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Abstract: The deep learning (DL)-based approaches in tumor pathology help to overcome the
limitations of subjective visual examination from pathologists and improve diagnostic accuracy and
objectivity. However, it is unclear how a DL system trained to discriminate normal/tumor tissues
in a specific cancer could perform on other tumor types. Herein, we cross-validated the DL-based
normal/tumor classifiers separately trained on the tissue slides of cancers from bladder, lung, colon
and rectum, stomach, bile duct, and liver. Furthermore, we compared the differences between the
classifiers trained on the frozen or formalin-fixed paraffin-embedded (FFPE) tissues. The Area under
the curve (AUC) for the receiver operating characteristic (ROC) curve ranged from 0.982 to 0.999
when the tissues were analyzed by the classifiers trained on the same tissue preparation modalities
and cancer types. However, the AUCs could drop to 0.476 and 0.439 when the classifiers trained for
different tissue modalities and cancer types were applied. Overall, the optimal performance could be
achieved only when the tissue slides were analyzed by the classifiers trained on the same preparation
modalities and cancer types.

Keywords: computational pathology; computer-aided diagnosis; convolutional neural network;
digital pathology

1. Introduction

For decades, visual examination of hematoxylin-eosin (H&E)-stained tissue slides by
pathologists has been the foundation of cancer diagnosis for different types of cancers [1].
However, it is well known that visual assessment of tissue slide is often subjective and thus
intra- and inter-observer variabilities are unavoidable [2,3]. Automated computational
methods can help to overcome such limitations and to supplement current pathology
workflow by delivering reproducible diagnosis for various cancer types [4]. Furthermore,
considering predicted shortage of pathologists in the near future and increased workload
for the analysis of various molecular tests, automation on histopathologic diagnosis will be
necessary to optimize workload in many pathology laboratories [5,6].

Recently, primary diagnosis on digitalized pathologic images was approved in the US
and digitization of glass tissue slide into whole slide images (WSIs) has been exploding
around the globe [7,8]. Therefore, massive amounts of digital pathology images are now
available for researchers who have been interested in the automation of diagnosis for
cancer tissues. Furthermore, the performance of computer-based image analysis has been
much improved by the adoption of deep learning technology [9]. In contrast to other
classic machine learning approaches, deep learning can learn relevant features for given
tasks directly from raw input datasets, and thus eliminate the necessity of domain-specific
feature extraction processes [10]. Combined with huge digital WSI datasets, deep learning
has been rapidly adopted for the pathologic diagnosis tasks such as Gleason grading of

Appl. Sci. 2021, 11, 808. https://doi.org/10.3390/app11020808 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1020-5838
https://doi.org/10.3390/app11020808
https://doi.org/10.3390/app11020808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020808
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/808?type=check_update&version=1


Appl. Sci. 2021, 11, 808 2 of 11

prostate cancer [4], detection of invasive ductal carcinoma in breast cancer [11], detection
of metastasis for breast cancer [12], and detection of tumor tissues in gastric cancer [13].

The generalizability of a deep learning system is an important issue for a developed
system to be more widely applicable. Normal and tumor cells are thought to have some
common differences in cell shape and nuclear morphology. Therefore, a deep learning
system trained to discriminate normal/tumor tissues in a cancer type can be applied to
other cancer types. However, previous studies were focused on tissues from a specific
cancer type and the generalizability of deep learning systems on cancer diagnosis tasks
is still unclear [14]. Since different cancers originate from different anatomical sites with
specific structures, the diagnosis performance of a deep learning system may not necessarily
extend beyond trained cancer type [15,16].

Therefore, in the present study, we built deep learning-based normal/tumor tissue
classifiers for six different cancer types and cross-validated the performance of the clas-
sifiers to understand generalizability of deep learning-based cancer diagnosis system.
Furthermore, it is well known that frozen and formalin-fixed paraffin-embedded (FFPE)
tissues have different morphology because of freezing artifacts [17]. Thus, we also cross-
validated the classifiers for the frozen and FFPE tissues of each cancer type. The results of
the current study can clearly solve the undetermined question on the generalizability of
deep learning-based normal/tumor tissue classifiers.

