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Featured Application: The proposed novel approach, presented in this paper, can effectively
interpret complex sensor data collected for structural health monitoring and offers a reliable
scheme for damage detection of structural systems.

Abstract: Recent advancements in sensor technology have resulted in the collection of massive
amounts of measured data from the structures that are being monitored. However, these data
include inherent measurement errors that often cause the assessment of quantitative damage to
be ill-conditioned. Attempts to incorporate a probabilistic method into a model have provided
promising solutions to this problem by considering the uncertainties as random variables, mostly
modeled with Gaussian probability distribution. However, the success of probabilistic methods is
limited due the lack of adequate information required to obtain an unbiased probabilistic distribution
of uncertainties. Moreover, the probabilistic surrogate models involve complicated and expensive
computations, especially when generating output data. In this study, a non-probabilistic surrogate
model based on wavelet weighted least squares support vector machine (WWLS-SVM) is proposed to
address the problem of uncertainty in vibration-based damage detection. The input data for WWLS-
SVM consists of selected wavelet packet decomposition (WPD) features of the structural response
signals, and the output is the Young’s modulus of structural elements. This method calculates
the changes in the lower and upper boundaries of Young’s modulus based on an interval analysis
method. Considering the uncertainties in the input parameters, the surrogate model is used to
predict this interval-bound output. The proposed approach is applied to detect simulated damage
in the four-story benchmark structure of the IASC-ASCE SHM group. The results show that the
performance of the proposed method is superior to that of the direct finite element model in the
uncertainty-based damage detection of structures and requires less computational effort.

Keywords: surrogate models; uncertainties; non-probabilistic; interval analysis; wavelet packet
decomposition (WPD); data analytics

1. Introduction

In general, civil structures are prone to damage during their service life, leading to
the loss of their serviceability and safety. Thus, the integrity and the state of the health of
these structural systems is essential for structural safety assessment and decision-making
management [1]. Although significant progress has been made in this area, the high
level of variability due to noise and other interferences, the uncertainties associated with
data collection, structural performance, and in-service operational environments pose
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significant challenges in finding the necessary information to support decision-making [2,3].
In addition to the effect of measuring noise, some uncertainties are due to undamaged
stiffness in real structures, which is also caused by reasons such as connections, infills, and
others [4]. Normally, the natural frequencies of the structure are used as damage-sensitive
feature because of ability to estimate the condition of the structure even if a small number of
sensors are installed [3,5]. However, estimation based on natural frequencies is sensitive to
environmental and operational variables (EOVs), and in practice the structural acceleration
response is usually used [4].

Moreover, despite advancements in computer capacity, the enormous computational
cost of running complex engineering simulations makes it impractical to rely solely on
simulation for structural health monitoring applications [6]. To cut down the cost, surrogate
models, also known as meta-models, are constructed and then used in place of the actual
simulation models [7]. The effectiveness of surrogate models when applied in vibration-
based damage detection has been demonstrated in numerous studies [7,8]. However, in
the face of uncertainty, the use of surrogate models has been questioned in terms of their
reliability [9].

Surrogate models in damage detection suffer from two inevitable uncertainties: model-
ing error and measurement noise [10]. The existence of error in finite element (FE) modeling,
due to the inaccuracy of physical parameters and non-ideal boundary conditions, and
also finite element discretization, together with nonlinear structural properties, may result
in generating the vibration parameters from such an FE model not exactly representing
the relationship between the modal parameters and the damage parameters of the real
structure [11]. On the other hand, the presence of a measurement error in the collected
data, which is usually used in a surrogate model as the test data, is often inevitable. Since
the efficacy of the prediction of a surrogate model relies on both components’ accuracy,
the existence of these uncertainties may result in false and inaccurate predictions. Thus,
it is necessary to analyze the effect of uncertainties on surrogate model’s reliability for
structural damage detection.

Ghiasi et al. [12] and Bakhary et al. [13] demonstrated the effect of uncertainties on the
output of support vector machine (SVM) and artificial neural networks (ANNs) in training
and testing results, and proposed the use of a probabilistic surrogate model that considered
the presence of uncertainties in the FE model and the measurement data. Their research
work showed that the probabilistic approach can facilitate accurate detection of damage
even in noisy data [12,13]. However, the probabilistic methods presented in the literature
suffer from several shortcomings, such as assuming uncertain parameters as random
variable with a Gaussian distribution with a given variance that subsequently produce
statistical structural damage results [13]. In practice, the probability density function cannot
be accurately obtained because of the complexity of uncertainty sources [14]. Moreover,
the assumption of Gaussian distribution for uncertain parameters is not valid. In addition,
the lack of experimental data reduces the possibility to obtain a suitable probability density
function. Creating an acceptable and reliable probabilistic model also requires different
data sets in order to train and upgrade the model. This data set is created through finite
element analysis or simulation by utilizing surrogate models such as ANN algorithms or
response surface method [13]. This approach requires an iterative simulation procedure
that takes a very long time and, again, mostly relies on the Gaussian assumption.

Due to these challenges and shortcomings, Qiu and Wang [15] emphasized the need
to introduce non-probabilistic interval analysis methods. Unlike the standard probabilistic
approach, no assumptions about uncertainty distributions for estimating the probability
of damage existence (PoDE) are needed for the non-probabilistic interval approach. Only
the upper and lower bounds of uncertain variables are needed, thereby simplifying the
detection of damage with noisy data and reducing complex computation compared to the
probabilistic approach [9,16].

