of a reflection source and the background source and, for the problem
of dehazing removal, a ground source is superimposed onto a haze source. Therefore,
blind image separation (BIS) techniques are suitable for solving a variety of similar image
processing problems and play an important role in image processing tasks [1–3].

Traditional BIS methods need to obtain partial prior knowledge of the images and they
use the prior characteristics of sources such as statistical independence, sparsity, and non-
Gaussian distributions to separate images [4–6]. Yu et al. [7] used a sparse constraint and
feedback mechanism to extract image sources. Xu et al. [8] identified a single source point
by comparing the absolute direction between the diagonal and horizontal components
of the Haar wavelet coefficients of a mixed image. Their method requires that the source
have a sufficient sparsity after wavelet transformation. Because most mixed images in
practice lack the corresponding prior knowledge, it is difficult to realize separation via the
traditional methods, especially in a single-channel scenario.

Recently, generative adversarial networks (GANs) attracted substantial attention
from researchers because of their strong ability to generate new samples following the
statistical characteristics of a training dataset [9–12]. GANs were successfully applied to
BIS. Li et al. [13] proposed a two-stage, single-image reflection removal algorithm that used

Appl. Sci. 2021, 11, 9416. https://doi.org/10.3390/app11209416 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6688-5014
https://orcid.org/0000-0003-3060-7295
https://doi.org/10.3390/app11209416
https://doi.org/10.3390/app11209416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209416
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209416?type=check_update&version=1


Appl. Sci. 2021, 11, 9416 2 of 10

feature reduction to suppress reflection components. It was combined with the generation
of confrontation networks to complete the reconstruction of the background image gradient
and separate the background layer from the reflection image. Halperin et al. [14] presented
the neural egg separation (NES) network, which used generated features to semi-supervise
and separate mixed images which had a simple composition, but it was not sophisticated
enough to process complex mixed images. Zhao et al. [15] introduced a dehazing removal
network called multi-scale optimal fusion (MOF), which was an end-to-end convolutional
neural network system for dehazing, comprising feature extraction, local extreme values,
nonlinear regression, and multi-scale mapping, but it was difficult to use to separate natural
images. Sun et al. used a GAN [16] to handle BIS tasks, but the processing images were
simple and did not consider multiple application scenarios.

These existing methods lack a general solution and, when processing training samples,
the problem of accurate sample pairing is ignored. Using remote sensing image dehazing as
an example, for the training network, both the haze image and clear image are essential [17],
but in actual situations, it is difficult to obtain accurate paired data, and this affects the
modeling of image dehazing [18]. Therefore, when considering the problem of image
separation, it is necessary to design a universal network that can learn the image mixing
model and generate realistic mixed images. In this article, we analyze the characteristics
of BIS and build a cascade of GANs for BIS which consists of a UGAN for learning the
image mixing and a PAGAN for guiding the image separation. It solves the single-channel
BIS problem and applies it to more scenarios. The main contributions of this work can be
summarized as follows:

• A BIS method based on a cascade of GANs including a UGAN and a PAGAN is
proposed. The goal of the UGAN is to train a generator that can synthesize new
samples following examples of clear images and interference sources. In contrast to
the UGAN, the goal of the PAGAN is to train a generator that can separate synthesized
images. Moreover, a self-attention module is added to the PAGAN to reduce the
difference between the generated image and the ground truth.

• The organic combination of a synthetic network and a separation network addresses
the problem that the training of a deep learning model is difficult due to the lack of
paired data.

• The proposed method is suitable for both natural image separation and remote sensing
image separation, and it has an excellent generalization ability.

The rest of the paper is organized as follows. In Section 2, we present the network
architectures, including the model structure, loss function, and other details. In Section 3,
the evaluation index, datasets, and the experimental results are presented. Finally, Section 4
provides the conclusion and a summary of the results obtained.

