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Abstract: Recently, there has been a growing interest in research on nanofibrous scaffolds developed
by electrospinning bioactive plant extracts. In this study, the extract material obtained from the
medicinal plant Inula graveolens (L.) was loaded on polycaprolactone (PCL) electrospun polymeric
nanofibers. The combined mixture was prepared by 5% of I. graveolens at 8% (PCL) concentration
and electrospun under optimal conditions. The chemical analysis, morphology, and crystallization of
polymeric nanofibers were carried out by (FT-IR) spectrometer, scanning electron microscopy (SEM),
and XRD diffraction. Hydrophilicity was determined by a contact angle experiment. The strength
was characterized, and the toxicity of scaffolds on the cell line of fibroblasts was finally investigated.
The efficiency of nanofibers to enhance the proliferation of fibroblasts was evaluated in vitro using
the optimal I. graveolens/PCL solutions. The results show that I. graveolens/PCL polymeric scaffolds
exhibited dispersion in homogeneous nanofibers around 72 ± 963 nm in the ratio 70/30 (V:V), with
no toxicity for cells, meaning that they can be used for biomedical applications.

Keywords: electrospun; Inula graveolens (L.); polycaprolactone; scaffolds; cell culture

1. Introduction

Inula graveolens (L.) belongs to the family of Asteraceae, which is traditionally used
in some medicines and food additives [1,2]. It is an annual herbaceous genus of plant
species that usually grow in Iraq, Southwest Asia, and Mediterranean regions [3]. Recent
studies indicated that the methanol extract of this plant has antioxidant and antimicrobial
activities [4]. In recent years, electrospun technology based on nanofibers has attracted a
huge deal of interest because it is simple and can be easily controlled. It could also produce
new polymeric material scaffolds that support or replace impaired weak cells and tissues
from natural parts of plant materials [5,6].

Electrospinning is an evolving nanofiber manufacturing technique that has attracted
attention due to its versatility and relatively low cost. Electrospinning is widely used in
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tissue engineering for biomedical purposes, such as possible injury healing and scaffolding
to replace damaged tissues, support cell growth, and support interactions that can mimic
the body′s environment [7–9]. A variety of criteria, such as biodegradation, biocompat-
ibility, mechanical properties, scaffolding architecture, and manufacturing technology,
are considered when designing or assessing a tissue engineering scaffold [10]. Such new
biomaterials with desired properties will fulfill the requirement of fabric engineering that
minimizes the secondary effects of other materials. Natural polymers from green plants are
renewable [11,12]. Electrospinning of a polycaprolactone (PCL)/gelatin(Gel)/hyaluronic
acid(HA) blended solution composite scaffold has been shown in recent studies to be
an efficient technique for modifying PCL nanofibrous scaffolds for 3D glioblastoma cell
culture [13]. Polycaprolactone (PCL), silver nitrate (AgNO3) and zinc oxide (ZnO) were
used for the fabrication of a multilayered antibacterial nanocomposite material using co-
axial electrospinning (CAE) as described by Guner CETIN et al. [14]. It was indicated
that electrospun plants and their derivatives’ nanofibers such as polysaccharides provide
unique characteristics which will lead to enhancing wound healing, such as good bio-
compatibility, liquid absorption, strong durability, minimum toxicity, and antibacterial
activities. Lacob et al. [15]. The impact of the aligned and randomly orientated PCL scaf-
folds was studied by Abbasi et al. [16] on quantitative gene expression during neural stem
cell differentiation by real-time polymerase chain reaction (RT-PCR). An investigation by
Jahani et al. [17] studied the production of nerve cells from mesenchymal stem cells through
PCL nanofibrous scaffolds as a 3D matrix to induce cell proliferation and differentiation.
In addition, co-electrospun collagen with poly (vinyl alcohol) (PVA)/N-[(2-hydroxy-3-
trimethyl-ammonium)-propyl] chitosan chloride) (HTCC) has been shown to develop a
scaffold with good biocompatibility, and mechanical properties. as described by Khalaji
et al. [18]. A biodegradable polymer such as poly(ε-caprolactone) has been extensively
applied in the electrospinning method and has multiple biomedical applications due to
its interesting mechanical properties and biocompatibility [19,20]. However, because of
its hydrophobicity, it is not easy to provide an ability for cell adhesion, development,
and proliferation. The combination of plant and synthetic polymers by electrospinning
is, therefore, a promising way of overcoming these challenges [21]. On the other hand, I.
graveolens is cheap and readily available, and it is possible to produce scaffolds at a low
cost.