In this paper, the applicability of non-probabilistic methods is extended by using a
non-probabilistic surrogate model based on wavelet weighted least squares support vector
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machine (WWLS-SVM) [17,18]. This surrogate model is a combination of weighted least
squares support vector machine (WLS-SVM) [19] and thin plate spline Littlewood–Paley
wavelet kernel function, which is called WWLS-SVM [17]. The input data for this model
consists of extracted features of acceleration response of structures, and the output is the
Young’s modulus (E values), which acts as an elemental stiffness parameter (ESP). Through
the interval analysis method [9,10], noise in the measured response of the structure is
considered to be coupled rather than statistically distributed.

The interval bound (lower and upper bounds) of the ESP changes is computed based
on an interval analysis method. By considering the uncertainties in the input parameters,
the surrogate models are used to predict this interval-bound output. A possibility of
damage existence (PoDE) parameter is used for the undamaged and damaged states to
determine the relationship between the input and output parameters [20]. To provide
an indicator of damage severity, the damage measure index (DMI) suggested by Wang
et al. [21] is adopted.

The proposed method’s feature extraction phase will be carried out using wavelet
packet decomposition (WPD) method [22]. In this study, the measured structural dynamic
response is decomposed into wavelet component functions [23]. Then wavelet pocket
relative energies of these components are used as input of the proposed meta-model.

The proposed method’s applicability is demonstrated by performing damage detection
on the 4-story building of Phase I of IASC-ASCE SHM benchmark [24]. The results show
that the proposed method is able to accurately determine the location and the severity of
damage in structural elements by considering the uncertainties caused by modeling and
noise in the sensors.

The main contributions of this paper may be summarized as follows:

1. In this study, a non-probabilistic wavelet packet transform method is proposed that
resolves the problem of uncertainties in vibration-based damage detection. The
damaged and undamaged structure’s acceleration responses are decomposed to
obtain the wavelet pocket relative energies of the signal.

2. Different levels of detection of structural damage, including the occurrence of damage,
location and severity of it, are evaluated using a computational approach. Further-
more, the effect of different levels of uncertainties on damage identification are
presented.

3. Furthermore, the applicability of WWLS-SVM to act as a non-probabilistic surrogate
model for damage detection of structures, with consideration of uncertainties, will be
examined through simulating a damage in the benchmark model.

This paper is organized as follows. In Section 2, three main steps of the proposed
method are defined. Feature extraction method utilizing wavelet pocket transform (WPT)
is described in Section 3. The procedure of using interval analysis method for the consid-
eration of uncertainties in the proposed scheme is presented in Section 4. In Section 5, a
description of WWLS-SVM is given. Evaluation of the proposed method on structural
health monitoring (SHM) benchmark is studied in Section 6, and Conclusions are presented
in Section 7.

2. Main Steps of the Proposed Damage Detection Procedure

The main focus of this research is to facilitate the assessment of uncertainties in SHM.
Accordingly, an integrated system, consisting of three steps, will be proposed in this paper.
Firstly, wavelet packet decomposition (WPD) [17,23] is applied to the structural acceleration
response under ambient vibration, and feature vectors are obtained by a feature extraction
based on wavelet energy spectrum. Subsequently, interval analysis method is used to
incorporate uncertainties in the model using the upper and lower bounds of extracted
features. In the final step, by considering the uncertainties in the input parameters, the
WWLS-SVM is used to predict the output of this interval bound.
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Figure 1 summarizes the proposed novel method based on WPD, interval analysis,
and WWLS-SVM, which consists of three main steps, as stated before. Each step will be
explained in more detail in the following section.

Figure 1. Summary of non-probabilistic damage detection approach.

3. Feature Extraction Using Wavelet Packet Transform (WPT)

Non-stationary signals are frequently encountered in a variety of engineering fields
(e.g., wind, ocean, and earthquake engineering) [25]. The inability of conventional Fourier
analysis to preserve the time dependence and describe the evolutionary spectral characteris-
tics of non-stationary processes requires tools which allow time and frequency localization
beyond customary Fourier analysis. The wavelet transform is used to decompose ran-
dom processes into localized orthogonal basis functions, providing a convenient format
for the modeling, analysis, and simulation of non-stationary processes [26]. The time
and frequency analysis made possible by the wavelet transform provides insight into the
character of transient signals through time-frequency maps of the time variant spectral
decomposition that traditional approaches miss [25].

Wavelet packet component energy is an effective method to define and characterize a
specific signal phenomenon in the time-frequency domain. Yen and Lin’s [27] demonstrated
that the energy stored in a specific frequency band, at a certain level of wavelet packet
decomposition, provides more potential for signal feature than the coefficients alone.
Sun and Chang [28] utilized sensitivity analysis, to compare the four damage indices of
frequency, modal, flexibility, and energy changes of wavelet packets. They subsequently
concluded that the index based on wavelet packet energy had the best performance in
detecting changes in elemental stiffness. Therefore, in this study, this method will be used
for the feature extraction phase of the proposed method.

The WPT of a time domain signal f (t) can be calculated using a recursive filter-
decimation operation [29]. After j-levels of decomposition, the original signal f (t) can be
expressed as:

f (t) =
2j

∑
i=1

f i
j (t), (1)

f i
j (t) =

2j

∑
i=1

Ci
j,k(t)ψ

i
j,k(t), (2)

Herein, a linear combination of wavelet functions ψi
j,k(t) can express the component

signal f i
j (t). Integers i, j and k are the parameters of the modulation, scale and translation,

respectively; Ci
j,k(t) and ψi

j,k(t) are defined as the wavelet packet coefficients and the
wavelet packet function. The wavelet packet coefficients can be obtained from.