2. Materials and Methods
2.1. Overall Architecture

In this section, we describe the architecture of the proposed cascade of GANs and the
loss function, and Figure 1 presents the proposed framework and the training process.
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As shown in Figure 1, during the training phase, the clear image and interference
source are input into the UGAN generator, which generates an image with interference.
UGAN’s output image serves as PAGAN’s input, guiding PAGAN to separate the image.
The generators in the UGAN and PAGAN modules, respectively generate the correspond-
ing images following distributions that are similar to that of the ground truth so that they
are as close to the real image as possible. In the test process, only the PAGAN is required
for the BIS task.

2.2. UGAN

The UGAN module simulates the process of disturbing a clear image, and directly
generates an image containing the interference source on the clear image. The UGAN
comprises a generator and a discriminator, and its structure is shown in Figure 2.
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UGAN Generator. The input of the UGAN generator comprises a clear image and
an interference source from a common dataset. We use a U-net [19] model as a whole,
which includes eight convolution layers and eight deconvolution layers. Each convolution
layer has a LReLu layer in front of it and a batchnorm layer behind it except the first one.
Similarly, except for the last deconvolution layer, each deconvolution layer has a ReLu
layer in front of it and a batchnorm layer behind it. Specifically, to improve the efficiency of
the network and better preserve the details of the image, we also concatenate the features
at the convolution side to the deconvolution side at each layer. In this way, a mixed image
the same size as the input can be generated.

UGAN Discriminator. The purpose of the UGAN discriminator is to ensure that the
mixed image generated by the UGAN generator follows the sample distribution of the
real mixed image. The main architecture consists of five deconvolution layers. The loss
between the ground truth and the generated image is calculated by the loss function. The
discriminator determines whether the generated mixed image distribution conforms to the
real image distribution, and outputs the possibility that it conforms to the real distribution.

2.3. PAGAN

The goal of PAGAN is to separate the source image from the mixed image more
effectively. To achieve this, a self-attention module [20] is added to the network, which
improves the convolution efficiency and the ability to capture long-range dependencies.
The generator can draw the source from the mixed image, which follows the sample
distribution of the real image. The discriminator can discriminate the image drawn by the
generator, and in this way, it can ensure that the image drawn by the generator is closest to
the real image. The PAGAN structure diagram is shown in Figure 3.

PAGAN Generator. The input of the PAGAN generator is a mixed image. We also use
the structure of U-net and skip connection. The self-attention module is added after the
fourth convolution module to improve the efficiency of capturing the image dependence by
convolution. The self-attention module feeds the self-attention feature map with position
feature weights to the next convolution layer, which improves the ability of the convolution
layer to capture the remote features. The self-attention module can also implement a global
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constraint for the image and improve the performance of generation. The output of the
PAGAN generator is a clear image the same size as the input image.
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PAGAN Discriminator. The discriminator takes the same measures as the generator
to capture the detailed remote features of the image, it also incorporates a self-attention
module after the fourth deconvolution module. The discriminator determines whether the
generated clear image distribution conforms to the real image distribution, and outputs
the possibility that it conforms to the real distribution.

2.4. Loss Function

In the training process, we use a generated image and a real image, respectively, to
train the GAN generators’ and discriminators’ anti-loss. In addition, in order to improve
the performance of the loss function, the L1 is also used to participate in training [11,21].

Given an observation image X, a random interference vector z and an objective image
Y, GAN learns the mapping from X and z to Y, that is, G : {X, z} → Y . The process of the
UGAN and PAGAN can be expressed as follows:

LGAN(G, D) = EX,Y[log D(X, Y) +EX,Y[log(1− D(X, G(X, z)))]], (1)

where G (the generator) attempts to minimize this objective to generate an image that
is more consistent with the true distribution, and D (the discriminator) maximizes the
objective to improve its discriminability. The processing of the G and the D with the
objective can be expressed as follows:

G∗ = argmin
G

max
D

LGAN(G, D). (2)

Existing methods prove that it is effective to combine the GAN objective with a
traditional loss method, such as L1 distance [21]. The discriminator only models the
high-frequency structures of the image and, on the contrary, the L1 loss measures the
low-frequency structures. The generator is tasked not only with tricking the discriminator
but also with generating content near the ground truth output in an L1 sense, that is:

L1(G) = EX,Y,z[‖ Y− G(X, z) ‖1]. (3)

The final objective is:

G∗ = argmin
G

max
G

LGAN(G, D) + λL1(G), (4)
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where λ is the weight coefficient of the L1 loss.

