
applied  
sciences

Article

Dwell Time Estimation of Import Containers as an Ordinal
Regression Problem

Laidy De Armas Jacomino 1,* , Miguel Angel Medina-Pérez 2 , Raúl Monroy 2 , Danilo Valdes-Ramirez 1,2 ,
Carlos Morell-Pérez 3 and Rafael Bello 3

����������
�������

Citation: De Armas Jacomino, L.;

Medina-Pérez, M.A.; Monroy, R.;

Valdes-Ramirez, D.; Morell-Pérez, C.;

Bello, R. Dwell Time Estimation of

Import Containers as an Ordinal

Regression Problem. Appl. Sci. 2021,

11, 9380. https://doi.org/

10.3390/app11209380

Academic Editor: Seungmin Rho

Received: 28 June 2021

Accepted: 9 September 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ciencias Informáticas y Exactas, Universidad de Ciego de Ávila, Ciego de Ávila 65100, Cuba;
A01746752@itesm.mx

2 School of Science and Engineering, Tecnologico de Monterrey, Carretera al Lago de Guadalupe Km. 3.5,
Atizapán 52926, Mexico; migue@tec.mx (M.A.M.-P.); raulm@tec.mx (R.M.)

3 Department of Computer Sciences, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní
Km. 5.5, Santa Clara 50100, Cuba; cmorellp@uclv.edu.cu (C.M.-P.); rbellop@uclv.edu.cu (R.B.)

* Correspondence: laidy@unica.cu; Tel.: +53-5801-7550

Featured Application: Knowing the departure date of each container is paramount to schedul-
ing an optimal stacking in container terminals, and thus, reducing the fuel consumption of the
yard cranes. Supervised classification algorithms are typical for estimating such a dwell time.
However, we show that an ordinal regression algorithm outperforms the supervised classifica-
tion algorithms regarding the mean absolute error and the reshuffles generated. This research
has been applied in an inbound yard from Cuba as part of a project for the optimization of the
import container flow. Our results can state a baseline for further dwell time estimation systems.

Abstract: The optimal stacking of import containers in a terminal reduces the reshuffles during the
unloading operations. Knowing the departure date of each container is critical for optimal stacking.
However, such a date is rarely known because it depends on various attributes. Therefore, some
authors have proposed estimation algorithms using supervised classification. Although supervised
classifiers can estimate this dwell time, the variable “dwell time” takes ordered values for this
problem, suggesting using ordinal regression algorithms. Thus, we have compared an ordinal
regression algorithm (selected from 15) against two supervised classifiers (selected from 30). We have
set up two datasets with data collected in a container terminal. We have extracted and evaluated
35 attributes related to the dwell time. Additionally, we have run 21 experiments to evaluate both
approaches regarding the mean absolute error modified and the reshuffles. As a result, we have
found that the ordinal regression algorithm outperforms the supervised classifiers, reaching the
lowest mean absolute error modified in 15 (71%) and the lowest reshuffles in 14 (67%) experiments.

Keywords: dwell time estimation; attribute selection; ordinal regression algorithms; performance
metrics for ordinal regression

1. Introduction

Optimization problems arise during the operations of stacking containers in the yard
of a terminal [1]. One of those is the container Storage Space Allocation Problem (SSAP), a
particular case of the storage location assignment problem [2–5]. SSAP consists of finding
the best allocation for each container in a yard minimizing a criterion such as the number
of container reshuffles or the crane traveling distance [6]. Operators store arrival containers
in multi-level stacks to save storage space using yard cranes. Only containers at the top
are accessible by yard cranes. Reaching intermediate containers of the stacks provokes
reshuffles. Then, a reshuffle is an unproductive movement of the crane due to inadequate
allocation of some containers [5,6].
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To reduce the reshuffles, operators need to know a priori the dwell time of each
arriving container. The dwell time of a container measures the days (hours or weeks) that it
shall stay in the yard [7]. We shall refer to dwell time as the dwell time of import containers
in a yard of a container terminal. Predominantly, the actual dwell time is unknown because
the departure date to its client depends on several attributes [8]. Thus, operators employ
their expertise or some algorithms to estimate the dwell time. By reducing the reshuffles,
container terminals lessen their operation time and fuel consumption.

Two approaches are commonly used for estimating the dwell time. The first is an
empirical approach based on the operators’ knowledge [9–13]. The second is an approach
based on statistical and machine-learning algorithms [7,8,14–18]. The proposals of machine-
learning algorithms to estimate the dwell time have employed supervised classification
algorithms [14,16,17] and regression algorithms [7,18]. Nevertheless, the estimation of
the dwell time is still considered an open problem because none of these approaches has
satisfied the demands of containers yards [6,7,17,19,20].