2. Materials and Methods

The Cancer Genome Atlas (TCGA) program provides frozen and FFPE tissue WSIs of
various cancer types. We built deep learning-based normal/tumor classifiers, separately for
the frozen and FFPE tissues of bladder (TCGA-BLCA), lung (TCGA-LUAD/LUSC), colon
and rectum (TCGA-COAD/READ), stomach (TCGA-STAD), bile duct (TCGA-CHOL), and
liver (TCGA-LIHC).

2.1. Tissue/Non-Tissue Classifier for the TCGA Tissue Datasets

Artifacts in tissue slides such as air-bubbles, blurring, compression artifacts, pen
markings, and tissue folding could adversely affect the learning process of appropriate
features for a given task and thus could limit the performance of a classifier. In few
previous studies, specified algorithms to detect artifacts such as blur or tissue-folds were
presented [18]. In the present study, we tried to classify the various artifacts into improper
tissues all at once with a deep learning-based classifier. As it is impossible to analyze a WSI
as a whole, WSIs are often sliced into small image patches for deep learning. Thus, we built
a deep learning-based proper/improper tissue classifier for 360 × 360-pixel image patches
at 20× magnification to remove all of these artifacts at once. From the TCGA WSI datasets,
more than 100,000 proper and improper tissue patches each were collected. A simple
convolutional neural network (CNN) was trained with the patches to discriminate between
proper and improper tissue patches. We called it as a tissue/non-tissue classifier (Figure 1)
and only tissue patches were used for normal/tumor classification. The CNN consisted
of 12 [5 × 5] filters, 24 [5 × 5] filters and 24 [5 × 5] filters, each followed by a [2 × 2]
max-pooling layer.

2.2. Normal/Tumor Classifiers for the TCGA Tissue Datasets

We divided each TCGA dataset into training and test datasets with a 9:1 ratio. The
division was patient-wise and thus no slide from patients in the training dataset was
included in the test dataset. For the frozen tissue WSIs of the TCGA datasets, there are
normal or tumor WSIs which consisted of almost exclusively normal or tumor tissues,
respectively. The normal or tumor WSIs are distinguished by the IDs of the WSIs (Figure 1a).
Therefore, the patches from the frozen WSIs were simply labeled depending on their
IDs. On the contrary, the FFPE tissue WSIs contain both normal and tumor tissues. To
discriminate between them, I.H.S. and S.H.L. annotated normal and tumor regions in
a FFPE WSI with the Aperio ImageScope software (Leica Biosystems) using a freehand
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drawing tool (Figure 1a). As depicted in Figure 1a, the normal/tumor tissue patch datasets
were collected based on the IDs of WSIs or normal/tumor annotation for the frozen and
FFPE WSIs, respectively, to train the normal/tumor classifiers for the frozen and FFPE
tissues each. As we included six different cancer types (TCGA-BLCA, TCGA-LUAD/LUSC,
TCGA-COAD/READ, TCGA-STAD, TCGA-CHOL, and TCGA-LIHC), total 12 classifiers
were trained. Unlike the tissue/non-tissue classifier, the Inception-v3 model was used
without any parameter changes to train the normal/tumor classifiers for the 360 × 360-pixel
patches at 20× magnification. We adopted the inception-v3 model because it was superior
for the normal/tumor discrimination task than other CNN architectures in our previous
study [13]. Deep neural networks were implemented using the TensorFlow deep learning
library (http://tensorflow.org). We used a mini-batch size of 128, and the cross-entropy
loss function was adopted as a loss function. For training, we used RMSProp optimizer,
with initial learning rate of 0.1, weight decay of 0.9, momentum of 0.9, and epsilon of 1.0. To
minimize overfitting, data augmentation techniques, including random horizontal/vertical
flipping, random perturbation of the contrast and brightness, and random rotations by 90◦