In this study, the electrospinning technique was used to produce polymeric scaffolds
from a natural polymer derived from I. graveolens loaded with biocompatible PCL polymer,
which was chosen as a carrier for its favorable surface properties to produce a novel
material scaffold with better characterization for biomedical applications.

There are different ratios of both I. graveolens and PCL that were used via electrospin-
ning methods, and we selected the sample with I. graveolens/PCL ratio of 3:7 (V:V), and the
sample with ratios was adapted depending on the properties of the resulting fibers. Then,
we carried out several tests to investigate morphological features of nanofibers and beads,
including FT-IR for the analysis of functional groups in scaffold, and a contact angle test
was used to detect the hydrophilicity of the scaffold, and the tensile strength was observed.
Finally, suitable conditions of the prepared polymeric scaffold for fibroblast cells were
obtained.

2. Materials and Methods
2.1. Plant Extract

I. graveolens was obtained from Basrah governorate, Iraq, during October 2020. The
samples were identified and deposited in the Herbarium Department, Science College,
Basrah University, Iraq. The aerial parts of a plant extracted with a Soxhlet Instrument after
cleaning and drying. In short, 100 g was soaked in 80% methanol at room temperature
for 24 h. The methanolic extract was filtered and evaporated to dryness under reduced
pressure in a rotary evaporator to afford 10 g of dry extract.
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PCL polymer with a molecular weight of Mn = 80,000, acetic acid, and formic acid
was provided by Sigma-Aldrich, the Dimethyl sulfoxide (DMSO), phosphate buffer saline
(PBS), Dulbecco Modified Eagle’s Medium (DMEM) Culture medium, MTT agent (3-
(4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide) and other supplements were
obtained from Invitrogen.

2.2. Fabrication of PCL/I. graveolens Solution and Suspension

Firstly, various amalgamations of PCL and I. graveolens with several ratios and concen-
trations were prepared and subjected to the electrospinning. The 3/7 ratio was ultimately
selected for the combination of I. graveolens/PCL polymer.

A PCL solution (8 wt.%) was prepared separately by dissolving 0.08 g of PCL in 1 mL in
acetic/formic acid (1:2 w/w) under magnetically stirring at room temperature. A solution
of I. graveolens concentration of 5 wt.% was acquired by dissolving 0.05 g of I. graveolens
in in acetic/formic acid (1:2 w/w). The homogenous mixtures of I. graveolens/PCL were
obtained with a ratio of 3/7 (V:V).

2.3. Electrospun

The feeding rate and the distance between the needle and the collector were set at
0.5 mL/h and 20 cm, respectively; the optimum voltage was 8 kV, and the polymer feed
rate was 0.5 mL/h. The aluminum sheet was used for collecting the fibers. Electrospinning
was performed at a temperature of 25 ◦C and a relative humidity of 20%.

2.4. Characterization

SEM tested the morphological characteristics of the generated nanofibers of I. grave-
olens/PCL scaffold by coating the surface of nanofibers with a thin layer of 5 mA gold
undercurrent and voltage of 6 kV and the morphology of the fibers was tested.

2.5. FT-IR

Various electrospun specimens with FTIR were analyzed. Chemical analysis of the
prepared nanofibers was conducted. The spectrum was scanned at a resolution of 4 cm−1

over a spectrum of 500–4000 cm−1.

2.6. XRD

For XRD measurements, for PCL nanofibers and I. graveolens extract, loaded PCL
nanofibers were obtained using Philips apparatus at an angle of (2θ) around 10◦ and 80◦,
with Cu as a reference at wavelengths of 1.5406 Å (λ).

2.7. Tensile Strength

The analysis was performed according to ASTM D 5035 (Standard Test Method for
Breaking Force and Elongation of Textile Fabrics (Strip Method)) to estimate tensile strength.
Samples were measured with a width of 2.54 cm, and 5 cm each was constructed in a warp
direction, the weft direction, with a length of 15 cm.

2.8. Water Contact Angle

A sessile drop water angle approach was used to test the weight ability of an elec-
trospun fibrous scaffold using the OCA 20 surface analyzing system (GmbH, Filderstadt,
Germany). Distilled water was used as a solvent to generate a droplet on the nanofiber
surface. The touch angle captured the images and processed them. For each sample, triple
testing and mean ± SD values were conducted.