Recent studies have solved similar problems with ordinal regressors based on deep
neural networks and other machine-learning algorithms, e.g., image ordinal estimation [21],
knee osteoarthritis severity [22], degree of building damage [23], and Twitter sentimental
analysis [24]. These problems present a class attribute with an ordinal domain, such as the
dwell time of import containers in a yard. The algorithms proposed in such studies have
improved their accuracies employing ordinal regression methods. In contrast, research
works proposing machine-learning algorithms for estimating the dwell time [7,8,14–18],
have not explored ordinal regression methods. Thus, we have considered that there is
room for improvements estimating the dwell time with ordinal regressors.

In this research, we have stated the estimation of the dwell time as an ordinal regres-
sion problem. We have considered that modeling and solving this problem using ordinal
regression algorithms, instead of as a supervised classification or regression problem, we
can reduce the reshuffles compared to those obtained by means of supervised classifica-
tion algorithms. Additionally, we have performed attribute engineering by extracting,
selecting, and evaluating several attributes. Consequently, this work makes the following
contributions:

1. We have stated and solved, for the first time, the estimation of the dwell time of
import containers in a terminal as an ordinal regression problem showing that the
ordinal regression approach outperforms the supervised classification approach.

2. We have constructed and evaluated a set of 35 attributes obtained from the operators’
knowledge and the storage data. We have reported, for the first time in the literature,
the evaluation of

(a) Twenty-four attributes related to the weather forecast at the yard and the
destination.

(b) The distance between the yard and the destination of the container.
(c) Clusters of containers with similar characteristics.
(d) An estimated dwell time using the formula to compute the CPU burst time

due to its similarity with our problem.

The remainder of this paper is organized as follows. In Section 2, we present our
analysis of some previous proposals for estimating dwell time. Next, we describe materials
and methods for modeling and solving the estimation of the dwell time in Section 3. We
discuss our results and findings using two datasets built with data collected between 2014
and 2017 in Section 4. Finally, we state our conclusions future applications, and future
work in Section 5.

2. Related Work

Some authors have proposed solutions for estimating the dwell time using sta-
tistical and supervised learning algorithms [7,14–18]. For example, Moini et al. [14],
Gaete et al. [16], and Kourounoti [17] stated the estimation of the dwell time as supervised
classification problems. Later, Maldonado et al. [7] also modeled this problem as a re-
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gression problem and evaluated the performance of regression algorithms in addition to
supervised classification algorithms.

Moini et al. [14] compared the performance of the algorithms naive Bayes, decision
tree, and a hybrid called NB-decision tree to estimate the dwell time. The authors proposed
as the class attribute the number of days that a container stays in the yard. They used three
metrics to assess the performance of the algorithms, the percentage of instances correctly
classified, the Kappa statistic, and the root mean square error.

Gaete et al. [16] evaluated the performance of the algorithms k-nearest neighbor,
naive Bayes, One Rule, Repeated Incremental Pruning to Produce Error Reduction, K*,
Decision Table, and Zero Rule estimating the dwell time. Their class attribute includes
approximately 175 classes obtained from a discretization of the days those containers stay
in the yard. To measure the performance of these algorithms, the authors computed the
percentage of correctly classified instances, Kappa, and medium square error.

Kourounoti [9] implemented an artificial neural network to estimate the dwell time for
a container terminal. The class attribute proposed was the number of days that a container
stays in the yard. The author considered three evaluation measures, correctly classified
instances, Kappa statistic, and root mean squared error.

Maldonado et al. [7] explored the performance of three algorithms, multiple linear
regression, decision trees, and random forest, estimating the dwell time of containers. They
compared the mean absolute percentage error for regression algorithms and balanced
accuracies for supervised classifiers. The authors assumed the dwell time as a continuous
attribute for regression algorithms. However, they discretized the dwell time in three
classes (less than a week, between one and two weeks, and more than two weeks) for
classification algorithms.

These authors have mainly focused on the selection of the algorithm and the selection
of the performance metrics. Nevertheless, a third concern about the dwell time estimation
consist of determining what type of machine-learning problem yields the best estimation.
By addressing this issue, we can narrow the algorithms and the performance metrics
to consider.

Often, the operators measure the dwell time in the number of days that the container
stays in the yard [7,9,20]. The number of days is an attribute with an order for which
the difference between each value is relevant. Winship and Mare [25] provided a formal
definition of ordinal variables (called attributes in our problem). They illustrated their
definition with variables such as school grades, ages, or the number of children. These
variables should be considered ordinal realizations of underlying continuous variables [25].