were applied to the tissue patches during the training. Ten percent of the training data
were used as a validation dataset for the early stopping of the training. Thus, the training
session was terminated when the loss for the validation data started to increase. At least
five models were trained for each dataset and the results from the most appropriate models
were presented in the results section. Total six computer systems (one computer with dual
NVIDIA Titan V GPUs, two computers with dual NVIDIA Titan RTX GPUs and three
computers with dual NVIDIA RTX 2080ti GPUs) were used to train the models.
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normal and tumor regions. Normal and tumor patches were collected depending on the annotations. (b) Classification 
process for a representative WSI. At first, only proper tissue patches were selected by the tissue/non-tissue classifier. Then, 
the tumor probabilities of the proper tissues were obtained by the normal/tumor classifier. Finally, a heatmap was drawn 
to demarcate the normal/tumor distribution. 
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Figure 1. The workflow of the fully automated normal/tumor classifiers for whole slide images (WSIs). (a) Collection of the
normal and tumor tissue image patches. For the frozen tissue WSIs, normal and tumor patches were collected depending on
the IDs of the WSIs. For the formalin-fixed paraffin-embedded (FFPE) tissue WSIs, two pathologists annotated the normal
and tumor regions. Normal and tumor patches were collected depending on the annotations. (b) Classification process
for a representative WSI. At first, only proper tissue patches were selected by the tissue/non-tissue classifier. Then, the
tumor probabilities of the proper tissues were obtained by the normal/tumor classifier. Finally, a heatmap was drawn to
demarcate the normal/tumor distribution.
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For the test WSIs, non-overlapping 360 × 360-pixel patches at 20× magnification were
collected and the tissue/non-tissue and normal/tumor classifiers were sequentially applied
(Figure 1b). Only patches which were classified as tissue by tissue/non-tissue classifier were
passed to the normal/tumor classifiers. Then, heatmap for the normal/tumor probability
of each tissue patch was overlaid on the WSIs to clearly demarcate the normal and tumor
regions.

2.3. Cross-Validation between the Frozen and FFPE, and between Different Cancer Types

The main purpose of this study was to characterize the generalizability of the deep
learning-based classifiers for normal/tumor tissues. First, we cross-validated the classifi-
cation results of the classifiers for the frozen and FFPE tissues. Therefore, the frozen and
FFPE WSIs for a cancer type were classified by the FFPE and frozen classifiers, respectively,
for the same cancer type. Then, the classifiers for the FFPE tissues were applied to classify
FFPE WSIs of different types of cancers.

2.4. External Validation of the Classifiers Trained with the TCGA Tissue Datasets

Next, to test the generalizability of the classifiers trained on the TCGA datasets for
the tissues of completely different backgrounds, we evaluated the classification results
of the classifiers trained with the TCGA-STAD and TCGA-COAD/READ FFPE tissues
on the FFPE tissue slides of stomach and colorectal cancers from the Seoul St. Mary’s
hospital (SMH-STAD and SMH-COAD/READ). The tissue slides were scanned with
Philips IntelliSite Digital Pathology Solution (Philips). I.H.S. and S.H.L. annotated the
normal and tumor regions on the slides. Then, the SMH-STAD and SMH-COAD/READ
slides were classified by classifiers trained on the TCGA-STAD and TCGA-COAD/READ
datasets, respectively.

2.5. Presentation of Classification Results

Area under the curve (AUC) for receiver operating characteristic (ROC) curve was
presented for each classifier. ROC curves plot the true positive (sensitivity) versus the false
positive (1-specificity) fraction by adjusting the threshold for normal/tumor discrimination,
allowing sensitivity and specificity tradeoffs to be evaluated [19]. Representative heatmap
images for the classification results were also presented.

3. Results
3.1. TCGA Frozen and FFPE Datasets

Normal/tumor classifiers for the six different cancer types were trained with the
training datasets of the TCGA frozen and FFPE WSIs (Figure 1a). Then, the classifiers were
applied to the test datasets to distinguish the tissue image patches from a WSI into normal
or tumor patches. Based on the classification results for the whole tissue image patches
of all the WSIs in the test datasets, patch-level ROC curves were drawn to describe the
classification performance of the classifiers.