Ci
j,k =

∫ ∞

−∞
f (t)ψi

j,k(t)dt, (3)

Frequency domain information is very important in damage detection of structures.
Therefore, a high level of WPT is required to detect small changes in the signal. After
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WPT is carried out, the corresponding energies of these decomposed component signals
can be used to assess the condition of the structure. The component energies of signal are
expressed as follows:

Ei
j =

∫ ∞

−∞
f i
j (t)

2dt, (4)

It can be proven that, when the mother wavelet is semi-orthogonal or orthogonal [30],
the signal energy E f is the summation of the j-level component energies as follows:

E f =
∫ ∞

−∞
f 2(t)dt =

2j

∑
i=1

Ei
j, (5)

In this research, the relative energy corresponding to the component signals of the
structural acceleration response has been used as WWLS-SVM input, thus, the relative
energy Ei in i-frequency band can be expressed as:

Ei =
Ei

j

E f
, (6)

Battle–Lemarie is a symmetric wavelet basis function. In the frequency domain, this
wavelet feature is a band filter, while the scale function is a lowpass filter. Consequently,
the above two functions′ frequency bands are overlapped in certain degree, indicating
a desirable orthogonal feature [31]. Orthogonal wavelets represent the signal with as
little information as possible, and without redundancy. These features are very useful
in denoising and in matrix multiplications [32]. So Battle–Lemarie is adopted as the
basis wavelet package function in this paper to decompose the signals to be analyzed
into different frequency bands and make each frequency band energy independent and
irredundant [33]. Several optional measuring nodes are chosen, and vibration signals from
these nodes are analyzed by using the WPT.

Apart from the effect of selecting the mother wavelet function, the decomposition
level of analysis, at which the wavelet analysis should be performed, has immense effect
on the performance of wavelet-based methods. Reasonable level requirements are not
known in advance and depend on a broad range of parameters, including structural
characteristics, signal characteristics and type, location and severity of the damage, etc.
Different decomposition levels have been suggested by several researchers [34].

In this paper based on our previous work [17,35] The level of decomposition of the
wavelet packet is determined using both healthy and damaged structural models and set
on 7 levels [17]. The frequency band energy is then calculated and normalized. The wavelet
package relative energy of the signals from sensor s is:

Es
p = {Em, m = 1, . . . , M}, (7)

where, s = 1, 2, . . . .S, p is the acquiring number, p = 1, 2, 3, . . . , P.
The wavelet package relative energy (WPRE) Es

p of the signals from sensor s is com-
bined to obtain the fused feature vector [17]:

Ep =
{

E1
p, E2

p, . . . , Es
p

}
. (8)

This fused feature vector will be used as the input of the surrogate model after
implementing interval analysis method.

4. Interval Analysis Method for Consideration of Uncertainties

The interval bounds can provide supports for structural health monitoring under
uncertain conditions [36]. The general concept of interval mathematics is implemented by
supplying the upper and lower boundaries of input parameters to generate the upper and
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lower boundaries of output parameters to consider the two uncertainties (epistemic and
aleatory uncertainty). Artificial intelligence based surrogate models, such as the WWLS-
SVM scheme, usually establish the relationship between the input and output via a black
box procedure [37], therefore, the fundamental equation of interval analysis proposed by
Polyak and Nazin [36] can be directly applied to the input parameters (extracted features)
to produce the intervals of the output parameters (ESP values). It is noteworthy to indicate
that, in black box-based methods, the algorithm’s accuracy is checked by evaluating the
output responses of the algorithm and comparing them with the training data.

As shown in Equation (9), the stiffness reduction ratio (SRF) indicates the changes in
the stiffness parameter for each member of the structure:

SRF = 1− αd
αu

, (9)

where:

αd = value of ESP in the damaged stat
αu = value of ESP in undamaged (healthy) state.

The intervals of the ESPs and extracted features for both states can be formulated as
follows [9]:

[α] ≈
[

Ep

]
= lower bound of ESP value, (10)

[α] ≈
[
Ep
]
= upper bound of ESP value, (11)

The upper and lower bounds of α and Ep are denoted by the upper and lower bars,
respectively. Therefore, the interval bounds for each parameter can be obtained as:

Ep =
[

Ep, Ep

]
=
{

E1
p, E2

p, . . . , Es
p

}
, Es

p =
[

Es
p, Es

p

]
, . (12)

αI
c =

[
αI

c, αI
c

]
=
{

αI
c1, αI

c2, . . . , αI
ck

}T
, αI

ck =
[
αI

ck, αI
ck

]
, (13)

where:

c = number of damage cases.
k = number of segments of structures.
I = interval number or vector representation
s = number of sensor on structure
p = is the acquiring number

And the input and output middle values are indicated as:

xc = m(x) =
(x + x)

2
, (14)

In the above equation, the variable x represents the exact values of the extracted
features (input values) and the output of the algorithm (ESPs). The upper and lower bars
show the upper and lower bounds of x, respectively. Thus, the training and testing functions
of the WWLS-SVM are established based on Equations (10)–(14). The uncertainties are
coupled with extracted features in terms of the interval bounds. These features are used as
input parameters of the surrogate model, while the ESPs (α) are used as outputs. Finally,
two WWLS-SVM models, which include the lower bound and upper bound analyses, are
provided, as shown in Table 1.
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Table 1. Input and output variables for training and testing of WWLS-SVM.