Other problems similar to the dwell time estimation for import containers have been
solved by adopting artificial neural networks as ordinal regressors. Among them are age
estimation [26,27], monocular depth estimation [28], and historical image dating [27]. For
these problems, the values of the class attribute describe an order. The authors [26–28]
reported lower errors when stating and solving them as ordinal regression problems.
Similarly, the dwell time of import containers in a terminal describes an order. Thus, we
can assume that estimating the dwell time is an ordinal regression problem [25]. However,
we have not found a proposal modeling the estimation of the dwell time as an ordinal
regression problem.

3. Materials and Methods

There is a lack of public databases for evaluating the performance of algorithms
for estimating the dwell time [29,30]. Therefore, we have set up two datasets with data
collected from a yard between 2014 and 2017. The first dataset has 1816 records captured
during the years 2014 and 2015. The second dataset has 2974 records captured during the
years 2016 and 2017. Besides the dates, another difference between both datasets is that
only the first one includes an attribute called “Product”, which describes the content of the
containers. This difference allows us insight into the relevance of the “Product” stored in a
container to predict its dwell time, debated in the literature [14,17,20]. We have split each
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dataset into two, one for training and validating and the other for testing the algorithms
(see Table 1).

Table 1. Description of the datasets set up to estimate the dwell time regarding their origin, purpose, the size, and the
percentages they represent in the full datasets.

Name Years Purpose Size % of the Full Dataset

Dataset1_T&V 2014–2015 Training and validation 1362 examples 75%
Dataset1_Test 2014–2015 Testing 454 examples 25%

Dataset2_T&V 2016–2017 Training and validation 2231 examples 75%
Dataset2_Test 2016–2017 Testing 743 examples 25%

The diagram in Figure 1 describes the method followed in our experiments. We
present six steps and three data sources. In step 1, we propose, evaluate, and select a set of
35 attributes using two train and validation datasets. Such a set of attributes is one of our
contributions. In step 2, we train, validate, and select the algorithm for ordinal regression
with the lowest MAEµ and the classifier with the highest F1 measure [31], performing
cross-validation tests with ten folds. In step 3, we train the selected algorithms with the
entire training data. Following, we test such algorithms in step 4, computing their MAEµ
using two testing datasets. In step 5, we estimate the dwell time for containers in the testing
datasets. Next, we determine the storage space for each container using the estimated
dwell time. Following, we compute the reshuffles by replacing the estimated dwell time
with their actual dwell time. Finally, we compare the ordinal regression approach against
the classification approach regarding their MAEµ and reshuffles in step 6.

Attribute 
construction, 
evaluation, 

and 
selection

Select 
the 

ordinal 
regressor 
with the 
lowest 
MAEµ

Select 
the 

classifier 
with the 
highest 

F1 
measure

Train the 
selected 
ordinal 

regressor 
with train 
datasets

Train the 
selected 
classifier
with train 
datasets

Test the 
ordinal 

regressor, 
compute 

MAEµ

Test the 
classifier, 
compute 

MAEµ

Train and 
validation 
datasets

Test 
datasets

Compute 
reshuffles 
with the 

dwell time 
output by 

the ordinal 
regressor

Compute 
reshuffles 
with the 

dwell time 
output by 

the 
classifier

Optimization 
instances

Compare 
algorithms 
regarding 

their 
MAEµ and 
reshuffles

Data

Steps
1 2 3 4 5 6

Figure 1. Steps and data sources used in the experiments for comparing the dwell time estimation
with an ordinal regression approach against the dwell time estimation with a classification approach.

3.1. Attribute Extraction, Construction, Evaluation, and Selection

Table 2 describes the attributes that we have extracted and constructed for estimating
the dwell time.
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Table 2. Thirty-five attributes studied for estimating the dwell time of import containers in a yard. The second column lists
the information stored by the attributes. Attributes one to four store information captured in the records of the container
yard as is. The other attributes combine information captured in the records and external information.