3. Experiments

To test the performance of the method, we selected natural images and remote sensing
images as datasets. For the natural image datasets, we compared the results of the proposed
method with the results of the classic BIS method, called non-negative matrix factorization
(NMF) [5], fast independent component analysis (FastICA) [22], and the state-of-the-art
network generation methods, NES and the method of Yang et al. [23]. In the remote sensing
image datasets, because of a lack of BIS methods for remote sensing images, we compared
the datasets with four dehazing removal methods (the color attenuation prior (CAP) [24],
dark channel prior (GDCP) [25], gated context aggregation network (GCANet) [26], and
MOF model [15]).

3.1. Evaluation Indices

As evaluation indices, we selected the peak signal-to-noise ratio (PSNR) [27] and
structural similarity index (SSIM) [27] for the objective assessment.

PSNR evaluates the pixel difference between the separated image and the real image.
The PSNR is defined as follows:

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
, (5)

where MAXI is the maximum value representing the color of the image point; a higher
PSNR value indicates a smaller distortion.

From the perspective of image composition, the SSIM regards the structural informa-
tion as independent of brightness and contrast, which reflects the properties of the object
structure in the scene, and the distortion is measured as a combination of three different
factors of brightness, contrast and structure. SSIM is defined as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (6)

where µx is the average of x, µy is the average of y, which are estimates of brightness; σ2
x is

the variance of x, σ2
y is the variance of y, and σxy is the covariance of x and y, the variance

is an estimate of contrast, and covariance is a measure of structural similarity. Moreover, to
maintain stability, two constants, c1 = (k1L)2 and c2 = (k2L)2, are added, L is the dynamic
range of pixel values, k1 = 0.01, and k2 = 0.03 The range of the SSIM values is [0, 1].

3.2. Datasets

The natural images are from datasets of shoe and bag images. We selected 1000 images
from both the shoe dataset [28] and bag dataset [29] as known samples and performed
UGAN processing on the selected images. After processing, 600 images were used as train-
ing samples, and 400 images were used as test samples. To test the separation performance
of the PAGAN, we also selected 1200 images from both the shoe and bag datasets as known
samples and randomly mixed the selected images at a ratio of 7 to 3. In this way, we could
test the ability of PAGAN to separate strong sources from synthetic mixed images, and
prove the separation performance of the network. Of these images, 1000 were used as
training samples and 200 images were used as test samples. For different datasets, we
trained models separately for testing.

Because of the potential demonstrated by our method, we further extended our
proposed method to the practical application of remote sensing images and conducted
experiments on different remote sensing image datasets.

For the remote sensing image datasets, two benchmark datasets from RICE [30]
were adopted: RICE-I and RICE-II. RICE-I was collected from Google Earth, and it con-
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tained a total of 500 pairs of cloud and corresponding cloudless images with a size
of the 512 × 512 pixels [30]. The coverage areas of these images did not overlap each
other. The image size in the RICE-II dataset was the same as that in RICE-I, which was
512 × 512 pixels. The RICE-II dataset contained 700 pairs of images without overlapping,
and this dataset was part of the Landsat 8 OLI/TIRS dataset [30].

3.3. Experimental Results of the Natural Image Dataset

The UGAN was used to generate the mixed images by adding a yellow haze inter-
ference on the clear shoe image source. Next, the generated results were input into the
PAGAN to train them to separate the clear shoe image source from the mixed source.

As shown in Figure 4, we see that NMF and FastICA cannot separate the image from
the interference source. The single-image reflection removal algorithm proposed by Yang
et al. also cannot separate the images. NES can separate the image, but the color is not clear.
In contrast, the separation effect of our method is better than those of the other methods.
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To further evaluate the separation performance, we carried out experiments on a
dataset synthesized from two images. As mentioned before, the purpose of the experi-
ment was to separate the image of the larger weight from the synthetic image. Figure 5
shows three groups of results for the synthetic images. NMF and FastICA were ineffec-
tive at separating the two image sources, whereas the NES and single-image reflection
removal methods could not clearly separate the image. In contrast, our method achieved
better results.