Surrogate Model Training Input Testing Input Output

Lower bound WWLS-SVM 1
EIr

p = EIr
p of Acc.

response
with negative

EIe
p = EIe

p of Acc.
response with

negative ω

αck

Upper bound WWLS-SVM 2
EIr

p = EIr
p of Acc.

response
with positive

EIe
p = EIe

p of Acc.
response with

pitive ω

αck

The variable ω indicates the uncertainty level in the acceleration signal. The interval
variables of training and testing data are presented herein using superscripts Ir and Ie.
The lower and the upper bounds of the input parameters are applied through the + and
− values of the uncertainties in two surrogate models of WWLS-SVM 1 and WWLS-SVM
2. αck and αck are the outputs of the WWLS-SVM models and show the boundaries of the
predicted ESPs of damage case c. Once the lower and upper boundaries of the ESPs are
obtained, the possibility of damage existence (PoDE) are subsequently calculated and then
the damage severity is measured using damage measure index (DMI). Definition of these
indexes will be explained in the next section.

As shown in Table 1, it is noteworthy to indicate that only two WWLS-SVM models are
needed to predict the lower and the lower bounds of ESP, which is less than the conventional
method presented in previous articles. In fact, in proposed methods for probabilistic
damage detection of structures, several surrogate models are usually used. In the method
presented by Bakhary et al. [13], Which is based on the point estimate method [38], 4 neural
network models are utilized and in the method presented by Ghiasi et al. [12], which is
based on a Monte Carlo simulation algorithm, 200 least squares support vector machine (LS-
SVM) models are used. Employing fewer surrogate models reduces the overall prediction
error. In probabilistic methods, increasing the prediction error results in an increase in
the standard deviation of the probability distribution function, which in turn reduces the
accuracy of the probability of damage existence (PDE).

Possibility of Damage Existence (PoDE) and Damage Measure Index (DMI)

The PoDE is calculated by comparing the ESPs vectors in both healthy and damaged
modes. As shown in Table 1, the vectors are the lower and upper boundaries of ESPs,
which are also the output of WWLS-SVM models (refer to Table 1), respectively. The terms
are as follows:

αI
u =

{
αI

u1, αI
u2, . . . , αI

uk

}T
, (15)

αI
d =

{
αI

d1, αI
d2, . . . , αI

dk

}T
, (16)

where αI
u shows the interval bound for the undamaged ESP (

[
αuk, αuk

]
) and αI

d shows the

interval bound for the damaged (
[
αdk, αdk

]
)

Figure 2 illustrates the intersection of the intervals of the damaged and undamaged
ESPs on the same axis, where the shaded region indicates the PoDE. The middle value
(xc) disparity between the two states will increase as the damage increases. The PoDE
ranges from 0 to 100%, with 100% indicating a relatively high possibility of damage to that
particular element and 0% indicating no damage.
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Figure 2. Scheme for PoDE.

The areas of damage and undamaged ESP on two separate axes are shown in Figure 3.
The possible damage area is shown by a single solid rectangle where the failure plane
for both states is equal. The shaded region reflects the ESP damage. Compared to the
undamaged ESP, since the ESP damage is greater, the PoDE is defined as the ratio of the
area of damage region to the total area of the entire region. The quantitative measurement
of the PoDE can therefore be described as below [9]:

PoDE =
Adamage

Atotal
× 100%, (17)

Figure 3. Space for damage and undamaged ESP.

The interval value of damaged and undamaged ESP will have significant variations
in reality, as the PoDE would be 100%. Therefore, using PoDE alone will not provide an
accurate or direct indication of the damage. Accordingly, the damage measure index (DMI)
is calculated as below [9]:

DMI = SRF× PoDE. (18)

5. Wavelet Weighted Least Squares Support Vector Machine (WWLS-SVM)

In this study, WWLS-SVM is used as the main surrogate model for addressing the
problem of uncertainty in vibration damage detection. Fundamentally, support vector
machine (SVM) is a machine learning method based on statistical learning theory (SLT),
introduced by Cortes and Vapnik [39]. The LS-SVM is an extended version of standard
SVM [40]. In the LS-SVM, a sum-squared error (SSE) cost function has been substituted
by Vapnik’s ε-insensitive loss function. In addition, instead of inequalities, the LS-SVM
considers equality type constraints as in the classic SVM method [40]. This reformulation
simplifies the problem significantly by directly solving a series of linear equations rather
than a convex quadratic program (QP).

In this paper, the weighted version of LS-SVM [41] will be used as a surrogate model.
WLS-SVM was introduced as a highly effective machine learning algorithm in large-scale
problems by Suykens et al. [41]. In fact, the assignment of weights to both the SVM and
the least square version of SVM (LS-SVM) results in a more robust and accurate function
prediction [42].
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Wavelets as kernel functions have been introduced and developed in ANNs and
SVMs [43,44]. Wavelet kernel functions have been demonstrated to be superior to other
kernel functions in ANN and SVM training. [44]. Accordingly, the kernel function of WLS-
SVM is substituted with a specific type of wavelet function proposed by Ghiasi et al. [17].
In fact, the thin plate spline Littlewood–Paley wavelet is used as the kernel function of
WLS-SVM. Finally, this WLS-SVM based on wavelet kernel function is called WWLS-SVM.
For further detailed information on the mathematical basis of WWLS-SVM algorithm,
readers are referred to the original work by the main authors [15], and the work reported
in [39].