# Information Used as Source of
the Attribute Attribute Domain Type

1 Type Type {20, 40} Nominal

2 Client Client Categorical Nominal

3 Destination Destination Categorical Nominal

4 Products Product Categorical Nominal

5
Date of the arrival to the country

Days_in_country x ∈ Z∗ Numeric
Date of the arrival to the yard

6
Date of the arrival to
the yard

Arrival_week_day s ∈ Z, 1 ≤ s ≤ 7 Nominal

7 Arrival_month_day d ∈ Z, 1 ≤ d ≤ 31 Nominal

8 Arrival_month m ∈ Z, 1 ≤ m ≤ 12 Nominal

9 Destination Distance_yard_destination k ∈ R∗ Numeric

10–21
Date of the arrival to the yard

Yard_weather Categorical Nominal
Weather forecast

22–33

Destination

Destination_weather Categorical NominalDate of the arrival to the yard

Weather forecast

34 From all above attributes Cluster c ∈ Z, 0 ≤ c ≤ 10 Nominal

35
Date of the arrival to the yard Predicted_dwell_time

(τ)
τ ∈ Z∗ Numeric

Cluster

Rows from one to four list four nominal attributes extracted directly from historical
data collected by the operators of the yard: “Client”, “Destination”, “Product” (first dataset
only), and “Type”, which represents the dimension of a container, i.e., 20 or 40 feet.

The other rows list attributes built from other attributes and historical data. We have
constructed the attribute “Days_in_country” with the difference between the arrival date to
the yard minus the arrival date to the country. Additionally, we have split the arrival date of
the container to the yard into three attributes “Arrival_week_day”, “Arrival_month_day”,
and “Arrival_month”. We have used the attribute “Destination” to compute the attribute
“Distance_yard_destination”. Attributes “Yard_weather” and “Destination_weather” were
built from the arrival date to the yard and the destination of a container. Ninety-five percent
of the containers in the datasets stood in the yard for less than 12 days. Therefore, we have
analyzed the weather forecast in the yard and the destination from the arrival day (0) to the
day number 11 of the container in the yard. We employed the weather forecast provided by
Raspisaniye Pogodi Ltd., St. Petersburg, Russia (https://rp5.ru (accessed on 25 November
2018)). This online weather-forecast service provides an overview of the weather forecast or
report (for previous dates). The values for the weather overview considered were normal,
light rain, heavy rain, rain, rain showers, thunderstorm, mist, precipitation within sight,
fog, haze, or in the vicinity showers.

A rough estimation of the dwell time for import containers can be computed with the
formula for computing the CPU burst time (see Equation (1)) [32]. This formula estimates
the execution time of a task (τi+1) using the actual (ti) and predicted (τi) execution time of
the previous task, weighted by 0 ≤ α ≤ 1. The formula for computing the CPU burst time
considers that continuous tasks have similar execution times. Sometimes, containers arrive
at the yard as clusters, sharing the same client, destination, and content. This estimation is
insufficient for stacking the containers because it disregards several attributes that affect the

https://rp5.ru
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departure date. Nevertheless, we have explored the relevance of having an attribute called
“Predicted_dwell_time” (τ) computed with the CPU burst time formula [32]. To compute
each (τi), we must group similar containers because the CPU burst time formula assumes
that CPU tasks are similar. Thus, we have included another attribute called “Cluster”
computed with the algorithm KMeans and the validation index VIC [33]. We have sorted
containers into each cluster according to their arrival date to the country. Then, we have
computed each τi for similar containers.

τi+1 = αti + (1− α)τi (1)

The class attribute in our datasets is “Dwell_time”. Such class attribute represents
the number of days that a container stays in the yard, i.e., the number of days between
the arrival and departure dates. Thus, the inferred dwell time of a container in the yard
allows us to approximate its departure date and reduce the reshuffles during the unloading
operations. Histograms in Figures 2 and 3 plot the distribution of the actual dwell time of
the containers in our datasets. These histograms depict a class imbalance in our datasets.
According to a standard measure of the class imbalance [34], we have measured the
imbalance ratio in 1

350 and 1
449 , respectively. Consequently, we have employed algorithms

and evaluation metrics suitable for datasets with class imbalance.
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Figure 2. Histogram of the containers’ dwell time in the full Dataset1, i.e., both Dataset1_T&V and Dataset1_Test.
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Figure 3. Histogram of the containers’ dwell time in the full Dataset2, i.e., both Dataset2_T&V and Dataset2_Test.

Attribute Evaluation and Selection

We have evaluated the proposed attributes based on two criteria, the correlation
between each attribute and the class attribute “Dwell_time” and the correlation among
all the attributes [35], and the information gain (G) of each attribute concerning the
“Dwell_time” (see Equation (2)). Such an information gain is based on entropy (H) (see
Equation (3)). We have employed the implementations in the platform WEKA version 3.8.3.