Table 1 lists the objective measurement results for each set of experiments. In Table 1,
we can see the PSNR (dB)/SSIM scores of several image separation methods on these
two datasets. The separated image is said to be closer to its ground truth if it has a higher
PSNR value, while a higher SSIM score means that the result is more similar to its reference
image in terms of image brightness, contrast and structure. It can be observed from Table 1
that the proposed method achieves the best performance on two of the datasets, and
outperforms NMF, FastICA, NES, and Yang et al.’s method with respect to both PSNR and
SSIM. This substantiates the flexibility and generality of our proposed method in diverse
mixing types contained in these datasets.
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Table 1. Shoe and bag image results (PSNR, SSIM).

PSNR (dB)/SSIM NMF FastICA NES Yang [22] Ours

Yellow haze images 15.02/0.42 12.67/0.15 19.75/0.63 15.70/0.45 25.92/0.89
Synthesized images 23.79/0.70 14.70/0.55 20.56/0.78 21.37/0.71 23.84/0.88

3.4. Experimental Results of the Remote Sensing Image Dataset

Compared with the natural image, the remote sensing image contains more detailed
ground information. In the process of acquiring the remote sensing image, due to the
atmospheric environment and other reasons, the acquired images are covered by haze and
other related shadows; how the images are contaminated is unknown. Therefore, remote
sensing image dehaze is an application of BIS.

Qualitative comparisons of the remote sensing image results are shown in Figure 6.
The results show that CAP can only reduce part of the haze but cannot remove the haze
completely. Especially, the details of the remote sensing image cannot be restored well.
The dehazing results of GDCP, MOF and GCANet show that the obtained images have
different degrees of spectral distortion, and the original image cannot be accurately restored
by the three methods. When compared with other algorithms, the proposed method can
better recover the ground truth of the remote sensing image from haze images without
spectral distortion.

To further explore the processing of other particles in the atmosphere by the separation
method, a comparative removal experiment was performed on the remote sensing image
with thin clouds. In contrast to the haze, the clouds had multiple distribution types
and different thicknesses. The uncertainty of cloud distribution, thickness, and other
information conformed to the characteristics of the blind images [31,32]. Therefore, cloud
removal from the remote sensing images was also an image separation problem in the field
of BIS. The experimental results are shown in Figure 7. The proposed method effectively
reconstructed the information from the clouds and shadows. From the perspective of visual
results, it was significantly better than the comparison methods.

A quantitative comparison of the results of dehazing and cloud removal is shown
in Table 2. The results show that our method achieves the best values of all comparison
methods. Compared to the previous most effective technique, our method achieves a
0.21 improvement in SSIM and 0.18 dB in PSNR in the RICE-II dataset, and achieves a
1.41 dB improvement in PSNR in the RICE-I dataset. This demonstrates that the proposed
method better enhances the visibility of the separation scenes under the same mixing
components. Therefore, it is suitable for the separation of remote sensing images.
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Table 2. Remote sensing image results (PSNR, SSIM).

PSNR
(dB)/SSIM CAP GDCP MOF GCANet Ours

RICE-I 24.51/0.82 20.35/0.83 16.64/0.73 19.93/0.80 25.92/0.85
RICE-II 20.97/0.61 17.18/0.54 18.04/0.48 19.16/0.56 21.15/0.82

4. Discussion

In this article, we proposed a BIS method based on cascaded GANs that can perform
the image separation task without multiple prior constraints. This method uses the UGAN
to learn image mixing, which solves the problem of unpaired samples in the training
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process; the PAGAN is used to learn image separation. The PAGAN module adopts a
self-attention mechanism to implement complex geometric constraints on the global image
structure more accurately. The proposed method is suitable for different scenes, and
extensive experiments demonstrate that it is able to provide competitive and high-quality
separation results for both natural images and remote sensing images. In the future, we
will continue to explore a unified framework that is more suitable for single-channel BIS
and further expand the applicability and portability of this method.
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