6. Damage Detection of IASC-ASCE Structural Health Monitoring Benchmarks

The structure shown in Figure 4 is a 4-storey building with a base plan of 2.5 by
2.5 m and a total height of 3.6 m. This structure is a model with a quarter scale model
of a physical structure which was developed in the Earthquake Engineering Research
Laboratory of the University of British Columbia (UBC) [24] for benchmark studies. The
material characteristics of this model are as follows: hot rolled grade 300 W, Fy = 300 MPa
(42.6 kpsi).

Figure 4. ASCE benchmark structure used for health monitoring: (a) The analytical model [24] (b)
Distribution of node numbering.

The primary aim of the IASC-ASCE benchmarks is to provide a common platform for
researchers in the field of structural health monitoring to apply different SHM methods to
an identical structure and to compare their results [45]. The benchmarks comprise of two
phases, e.g., Phase I and Phase II, each with simulated and experimental data. In this study,
for prediction of structural damage, Phase I simulated data generated from this structure
are employed. The excitation is low-level ambient wind loading at each floor in y-direction.
To consider the uncertainty of environmental loads, the wind loading is modeled as filtered
Gaussian white noise process passed through a sixth-order low-pass Butterworth filter
with a 100 Hz cutoff [17]. The sensors are placed on each floor on the middle column of
each face of the structure. Therefore, a total of 16 sensors are installed on the structure. The
input signal used in this paper is the acceleration response recorded by the sensor installed
on column 4. The location of these sensors is shown in Figure 5, which includes nodes 13,
22, 31, and 40. The sampling frequency is 100 Hz and the length of each recorded response
is 40,000. As stated in Azimi and Pekcan work [46] measured acceleration response
data acquired by conventional Micromachined Microelectromechanical Systems (MEMS)
sensors.
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Figure 5. Location of all structure’s sensors and the sensors used in this research.

The two types of Finite Element (FE) models with 12 and 120 degrees of freedom
(DOF), respectively, are used to produce the time histories for pre-defined damage cases
and damage patterns described in Table 2 [24]. Acceleration response of damage scenarios
in Table 2 is used to test the performance of the proposed model.

Table 2. Damage Cases of the Benchmark Model [45].

Description Case

1 2 3 4 5

12 DOF model
120 DOF model O O O O O
Symmetric Mass

Asymmetric Mass O O O O O
Ambient Excitation

Shaker on Roof O O O O O
Damage Patterns: Remove Followings

(1) All Braces in the 1st Story
(2) All Braces in the 1st and 3rd Story

(3) One Brace in the 1st Story
(4) One Brace in the 1st and 3rd Story

(5) 4 and Loosen Floor Beam at 1st Level
(6) 2/3 Stiffness in One Brace at 1st Story

O
O

O
O

O
O

O
O
O
O

O
O
O
O
O
O

It is worth noting that, the MATLAB® code (MATLAB® R2015b-Mathworks) for the struc-
tural model was obtained from the network for earthquake engineering simulation (NEES)
Database for Structural Control and Monitoring Benchmark Problems [47]. We use this
source code (with predefined damage scenario of phase I) without any modification for val-
idation of proposed algorithm. This phase deals with analysis considering shear building
model. Therefore, the discrepancies, i.e., user-defined damage, between analytical model
and real model were not considered. In Phase II, the freedom for user to define the type
and point of damage has been included [48].

6.1. Feature Extraction and Training Phase for Damage Cases 4 and 5

Since the damage cases 4 and 5 are more inclusive and are also more complex damage
scenarios, they will be used to assess the merits of the proposed algorithm. Training
data is generated by simulating damage cases 4 and 5 on a three-dimensional structure
with 12-DOF. Damage is induced by reducing the stiffness parameter of each story. The
mathematical expression of which is as follows:

kpd
ij = θijku

ij. (19)
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where θij is the stiffness loss parameters for the ith story (i = 1, . . . 4) and face
j (j = +x,−x,+y,−y) (see Figure 6). Furthermore, ku

ij are stiffnesses of the undamaged
shear building model, e.g., ku

i,+x = ku
i,−x = 34.0 MN/m and ku

i,+y = ku
i,−y = 53.5 MN/m [45].

The damage severities are expressed as stiffness reduction factor (SRF) θij.

Figure 6. Floor Plan for Benchmark Structure.

After imposing damage, recorded acceleration response of the structure from each
of 4 sensors (Figure 5) are decomposed using the procedure described in Section 3. The
Battle–Lemarie [32] wavelet is used as a basic function to analyze the output acceleration
response of the sensors. According to the WPE process, up to 7 levels of decomposition
are conducted. Based on this approach, 128 frequency bands with a width of 3.91 Hz will
be created. The resulting energy components are arranged according to their magnitudes
95% of the WPRE is mostly distributed below 100 Hz frequency bands, which are both
important in value and sensitive to the damage occurred in the structure. Therefore, WPT’s
first 8 component energies are selected as damage features.