G(Dwell_time, atti) = H(Dwell_time)− H(Dwell_time|atti) (2)

H(Dwell_time) = − ∑
x∈Dwell_time

(p(x)log2 p(x)) (3)

With this experimental configuration and using the Dataset1_T&V, we have ob-
tained as relevant attributes “Days _in_country”, “Arrival_week_day”, “Arrival_month_
day”, “Destination”, “Product”, and “Predicted_dwell_time”. Similarly, but using the
Dataset2_T&V, we obtained as relevant attributes “Arrival_week_day”, “Destination”,
and “Predicted_dwell_time”. We emphasize that the attribute “Product” is excluded in
this dataset. As a result, we have selected a subset of attributes with “Days_in_country”,
“Arrival_week_day”, “Arrival_month_day”, “Destination”, “Product” (first dataset only),
and “Predicted_dwell_time”.

A brief analysis of the selected attributes sheds light on their worth for estimating the
dwell time, justifying the results of the evaluation algorithms. For example, containers
with food (attribute “Product”) remain three days on average in the yard, while containers
with clothes and electronic devices remain five and eight days on average, respectively.
Usually, containers have a leasing contract. Therefore, operators tend to deliver containers
with several days in the country (attribute “Days_in_country”) soon, which reduces their
dwell time. According to our data, most containers arriving on Monday (attribute “Ar-
rival_week_day”) remain one day in the yard, whereas most of those arriving on Friday stay
four days. Containers arriving at the beginning of the month (attribute Arrival_month_day)
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have lower dwell times than those arriving at the ending of the month. Moreover, the
data show that containers with a destination (attribute “Destination”) near the yard are
delivered faster than those with far destinations. Although we built an attribute with the
distance from the yard to the destination of a container, the attribute “Destination” reached
a higher evaluation than this distance. The attribute “Predicted_dwell_time” is relevant
because of the similarities between some arrival containers, such as tasks in a CPU planner.

3.2. Dwell Time Estimation as an Ordinal Regression Problem

To determine the best performed ordinal regression algorithm, we have evaluated 15
algorithms proposed in the literature. These algorithms follow three approaches: a naive
approach, an ordinal learning approach, and an approach based on decomposing ordinal
problems into binary problems. We employed the implementations in the platform WEKA
version 3.8.3.

An ordinal regression algorithm with a naive approach consists of converting the
values of the ordinal class attribute into numerical values, “Dwell_time” in our case. Next,
a naive approach applies a regression algorithm (δ) and uses one of the rounding strategies
to map the continuous value calculated by the regressor (δ) to an ordinal value of the
original class (see Equation (4)).

Dwell_time(att) =


bδ(att)c f loor
bδ(att)e round
dδ(att)e ceiling

(4)

We have explored five algorithms with this approach:

• Regression using DecisionTable, and optimizing root mean square error
(Reg + DecisionTable + RMSE + Ibk + Round)

• Regression using LibSVM with linear kernel and rounding
(Reg + LibSVM + LinearKernel + Round)

• Linear regression with rounding (Reg + LinearRegression + Round)
• Classification via regression using a Linear regression (CvR + LinearRegression)
• Classification via regression using the algorithm M5P (CvR + M5P)

The second approach is called the Ordinal Learning Method (OLM) [36]. OLM gen-
erates symbolic rules using comparison operations from examples in ordinal problems
with multiple attributes. The algorithm to generate the symbolic classification rules aims to
simulate human behavior when solving ordinal regression problems. The author of OLM
tested the performance of the algorithm OLM on four datasets achieving results similar to
the decision tree C4 for ordinal regression problems.

The third approach is based on decomposing ordinal problems into binary problems
with the OrdinalClassClassifier (OCC) [37] method. The algorithm OCC uses supervised
classifier for solving problems with ordinal classes. For such a purpose, the algorithm OCC
creates a new dataset for each value (‖ Dwell_time ‖) of the ordinal class attribute. New
datasets have a new binary class attribute instead of the ordinal class. Such a binary class
takes value 1 for the examples for which the ordinal class had a value greater than the index
of the current dataset. Then, a supervised classifier is trained with the modified datasets
obtaining a model for each dataset. To classify a new example (att), each model classifies
the example and computes the likelihood of belonging to the binary class (pi(att)). With
these likelihoods, the algorithm OCC computes new values according to the index of the
model trained. In the last step, the algorithm OCC selects the class value in the ordinal class
attribute corresponding to the index of the max new value computed (see Equation (5)).

Dwell_time(att) = argmax
i∈‖Dwell_time‖


1− pi(att), i = 1
pi−1(att)− pi(att), 1 < i <‖ Dwell_time ‖
pi(att), i =‖ Dwell_time ‖

(5)
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We have explored the combination of the method OCC with the classifiers listed below.
We have included four kernels (linear, polynomial, RBF, and sigmoidal) for the classifier
Support Vector Machine (SVM).