Figure 2a,b demonstrate the results for the TCGA-BLCA datasets. In the first two
pictures of panel a, heatmaps for the representative classification results for the test datasets
of the frozen normal and tumor tissues were presented. Then, the image of normal/tumor
annotation and the heatmap for the classification results for a representative FFPE tissue
from the test datasets were presented. In the first two graphs of panel b, the ROC curves
for the patch-level classification results on all the frozen tissue image patches in the test
datasets by the classifiers trained on the frozen and FFPE tissues were presented. The
AUCs were 0.9995 and 0.9547 for the classifiers trained on the frozen and FFPE tissues,
respectively. Then, the ROC curves for the patch-level classification results on the FFPE
tissues by the classifiers trained on the FFPE and frozen tissues were presented. In this
case, the AUCs were 0.9823 and 0.8118 for the classifiers trained on the FFPE and frozen
tissues, respectively. Figure 2c,d adopt the same formats to demonstrate the results for the
TCGA-LUAD/LUSC datasets. The AUCs for the patch-level classification results of the
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frozen and FFPE tissues were 0.9920 and 0.9892 for the classifiers trained on the frozen
and FFPE tissues, respectively, and were 0.9147 and 0.9334 for the classifiers trained on
the FFPE and frozen tissues, respectively. These results indicated that the classifiers could
show optimal performance only when the classifiers were applied to the trained tissue
preparation modalities.
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Figure 2. Classification results for the frozen and FFPE tissues of bladder (TCGA-BLCA) and lung (TCGA-LUAD/LUSC)
datasets. (a) Representative classification results. Heatmaps were drawn for the representative whole slide images (WSIs)
of the normal and tumor frozen WSIs of the TCGA-BLCA dataset (left two images). For a representative formalin-fixed
paraffin-embedded (FFPE) WSI, both pathologists’ annotation and the heatmap result were presented for the comparison.
(b) Receiver operating characteristic (ROC) curves for the classification results. Left two graphs: the receiver operating
characteristic (ROC) curves for the frozen tissues classified by the classifiers trained on frozen and FFPE tissues. Right two
graphs: the ROC curves for the FFPE tissues classified by the classifiers trained on FFPE and frozen tissues. (c,d) are the
same as (a,b), but the results were for the TCGA-LUAD/LUSC dataset.
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In case of the TCGA-COAD/READ datasets (Figure 3a,b), the AUCs for the patch-
level classification of the frozen tissues were 0.9959 and 0.9413 by the classifiers trained
on the frozen and FFPE tissues, respectively. The AUCs for the FFPE tissues were 0.9986
and 0.7806 by the classifiers trained on the FFPE and frozen tissues, respectively. For the
TCGA-STAD datasets (Figure 3c,d), the AUCs for the classification results of the frozen
and FFPE tissues were 0.9895 and 0.9935 for the classifiers trained on the same preparation
modalities and were 0.8952 and 0.8874 for the classifiers trained on different preparation
modalities.
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Figure 3. Classification results for the TCGA-COAD/READ and TCGA-STAD datasets. (a) Representative classification
results. Heatmaps were drawn for the representative whole slide images (WSIs) of the normal and tumor frozen WSIs of the
TCGA-COAD/READ dataset (left two images). For a representative formalin-fixed paraffin-embedded (FFPE) WSI, both
pathologists’ annotation and the heatmap result were presented for the comparison. (b) Receiver operating characteristic
(ROC) curves for the classification results. Left two graphs: the ROC curves for the frozen tissues classified by the classifiers
trained on frozen and FFPE tissues. Right two graphs: the ROC curves for the FFPE tissues classified by the classifiers
trained on FFPE and frozen tissues. (c,d) are the same as (a,b), but the results were for the TCGA-STAD dataset.
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Figure 4a,b demonstrate the results for the TCGA-CHOL datasets. The AUCs for
the patch-level classification of the frozen tissues were 0.9994 and 0.8960 by the classifiers
trained on the frozen and FFPE tissues, respectively. The AUCs for the FFPE tissues were
0.9964 and 0.4765 by the classifiers trained on the FFPE and frozen tissues, respectively. For
the TCGA-LIHC datasets (Figure 4c,d), the AUCs for the classification results of the frozen
and FFPE tissues were 0.9993 and 0.9910 for the classifiers trained on the same preparation
modalities and were 0.6130 and 0.6222 for the classifiers trained on different preparation
modalities.
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Figure 4. Classification results for the bile duct (TCGA-CHOL) and liver (TCGA-LIHC) datasets. (a) Representative
classification results. Heatmaps were drawn for the representative whole slide images (WSIs) of the normal and tumor
frozen WSIs of the TCGA-CHOL dataset (left two images). For a representative formalin-fixed paraffin-embedded (FFPE)
WSI, both pathologists’ annotation and the heatmap result were presented for the comparison. (b) Receiver operating
characteristic (ROC) curves for the classification results. Left two graphs: the ROC curves for the frozen tissues classified by
the classifiers trained on frozen and FFPE tissues. Right two graphs: the ROC curves for the FFPE tissues classified by the
classifiers trained on FFPE and frozen tissues. (c,d) are the same as (a,b), but the results were for the TCGA-LIHC dataset.