Extracted features from different sensors are fused to construct input vectors of the
surrogate model as expressed in Equation (8). Training output vectors for the first and
second surrogate model are damage severities which is expressed in Equation (19) as
stiffness reduction factor θij. In the first phase, to construct the damage signatures for the
purpose of comparing the performance of PoDE and PDE [13], 50% stiffness reduction
is imposed on the stiffness in the X and Y directions (single damage level). When the
damage is assigned, the stiffness of both elements facing each other, e.g., elements in +Y
and −Y faces, are reduced together. In the second phase, to evaluate the damage severity
index (DMI), two levels of damage, i.e., 30 and 70% of stiffness losses, are imposed on the
structural elements in order to create the training dataset.

6.2. First Phase—Comparing the Performance of PoDE and PDE

In order to validate the proposed method, a comparison between PoDE and PDE
indices is performed, as shown in Table 3. PDE values have been calculated based on the
probabilistic surrogate method presented by Ghiasi et al. [49]. The acceleration response of
full benchmark models with 12 and 120 DOF is used for damage cases 4 and 5. To consider
the measurement noise, the acceleration responses of the structure are contaminated with
Gaussian white noise (WGN). For the noise levels considered, the signal-to-noise ratios
(SNRs) is: (i) 5%, SNR 26 dB. The SNR is expressed as:

SNR = 20 log10

(
1
n

)
. (20)

where n is the noise level.
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Table 3. PoDEs and PDEs for Damage Cases 4–5.

Damage Case Damage
Patten

Story 1 Story 2 Story 3 Story 4

θi,y θi,x θi,y θi,x θi,y θi,x θi,y θi,x

Target
Damage

Cases
4&5

1 100 100 0.00 0.00 0.00 0.00 0.00 0.00
2 100 100 0.00 0.00 100 100 0.00 0.00
3 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 100 0.00 0.00 100 0.00 0.00 0.00
5 0.00 100 0.00 0.00 100 0.00 0.00 0.00
6 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00

Prediction
Damage
Case 4
PoDE

1 100 100 0.00 0.00 0.00 0.00 0.00 0.00
2 100 100 0.00 0.00 100 100 0.00 0.00
3 2.00 100 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 100 0.00 0.00 100 0.00 0.00 0.00

Prediction
Damage
Case 5
PoDE

1 100 98 0.00 0.00 0.00 0.00 0.00 0.00
2 98 100 2.00 4.00 100 95 0.00 0.00
3 2.00 97 0.00 0.00 0.00 0.00 0.00 0.00
4 4.00 100 0.00 0.00 100 1.00 0.00 0.00
5 0.00 100 0.00 0.00 100 0.00 0.00 0.00
6 0.00 99 0.00 0.00 0.00 0.00 0.00 0.00

Prediction
Damage
Case 4
PDE

1 100 99 0.00 0.00 0.00 0.00 0.00 0.00
2 100 100 3.00 1.00 100 99 0.00 0.00
3 7.00 95 0.00 0.00 0.00 0.00 0.00 0.00
4 8.00 98 0.00 0.00 99 8.00 0.00 0.00

Prediction
Damage
Case 5
PDE

1 90 91 0.00 0.00 1.00 5.00 0.00 0.00
2 79 91 7.00 14.00 80 90 6.00 2.00
3 18.00 90 0.00 0.00 2.00 0.00 0.00 0.00
4 10.00 90 0.00 0.00 95 12.00 0.00 0.00
5 13.00 87 1.00 1.00 98 15.00 1.00 0.00
6 14.00 92 0.00 0.00 1.00 4.00 0.00 0.00

As shown in Table 3, the PoDE is a more accurate damage index, which results in
generating smaller errors in both damage cases 4–5. For example, in damage case 4-pattern
4, the braces of Y direction in story 1 are undamaged, however, the PDE value is 8%
compared to a 0% PoDE value. The same pattern occurred in damage case 5-pattern
5, where the undamaged braces of Y direction in story 1 show 0% damage, and the
probabilistic scheme indicates a 13% probability of damage. It is also indicated that in both
cases, the proposed approach provide higher PoDE values compared to the PDE value
for the damaged story. The key reason for the higher accuracy of the proposed method
in identifying damage elements is the smaller number of surrogate models used in this
approach, compared with the probabilistic method presented in previous studies, which in
turn results in reducing the prediction error.

Furthermore, as shown in Table 3, all of the actually damaged elements can be
successfully identified by the proposed method. Note that θi,y = θi,+y = θi,−y and
θi,x = θi,+x = θi,−x in this Phase.

Table 4 shows the results of comparing between PoDE, PDE, and direct FE model in
terms of computational cost and accuracy. To compute process time when using a surrogate
model, data generation time, training and testing time, and WPD implementation time are
considered together (core™ i7 2.67 GHz CPU).

It can be concluded from Table 4 that the idea of using a WWLS-SVM model as a
surrogate of FE model substantially reduces the computation time of uncertainty based
damage detection and maintaining the acceptable detection accuracy. Furthermore, as
stated before only two WWLS-SVM models are needed to predict the lower and the lower
bounds of ESP. So employing fewer surrogate models in non-probabilistic method reduces
the overall prediction error as shown in Table 4.
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Table 4. Comparison the results in terms of computational cost and accuracy.

Method RMSE Total Time (s)

FE model (PDE) 5.02× 10−04 1202
FE model (PoDE) 5.02× 10−04 978

Probabilistic WWLS-SVM surrogate model (PDE) 3.16× 10−03 561
Non-Probabilistic WWLS-SVM surrogate model (PoDE) 2.01× 10−03 251

6.3. Second Phase—Evaluation of Damage Severities

After ensuring the higher ability of PoDE in comparison to PDE, in second phase, the
proposed method is trained and examined to predict damage severities of elements. As
before, input vectors in Equation (8) are pre-processed from acceleration time histories of
the benchmark structure with the assigned severity of damage given by the target values
in Table 5.