• OCC + IBk1
• OCC + Kernel Logistic Regression
• OCC + LibSVM + LinearKernel
• OCC + LibSVM + PolyKernel
• OCC + LibSVM + RBFKernel
• OCC + LibSVM + SigmoidKernel
• OCC + C4.5
• OCC + MLP − RELU
• OCC + SimpleLogistic

A conventional metric to evaluate the performance of ordinal regression methods is
Mean Absolute Error (MAE) [38–44]. This metric measures the magnitude of the error of
each ordinal algorithm, e.g., a 4-days error in the prediction of a container’s dwell time
is higher than a 1-day error. However, MAE biases the results favoring the majoritarian
class when the dataset shows a class imbalance. Our datasets present class imbalance
(see Figures 2 and 3). Therefore, we have adopted the Mean Absolute Error modified
(MAEµ) [45] as the performance measure. MAEµ is a modification of MAE for imbalanced
datasets that consists of computing the MAE for each value of the class attribute in the
dataset and then averaging the results.

Table 3 summarizes the MAEµ output by the algorithms with both training datasets.
The OCC algorithm with the Kernel Logistic Regression method as classifier achieved the
lowest MAEµ for both datasets. Hence, we select OCC + Kernel Logistic Regression to
estimate the dwell time.

Table 3. MAEµ achieved by 15 ordinal regression algorithms with both datasets for training and
validation. The Ordinal Class Classifier with a Kernel Logistic Regression achieved the lowest error
(MAEµ) on both datasets.

Algorithm Dataset1_T&V Dataset2_T&V

OCC + IBk k = 1 3.331590404 7.08567135
OCC + Kernel Logistic Regression 2.431074447 6.396608677

OCC + LibSVM + LinearKernel 3.152352826 7.64170435
OCC + LibSVM + PolyKernel 5.221540441 13.03492621
OCC + LibSVM + RBFKernel 4.982034132 12.13935106

OCC + LibSVM + SigmoidKernel 6.131968673 12.36516552
OCC + C4.5 3.703891075 9.843052078

OLM 3.085444781 8.04021403
OCC + MLP − RELU 2.643779925 8.273726134
OCC + SimpleLogistic 4.857876774 14.13145068

CvR + LinearRegression 3.251455833 8.364204478
CvR + M5P 3.745751895 8.440288676

Reg + DecisionTable + RMSE + Ibk + Round 5.558925374 12.06379664
Reg + LibSVM + LinearKernel + Round 5.788572492 12.13227507

Reg + LinearRegression + Round 5.798134705 12.13779264

3.3. Dwell Time Estimation as a Supervised Classification Problem

To determine the supervised classification algorithms, we have used the Auto-WEKA
tool [46] included in WEKA version 3.8.3. Auto-WEKA compares the performance of
30 supervised learning algorithms regarding a metric selected by the user using a cross-
validation test with ten folds. Since our datasets present a class imbalance in a ratio of 1

350
and 1

449 , respectively, we configured Auto-WEKA to select the classification algorithm with
the highest F1 measure.

Auto-WEKA outputs a different supervised classifier for each dataset. The algorithm
with the highest F1 measure -0.91- estimating the dwell time for the instances in the
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Dataset1_T&V was Lazy-IBK with the parameters [−E, −K, 29, −X, −I]. However, Lazy-
KStar with the parameters [−B, 4, −M, a] reached the highest F1 measure -0.90- estimating
the dwell time for the instances in the Dataset2_T&V.

Previously, we found that the algorithm OCC with Kernel Logistic Regression reached
the lowest MAEµ for both datasets by estimating the dwell time as an ordinal regression
problem. To achieve this result, we performed several experiments manually configured.
Contrarily, Auto-WEKA found a different supervised classifier for each dataset. However,
since we aim to show that estimating the dwell time for import containers in a yard
must be solved as an ordinal regression problem, we shall compare the three algorithms,
OCC+Kernel Logistic Regression, against Lazy-IBK on Dataset1_Test and OCC+Kernel
Logistic Regression against Lazy-KStar on Dataset2_Test.

4. Results and Discussion

We have assumed that by estimating the dwell time with an ordinal regression algo-
rithm, we can reduce the reshuffles in the container stacking compared to those produced
with supervised classification algorithms. The ordinal regression algorithm OCC + Kernel
Logistic Regression reached the lowest MAEµ in our previous experiments with 15 ordi-
nal regression algorithms using the two training and validation datasets (Dataset1_T&V
and Dataset2_T&V). However, we have selected two supervised classifiers (Lazy-IBK and
Lazy-KStar) for each dataset according to the results of the Auto-WEKA tool.