Appl. Sci. 2021, 11, 808 8 of 11

3.2. Cross-Validation between the Different Cancer Types

It was clear that the classifiers could show optimal performance when the classifiers
trained on the frozen tissues were applied for the frozen tissues and the classifiers trained
on the FFPE tissues were applied for the FFPE tissues. Next, we tested the classification
results between the cancer types. FFPE tissue slides of each cancer type were classified by
the classifiers trained on the other five cancer types. The resultant AUCs were summarized
in the Table 1. The AUCs by the classifiers for the same cancer types lie in the diagonal
line. Basically, it clearly showed that the classifiers performed optimally for the trained
datasets, because the AUCs were highest when the tissue-classifier combination were
matched. Interestingly, the first four rows and columns including BLCA, LUAD/LUSC,
COAD/READ, and STAD datasets demonstrated relatively high AUCs (all higher than 0.9),
suggesting there are common features discriminating normal and tumor tissues between
these cancer types. However, CHOL and LIHC generally showed poorer compatibility
with other cancer types.

Table 1. Cross-validation results for the TCGA-FFPE slides of the six different cancer types.

By BLCA By LUAD-
LUSC

By COAD-
READ By STAD By

CHOL By LIHC

BLCA 0.9823 0.9778 0.9816 0.9782 0.9390 0.9449
LUAD-
LUSC 0.9212 0.9892 0.9417 0.9492 0.8548 0.9152

COADREAD 0.9833 0.9878 0.9986 0.9907 0.9256 0.8754
STAD 0.9373 0.9126 0.9453 0.9935 0.8890 0.8278
CHOL 0.4389 0.8991 0.9398 0.9368 0.9964 0.9852
LIHC 0.6054 0.8219 0.7967 0.8196 0.8958 0.9910

BLCA, bladder cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; COAD, colon
adenocarcinoma; READ, rectal adenocarcinoma; STAD, stomach adenocarcinoma; CHOL, cholangiocarcinoma;
LIHC, liver hepatocellular carcinoma

3.3. External Validation of the Tissue Classifiers

H&E-stained slides undergo multiple processing from formalin fixation to staining,
resulting differences in color, brightness, and contrast [9]. Furthermore, differences in
scanning devices and image compression methods could contribute to the differences
in the WSIs [2]. Therefore, different cohorts of WSIs may have different appearances
even for the same cancer types depending on the preparation processes and the scan-
ning devices. Furthermore, ethnic differences may contribute to the differences in the
tissue appearance in the different cohorts. Thus, we validated the classifiers trained on
the TCGA-STAD and TCGA-COAD/READ FFPE WSIs datasets with the WSIs of the
stomach and colorectal cancer FFPE tissue slides from the Seoul St. Mary’s hospital (SMH-
STAD and SMH-COAD/READ). Figure 5a demonstrates the classification results for the
SMH-COAD/READ dataset by the classifier trained with the TCGA-COAD/READ FFPE
datasets. The AUC was 0.9926. For SMH-STAD dataset, the AUC was 0.9912 (Figure 5b).
These results demonstrated that the classifiers trained for the FFPE WSIs of the TCGA
datasets can discriminate normal and tumor tissues in the FFPE WSIs obtained from other
institutes quite well.
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4. Discussion