Table 5. Estimates of Damage Severities for Damage Cases 4–5 (DMI).

Damage Case Damage Patten Story 1 Story 3

θi,−y θi,+x θi,+y θi,−x θi,−y θi,+x θi,+y θi,−x

Target
Damage

Cases
4&5

1 0.45 0.71 0.45 0.71 0.00 0.00 0.00 0.00
2 0.45 0.71 0.45 0.71 0.45 0.71 0.45 0.71
3 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.36 0.00 0.00 0.23 0.00 0.00 0.00
5 0.00 0.36 0.00 0.00 0.23 0.00 0.00 0.00
6 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00

Prediction
Damage
Case 4

1 0.44 0.70 0.44 0.70 0.00 0.00 0.00 0.00
2 0.43 0.70 0.44 0.69 0.44 0.74 0.42 0.68
3 0.05 0.35 0.01 0.00 0.00 0.00 0.00 0.00
4 0.00 0.32 0.00 0.01 0.19 0.00 0.02 0.00

Prediction
Damage
Case 5

1 0.42 0.69 0.40 0.67 0.00 0.00 0.00 0.00
2 0.40 0.68 0.44 0.70 0.44 0.67 0.40 0.68
3 0.00 0.30 0.00 0.04 0.00 0.00 0.00 0.00
4 0.06 0.38 0.00 0.07 0.19 0.01 0.03 0.00
5 0.00 0.29 0.00 0.00 0.20 0.00 0.04 0.00
6 0.00 0.18 0.00 0.04 0.00 0.00 0.00 0.00

Maximum damage severity corresponding to structural members in story 2 and 4 (not listed in Table 5) is 0.09.

The results corresponding to the detection of damage severity in the benchmark
structural elements in stories 1 to 4 are shown in Table 5. It is noteworthy to indicate
that the maximum damage intensity for structural members in the 2nd and 4th floors is
9%, which according to the reference article [50] can be considered healthy, and thus, the
damage intensity for these floors is not shown in the Table 5. On the other hand, it is
important to state that the effect of loosening the beam on the first floor in the damage
pattern 4 and 5 of damage case 5 is negligible [51]. Based on the results shown, it can be
concluded that the proposed method accurately determines the severity and the location
of damage in the defective members.

6.4. Third Phase—Influence of Various Noise Levels on the Identification Results

In the third phase, five sets of WWLS-SVM models are built to study the effect of
different noise levels on the identification performance. The models are trained and tested
with varying degrees of uncertainty. The rates of uncertainty for the acceleration response
are (1) 0%, (2) 2% (SNR = 34 dB), (3) 5% (SNR = 26 dB), (4) 15% (SNR = 16.5 dB), and (5)
20% (SNR = 14 dB). Table 6 shows the PoDE and DMI values for different combinations of
uncertainties in the training and testing data. Testing datasets are archived from damage
pattern 2-damage case4.
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Table 6. PoDE and DMI values for damage pattern 2-damage case4.

Train
Uncertainties Element

Test Uncertainties

0% 2% 5% 15% 20%

PoDE DMI PoDE DMI PoDE DMI PoDE DMI PoDE DMI

0%

S1
θi,y 100 0.43 100 0.41 100 0.38 100 0.39 100 0.32
θi,x 100 0.70 100 0.73 99 0.65 85 0.58 85 0.51

S2
θi,y 0 0.00 0 0.00 5.12 0.01 0 0.00 47.1 0.30
θi,x 0 0.00 0 0.00 0 0.00 21.10 0.20 38 0.27

S3
θi,y 100 0.44 99 0.40 100 0.49 80 0.30 95 0.39
θi,x 100 0.71 100 0.69 100 0.65 100 0.79 65 0.40

S4
θi,y 0 0.00 0 0.00 0 0.00 12 0.09 0 0.00
θi,x 0 0.00 0 0.00 0 0.00 0 0.00 13.15 0.09

2%

S1
θi,y 100 0.38 100 0.39 100 0.46 100 0.46 100 0.46
θi,x 100 0.68 100 0.67 100 0.69 99 0.69 90 0.69

S2
θi,y 0 0.00 0 0.00 0 0.00 19 0.12 39 0.12
θi,x 0 0.00 0 0.00 7.12 0.04 17.12 0.10 7.12 0.10

S3
θi,y 100 0.39 100 0.39 98 0.35 98 0.35 95 0.35
θi,x 100 0.69 100 0.75 100 0.65 94 0.65 90 0.65

S4
θi,y 0 0.00 4.11 0.02 0 0.00 0.0 0.00 2.2 0.01
θi,x 0 0.00 0 0.00 0 0.00 4.0 0.04 0 0.00

5%

S1
θi,y 100 0.38 100 0.40 100 0.48 100 0.39 79 0.30
θi,x 100 0.67 100 0.65 100 0.66 98 0.66 100 0.59

S2
θi,y 0 0.00 0 0.00 0 0.00 20.1 0.09 2.1 0.01
θi,x 8.16 0.05 6.15 0.04 0 0.04 12.01 0.04 35 0.15