There is no consensus about the measures to evaluate the worthiness of the estimated
dwell time with machine-learning algorithms for the optimal stacking of containers. Since
we have estimated the dwell time as an ordinal regression problem, we can employ the
MAEµ as a practical measure. We can also compute the MAEµ for estimating the dwell
time as a supervised classification problem but considering the size of the error. Thus, we
can compare the performance of both approaches. Moreover, we have included the number
of reshuffles as another performance measure, starting from the estimated departure date
of each container computed with the date of the arrival to the yard and the estimated
dwell time. Using the estimated departure date, we have allocated the containers with the
optimization model proposed by De Armas et al. [2] and implemented using the solver
GNU Linear Programming Kit (GLPK (http://www.gnu.org/software/glpk (accessed on
14 July 2019))) version 4.64. The optimization algorithm output a matrix with the positions
assigned to the containers in the yard. Finally, we have substituted the estimated departure
date of each container with its actual departure date (obtained from the recorded data) and
computed the number of reshuffles.

We have considered three configurations of the container yard (45 stacks with three
tiers, 90 stacks with three tiers, and 45 stacks with five tiers). We have started with an empty
yard for each configuration, with the maximum number of allocation spaces available.
Moreover, we have set up 21 optimization instances (see Table 4) using the examples in the
datasets Dataset1_Test and Dataset2_Test.

http://www.gnu.org/software/glpk
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Table 4. Description of the optimization instances regarding the dataset and the number of examples,
stacks, tiers, and slots.

Optimization Instance ID Dataset Examples Stacks Tiers Slots

1, 2, 3 Dataset1_Test 135

45 3 135
4 49

5, 6, 7, 8, 9 Dataset2_Test 135

10 68

11, 12 Dataset1_Test 227

90 3 27013, 14
Dataset2_Test

248

15 247

16, 17 Dataset1_Test
225

45 5 22518, 19, 20
Dataset2_Test

21 68

An optimization algorithm can reach the optimal solution with different containers’
allocations. Therefore, such an optimization algorithm can yield dissimilar numbers of
reshuffles for the same optimization instance. Reshuffles come from the use of the estimated
departure date for optimizing the containers’ allocation but the actual departure date for
computing the reshuffles. Figure 4 illustrates an example with three allocations to the
containers with the same optimization value (0 reshuffles) but different numbers of actual
reshuffles. Therefore, reducing the MAEµ does not always reduce the number of reshuffles,
but in general, it does, as we shall show with our experimental results.

Stack 1 Stack 2 Stack 3

Zero reshuffles using the 

actual departure date.

One reshuffle using the 

actual departure date.

Three reshuffles using the 

actual departure date.

Figure 4. Example of three different space allocations to the same containers. These alloca-
tions achieve the same optimization value, zero reshuffles computed using the estimated depar-
ture date, but three different numbers of reshuffles. White arrows indicate container pairs that
generate reshuffles.
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Figure 5 depicts the MAEµ (left) obtained by the ordinal regression algorithm and the
respective supervised classification algorithm for each optimization instance. Moreover,
the figure depicts the number of reshuffles (right) computed by the optimization algorithm
using those departure dates estimated with the ordinal regression algorithm and the respec-
tive supervised classification algorithm. Black circles indicate those instances where the
ordinal regression algorithm lost against the respective supervised classification algorithm.
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Figure 5. Radial graphs with the MAEµ (left) and reshuffles (right) output by each algorithm
inferring the dwell time using both datasets split into 21 instances. A black circle encloses each
instance where the ordinal regression algorithm lost against the supervised classification algorithm,
i.e., six regarding MAEµ and seven regarding the reshuffles.

Figure 6 illustrates box plots for both methods, ordinal regression and classification.
Both graphs (MAEµ and reshuffles) show lower median errors for the ordinal regression
approach. The classification method shows lower dispersion in the MAEµ than the ordinal
regression method, while the ordinal regression method shows the lower quartile values.
Likewise, the ordinal regression yielded lower second and third quartiles than the classifi-
cation method regarding the reshuffles, but the min, max, and first quartile values were
similar. These distributions indicate differences between the methods higher concerning
the MAEµ than the reshuffles because of the effect of the optimization algorithm.