In the present study, deep learning-based normal/tumor classifiers for the tissue
image patches of six different cancer types were separately built for the frozen and FFPE
tissue WSIs. As presented in the figures, the AUCs for all the tissue image patches in the
test datasets ranged from 0.989 to 0.999 for both frozen and FFPE tissue image patches,
demonstrating excellent performance. Particularly, heatmaps of the FFPE WSIs showed
that the classification results were well matched with the pathologists’ annotations. These
results indicated that the deep learning systems can learn the appropriate features for the
discrimination of the normal/tumor tissues regardless of cancer types.

The heatmaps of the WSIs clearly demarcated the distribution of normal and tumor
tissues in the tissue slides. The clear normal/tumor demarcation can be highly informative
for current pathology workflow because a clear mark-up of the tumor in the tissue section
is often necessary for various molecular tests [1,2,6]. When the heatmap is presented, clear
tumor regions can be more precisely selected for molecular tests. This may diminish the
possibility of false negative test results by avoiding the selection of improper tissue regions
with low tumor contents. Although we focused on the normal/tumor discrimination in
this study, deep learning can also be applied for more complicated analysis tasks for cancer
tissues, such as assessment of tumor mutational burden [20], detection of microsatellite
instability [16,21], and detection of genetic mutations [22–24]. The classifiers for these tasks
may perform best when the tissue patches for the classification came from the tumor regions
because genetic perturbation can be most well presented in the tumor regions. Therefore,
the development of reliable normal/tumor tissue classifiers would be prerequisite for
various tissue analysis tasks. In the present study, we developed the normal/tumor
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classifiers for six different cancer types based on the TCGA WSI datasets and demonstrated
that the classifiers can discriminate the respective normal/tumor tissues appropriately.
However, there are many more cancer types that are not addressed in this study. When we
cross-validated the classifiers between the cancer types and preparation modalities, it was
clear that the generalizability of the deep learning-based classifiers is limited. Therefore,
we concluded that each classifier should be developed separately for each target cancer
tissue type to yield the best diagnosis performance.

Although the classifiers were not very compatible between cancer types, external
validation with the SMH datasets demonstrated that the classifiers could perform well on
the same types of cancer tissues obtained from different institutes. The TCGA and SMH
datasets may differ in the ethnicity of patients, tissue preparation processes, and tissue
scanning devices. Therefore, there could be differences in tissue properties. Nevertheless,
the performance of the classifiers trained with the TCGA datasets was comparable between
the TCGA and SMH datasets. These results indicated that the data augmentation tech-
niques during the training were strong enough for the deep learning systems to overcome
the differences and to learn the general features for the discrimination of the normal/tumor
tissues in the trained cancer types.

There are also limitations in the current study. Deep learning systems are often
criticized as non-interpretable black boxes because the decision rule of deep learning is
not easy to be interpreted. The deep learning systems did not offer clear criteria for the
discrimination of normal/tumor tissues. This unclear nature of deep learning systems
could be a barrier to the adoption of the deep learning-based diagnosis support systems in
the clinics. Second, the external validation datasets were limited to only two cancer types
from a single institute. In a future study, WSIs from other institutes and more cancer types
should be tested to validate the generalizability of the system more precisely.

5. Conclusions

Overall, this study demonstrated that the deep learning-based classification systems
could be a reliable tool to discriminate the normal and tumor tissues. However, it also
showed that the classifiers should be trained with the appropriate datasets for the target
tasks. As there is no room for error in the clinics, we strongly suggest that a classifier
trained for a desired task should be adopted to yield the best result for the task. If classifiers
for most cancer types are established in the near future, they can be applied prospectively
to rule out definitive cases from further review or retrospectively as a quality review for the
decision made by humans. Therefore, the efficiency and accuracy of pathologic diagnosis
could be improved with the adoption of various deep learning-based systems for tissue
analysis.
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