S3
θi,y 100 0.46 100 0.39 100 0.41 97 0.49 100 0.41
θi,x 98.11 0.65 100 0.69 100 0.65 100 0.61 76 0.55

S4
θi,y 0 0.00 0 0.00 0 0.00 0 0.00 1.65 0.00
θi,x 0 0.00 0 0.00 0 0.00 10.2 0.12 14.2 0.12

15%

S1
θi,y 100 0.40 100 0.40 100 0.40 100 0.46 78 0.46
θi,x 86 0.61 97 0.67 97 0.67 100 0.72 100 0.72

S2
θi,y 0 0.00 0 0.00 14.01 0.14 0 0.00 55 0.34
θi,x 0 0.00 13.11 0.10 0 0.00 4.41 0.01 0 0.00

S3
θi,y 100 0.39 100 0.39 100 0.49 100 0.49 87.12 0.37
θi,x 82 0.61 91 0.63 100 0.69 100 0.74 98 0.74

S4
θi,y 0 0.00 0 0.00 0 0.00 0 0.00 15.34 0.09
θi,x 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

20%

S1
θi,y 70 0.29 81 0.29 94 0.32 100 0.32 100 0.40
θi,x 90 0.60 90 0.60 88.12 0.67 98 0.67 100 0.69

S2
θi,y 0 0.00 0 0.00 11 0.03 31 0.13 0 0.00
θi,x 54 0.30 33 0.13 0 0.00 14 0.03 0 0.00

S3
θi,y 49 0.24 79 0.33 100 0.44 100 0.40 100 0.41
θi,x 61 0.50 80 0.81 100 0.81 100 0.78 100 0.75

S4
θi,y 16.12 0.08 0 0.00 0 0.00 0 0.00 0 0.00
θi,x 38.11 0.17 10.12 0.06 0 0.00 20.1 0.20 0 0.00

Table 6 shows that at the damaged locations, higher PoDE and DMI values occurred,
indicating that the proposed approach can detect damage with noisy data. The table also
shows that as the degree of uncertainty increases, the accuracy of the proposed surrogate
model decreases. For example, if a WWLS-SVM model trained with 0% uncertainty level
in extracted features of acceleration response (deterministic model), the PoDE values will
decrease when tested using high-noise data (e.g., 20%). A similar trend can be observed
for the DMI index, i.e., it cannot show the exact severity of damage when the relative
percentage of noise in the test data increases. The same trend is observed when the model
is trained with training data that has a higher noise percentage. For instance, as shown on
Table 1, when the WWLS-SVM model is trained with extracted features of the acceleration
response, with 20% noise, and tested with 0% noise in the testing data, the accuracy of
PoDE and DMI indices decreases.

Based on the various combinations shown in Table 6, it can be concluded that when
the noise (i.e., uncertainty) in the training and test data is similar, the highest accuracy is
obtained in DMI and PoDE indices. The reliability of the proposed method decreases with
increasing the noise percentage difference and ratio between training and testing data. This
is due to the fact that when the level of uncertainty in the training and testing data varies
from each other, noise contaminates the true information, and thus, the damage cannot be
reliably detected. These results indicate the importance of determining the percentage of
noise, which is used as a measure of uncertainty, in training data, which in itself requires
engineering judgment and prior experience on similar vibration experiments, and therefore,
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it can be considered a limitation of the method proposed in this study. However, as shown
in Table 3 to Table 6, even when the percentage of noise in the training data is different
from the percentage of noise in the test data, the proposed method is more accurate than
the probabilistic surrogate method presented in previous studies [12,49].

However, there are still some important details that need to be studied more thor-
oughly. The best performance of SVM is achieved in supervised mode when training
data about health and damage state of structure is available. While in practical cases, it is
highly unlikely to have data corresponding to different damage scenarios. Among the four
levels of damage assessment identified by Rytter [52], the lowest level (i.e., establishing
the presence of damage) has been achieved in the past through unsupervised learning by
what is referred to as novelty (outlier) detection [1]. Higher levels of damage assessment
in real-world structures require either a mechanism for augmenting the insufficient or
incomplete training data by incorporating some form of prior knowledge into the learning
and training process [53]. Therefore in real-world application the proposed method can
be used as surrogate model of structure in comprehensive SHM system which will be
further studied.

7. Conclusions

In this research, a non-probabilistic method based on WWLS-SVM algorithm is pre-
sented to consider the uncertainties, in the form of noise, in the process of damage detection
of structures. An interval analysis is adopted for use with the WWLS-SVM, as an intelli-
gent data analytics scheme, to consider the uncertainties using the interval bounds of the
uncertainties in the input parameters of the surrogate model. The proposed framework for
damage diagnosis and prognosis is applied to phase I of IASC-ASCE benchmark structure.
According to the results summarized in Table 3 to Table 6, it was demonstrated that the
health monitoring framework based on WPD, interval analysis and WWLS-SVM has a
good capability to detect the presence or absence of damage in the elements, its location
and the severity of damage. Therefore, the proposed approach can be used for real time
health monitoring of structures with intrinsic uncertainties.

Furthermore, in order to assess the accuracy of the proposed method, influence of
different noise levels on the identification results is investigated. The results indicate that
the proposed approach is a reliable damage detection technique for a noisy data.

Finally, because of the smaller prediction errors, the proposed non-probabilistic ap-
proach can provide more reliable damage detection results than a probabilistic surrogate
method. Furthermore, due to the reduced number of surrogate models to be trained, the
proposed approach is less time-consuming.
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