2.9. Cell Culture

The fibroblasts’ (rat dermal) cell line was obtained from (Sigma- Aldrich, Hamburg,
Germany). Fibroblasts cells were cultured by Dulbecco’s modified Eagle medium, enriched
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with 15% fetal bovine serum, streptomycin (100 µg/mL) and penicillin (100 µg/mL) and
humidified incubator, which contains 5% CO2, at 37 ◦C.

2.10. MTT

Fibroblast cells were grown in DMEM cultured medium supplemented by 10 %
FBS with 1 % penicillin/streptomycin and incubated at 37 ◦C in a humidified Incu-
bator of 5 % CO2 according to last studies previously described by Phaiju, S. et al.
and Phaiju, S. et al. [22,23]. Briefly, 5 mg/mL of reagent (4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) was obtained in PBS in a well-plated 96 fibroblasts cell line
by seeding density of 2× 104 at 37 ◦C in 5% CO2 incubator. Cell-containing microplates that
were centrifuged to separate cells, residues and plates at 3500 RPM were dried, followed
by applying 160 and 20 µL of glycine buffer.

3. Results and Discussion

This study concerned the development of I. graveolens/PCL nanofibrous scaffolds
using an electrospinning technique. The scaffolding conditions are improved by adjusting
the electrospinning parameters, which include the needle measurement, the collector, the
voltage, and the pumped polymer quantity. After optimization of conditions [24], bead-free
fibers with a minimum diameter were obtained. To that end, the needle’s distance to the
collector was 20 cm, the voltage was 8 kV, and the polymer flow was 0.5 mL/h, and a
blend of 8% PCL and 5% I. graveolens were found to be suitable. The polymeric materials,
becoming smaller in scale with a large surface area to volume ratio, can provide the
plant extracts with improved properties such as chemical and antimicrobial activity [25].
The major benefit of plant scaffolding is the obvious simplicity with which it can be
produced and handled; the design of a variety of sizes and shapes is entirely foldable,
easy to cut, shaped, rolled, or stacked. They can also be reused, are easy to use, and are
relatively cheap [26]. The principle of plant material Electrospun comprising therapeutic
characteristics especially wound healing on the polymer matrix, is impressive. In Figure
1, the SEM micrographs of PCL Electrospun nanofibers and I. graveolens/PCL nanofibers
showed that nano-scaled fibrous structures without beads were present. It was acquired
under the controlled spinning conditions used in this research. The scaffold nanofibers
derived from the I. graveolens/PCL combination were illustrated with micrographs of
the SEM in Figure 1. As seen in the pictures, the fiber diameter decreases when natural
polymers are increased. Fiber diameters were 72 ± 963 nm in the PCL/I. graveolens
ratio 70/30 (V:V). In a similar study, Suryamathi and his coworkers reported that the
average fiber diameter of PCL nanofibers was increased with the encapsulation of Tridax
Procumbens Extract [27]. A natural I. graveolens polymer is also a polyelectrolyte polymer,
which can release ionic groups such as carboxyl groups in the solution. The addition of
anionic and cationic polyelectrolytes increases the electric conductance of the solution of
electrospinning [28].
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Figure 1. SEM micrographs of (a) Electrospun PCL nanofibers and (b) I. graveolens extract loaded PCL nanofibers.

3.1. FTIR Results

FTIR was performed to inspect the functional groups found in pure PCL and I. grave-
olens/PCL nanofibers scaffolds which were clarified in (Figure 2). The FTIR spectrum
presents a number of peaks at curve regions from about 3400 to 650 cm–1. Areas on the
curve of I. graveolens lead to the O-H stretching, stretching (CH, CH2, and CH3), C=O
stretching, C-C intraloop stretching, C-H bending, C-O-C stretching, C-O stretching, car-
boxylic acid bending O-H, and C-H bending, respectively. On the PCL curve, which
corresponds to stretching CH2, stretching C-H, stretching C=O, stretching C=C, bending
C-H C-H rock, C-H wag, C-O of carboxylic acid, bending OH of carboxylic acid, and
aromatic C-H, respectively, some peaks can also be found in 2900 to 740 cm–1 region. We
can observe peaks corresponding to PCL when analyzing the I. graveolens/PCL curve,
which is indicative of the lack of any chemical reactions between I. graveolens and PCL.