(a) (b)

Figure 6. Box plots describing the MAEµ (a) and the reshuffles (b) output by the ordinal regression
and the classification methods.
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The ordinal regression algorithm reached a lower MAEµ for 15 (71%) instances and a
lower number of reshuffles for 14 (67%) instances. Figure 7 depicts the rank sums compar-
ing the ordinal regression against the classification regarding MAEµ and reshuffles. The
Wilcoxon signed ranks test [47] indicated that there were significant differences between
both methods regarding the MAEµ (p-value = 0.009128), but the differences were not sig-
nificant regarding the reshuffles (p-value = 0.1393). Nevertheless, the dwell time estimated
with the ordinal regression algorithm generated 87 reshuffles less than the estimated with
the supervised classifiers in these 21 experiments. Additionally, in 16 of these experiments,
a lower MAEµ induced a lower number of reshuffles. The other five experiments showed a
different behavior due to the influence of the optimization algorithm previously explained.

15

6

0

0 3 6 9 12 15

Positives

Negatives

Ties

Rank sums for MAEµ

14

7

0

0 3 6 9 12 15

Positives

Negatives

Ties

Rank sums for reshuffles

(a) (b)

Figure 7. Bar graphs with rank sums computed with the Wilcoxon signed ranks test comparing the ordinal regression
method vs. the classification method regarding MAEµ (a) and reshuffles (b). Positive ranks specify a better performance for
the ordinal regression method.

From these results, we conclude that the dwell time of the containers is estimated more
accurately as an ordinal regression problem than as a supervised classification problem,
at least using these attributes of the containers. Moreover, all the algorithms reached a
higher MAEµ and number of reshuffles using the examples in the Dataset2_Test than the
examples in Dataset1_Test (instances 1, 2, 3, 4, 11, 12, 16, and 17). Since only Dataset1
includes the attribute “Product”, we recommend including this attribute to improve the
algorithms for the dwell time estimation.

5. Conclusions

In this work, we aimed to show that estimating the dwell time of import containers
in a yard is an ordinal regression problem. Thus, we modeled and solved the problem as
both an ordinal regression problem and a supervised classification problem; this last is the
trending approach in the literature. To corroborate our hypothesis, we compute the MAEµ,
and the reshuffles provoked during the container stacking using the dwell time estimated
by each approach.

As a result of our research, we noticed that the ordinal regression algorithm achieved
the lowest MAEµ in 15 (71%) of our 21 experiments. Similarly, the ordinal regression algo-
rithm yielded the lowest reshuffles in 14 (67%) experiments. The statistical test corroborated
significant differences between both methods regarding the MAEµ, while differences were
not significant regarding the reshuffles. Since different optimal allocations of the containers
can lead to different numbers of reshuffles, we examined the relationship between MAEµ
and reshuffles. We noticed that a lower MAEµ conducts to a lower number of reshuffles in
16 (76%) experiments. Therefore, we can state that by modeling the dwell time estimation
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as an ordinal regression problem and decreasing the MAEµ, we can reduce the number of
reshuffles generated during the stacking of import containers in a yard.

We found a subset of six attributes relevant for estimating the dwell time of import con-
tainers in a terminal from a set of 35 evaluated. Such attributes are “Days _in_country”, “Ar-
rival_week_day”, “Arrival_month_day”, “Destination”, “Product”, and “Predicted_dwell
_time”. The attribute “Predicted_dwell _time” approximates the dwell time using the
formula to compute the CPU burst time in groups of similar containers. Attributes “Days
_in_country”, “Arrival_week_day”, “Arrival_month_day” are derived from the arrival
date of the containers to the country. “Destination” and “Product” were obtained from
the containers’ information. Moreover, we evaluated 25 attributes related to the weather
forecast and the distance between the yard and the destination of the container. Such an
evaluation showed that they were irrelevant for the dwell time estimation of the containers
in our datasets.

We observed that all the algorithms produced a higher MAEµ and reshuffles for the
examples in the dataset that excluded the attribute “Product”. Hence, we recommend
including the attribute “Product” for estimating the dwell time of import containers in a
yard. Nevertheless, further experiments are needed to support this recommendation.

Our results can be applied on dwell time estimation problems where the dwell time
is an ordinal variable. Two additional examples of these problems are the dwell time
estimation of ships in docks and the dwell time of buses in a bus workshop for repairing.
For these examples, an accurate dwell time estimation may conduct to saving resources, as
our research work does.

We propose evaluating other ordinal regression algorithms, such as deep neural
networks for ordinal regression, as future work. Moreover, we shall be working on a new
dataset about import containers available for the research community to reduce the lack of
available datasets.
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