3.2. XRD

Figure 2 shows the corresponding XRD graph for PCL, I. graveolens, and a mixture
of 7/3 with a PCL/I. graveolens ratio. As can be noted, there are two distinctive peaks in
the PCL curve; by observing the XRD pattern, the loading of I. graveolens extract into the
PCL nanofibrous scaffolds has been verified. The XRD of PCL nanofibers (Figure 3) shows
peaks at 2θ19, 21.3, 24.6, and 42 indicate crystallinity of the PCL nanofibers. The peaks
underwent a blue shift and appeared at 2θ 18.8, 23.9, and 41.4 with PCL nanofibers loaded
with increased intensity for I. graveolens. The rise in strength provides a higher degree of
crystallinity. The XRD pattern means that the I. graveolens extract has been successfully
loaded into PCL nanofibers.
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3.3. Hydrophilicity Test

The hydrophilicity of scaffolds is one of the most important parameters in the man-
ufacture of scaffolds to make it possible for cells to adhere to and develop [29]. Via the
contact angle test, the hydrophilicity of the scaffold was evaluated [30]. In the PCL, the
water touch angle is around 118.4◦ ± 2.0◦. The contact angle of the scaffold composed of
PCL and I. graveolens with a ratio of 7/3 obtained was about 51.4 ± 2.0◦ (Table 1). The
addition of I. graveolens to the polymer solution dramatically increases the scaffold hy-
drophilicity, resulting in better adhesion of cells to the scaffold. The results of present study
are agreement with those of previous studies indicated the adding natural plant extract,
improved the hydrophilic behavior of PCL nanofibrous scaffold [31]. Similar results by
Agnes Mary et al. [32] showed that there was a lower contact angle value for PCL scaffolds
containing natural plant extract (Aloe vera (AV)).

Table 1. Samples’ codes, compositions, and electrospinning conditions of the Electrospun nanofibers.

Sample Solutions:Ratio Contact Angle (◦)
(Hydrophilicity) FR (mL/h) TCD (cm) Voltage (kV)

PCL - 118.4◦ ± 2.0◦ 0.5 18 20

PCL/I. graveolens 70:30 51.4 ± 2.0◦ 0.5 18 20

3.4. Tensile Strength

Mechanical properties are among the most relevant characteristics of a scaffold. Suit-
able stability, elasticity, and adequate resistance to external mechanical forces should be
given for the scaffold. Table 2 displays the mechanical properties of the nanofibrous Elec-
trospun scaffolds. Compared to PCL nanofibers 1.6 ± 0.1 MPa alone, the tensile strength of
the I. graveolens nanofibers was 5.2 ± 0.7 MPa, which is increased as I. graveolens extract
incorporated, and this finding agrees with the literature [33].

Table 2. Physical properties of the PCL/I. graveolens Electrospun nanofibers after cross-linking
(*: p < 0.05).

Sample Ultimate Tensile Strength
(MPa)

Contact Angle (◦)
(Hydrophilicity)

PCL 1.5 ± 0.1 118.4 ± 2.0
PCL/I. graveolens 5.2 ± 0.7 122.4 ± 2.0

3.5. Cell Viability

MTT assay was achieved to evaluate the toxicity and biocompatibility of I. grave-
olens/PCL nanofibers on Fibroblast cells (Figure 4) that shows cell viability cultures at
different times 24, 48, and 72 h, respectively, of incubation. The growth rate on the scaffold
of the PCL/I. graveolens is higher than on the scaffold made of PCL, as is evident on the
graph, and also surpassed that of the control group at the end of the third day. The results
showed that nanofiber scaffolds of PCL/I. graveolens exhibit no cytotoxicity on Fibroblast
cells. The fabricated nanofibers of captured I. graveolens/PCL were obtained by Electrospun,
with attractive amplified surface area and density, pore size properties, that advanced by
optimization by adjusting some important variables such as the distance between needle
and collector, electrical voltage, and also the amount of the polymer after being pumped.
Nanofibers have gained considerable importance in biotechnology due to their promising
applications due to a large surface area that could be turned into an ideal matrix for cellular
activities [34]. Nanofibers form a chain of biomaterial interactions within cell cultures.
Therefore, it is necessary to make use of biocompatible materials for this matter [35].
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