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Abstract: Compared with structured grids, unstructured grids are more flexible to model arbitrarily
shaped structures. However, based on unstructured grids, gravity inversion results would be
discontinuous and hollow because of cell volume and depth variations. To solve this problem,
we first analyzed the gradient of objective function in gradient-based inversion methods, and a
new gradient scheme of objective function is developed, which is a derivative with respect to
weighted model parameters. The new gradient scheme can more effectively solve the problem
with lacking depth resolution than the traditional inversions, and the improvement is not affected
by the regularization parameters. Besides, an improved fuzzy c-means clustering combined with
spatial constraints is developed to measure property distribution of inverted models in both spatial
domain and parameter domain simultaneously. The new inversion method can yield a more internal
continuous model, as it encourages cells and their adjacent cells to tend to the same property value.
At last, the smooth constraint inversion, the focusing inversion, and the improved fuzzy c-means
clustering inversion on unstructured grids are tested on synthetic and measured gravity data to
compare and demonstrate the algorithms proposed in this paper.

Keywords: gravity; unstructured grids; depth resolution; inversion

1. Introduction

Conventionally, gravity forward modeling is implemented by dividing the subsurface
into a large number of rectangular prisms, and the gravity anomaly is calculated by
integrating the gravitational effect due to each prism. However, structured grids have
limited capability when modeling structures with complex shapes (such as topographic
surfaces), and a staircased configuration from structured grids results in a loss of accuracy.
In comparison, unstructured grids can easily be designed to conform to arbitrary straight-
edged boundaries, topography, and subsurfaces. On the other hand, the local refinement
or coarsening of the mesh, in regions where higher accuracy is required or lower accuracy
is acceptable, can be performed without affecting the grids outside these regions. These
properties can ultimately result in higher accuracy and lower computational cost.

For gravity forward modeling with unstructured grids, several methods have been
developed. Talwani and Ewing [1], and Talwani [2] used numerical integration techniques
by dividing models of arbitrary shape into polygonal prisms or laminas. Barnett [3] and
Okabe [4] developed techniques for gravity and magnetic modeling due to homogeneous
polyhedral bodies. Zhang et al. [5] and Cai and Wang [6] used the finite-element method
to calculate the gravitational response of 3D rectangular grids, while May and Knepley [7]
used the fast multipole method to tackle the same problem. Jahandari and Farquharson [8]
used finite-volume and finite-element methods to gravity forward modeling and their
results showed that the quadratic finite-element scheme is more accurate but also more
computationally demanding scheme. The flexibility of unstructured tetrahedral meshes
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has been proved to be advantageous when complex model geometries have to be modeled.
However, the numerical schemes (such as finite-volume and finite-element methods)
handling such tetrahedral meshes can lead to less-accurate results in comparison with the
structured, regular grids.

Three-dimensional (3D) regularized inversion has been a popular approach in right
rectangular prisms [9–12]. In regularization inversion, a regularization term enables us
to incorporate more information so that a smooth or sharp model can be yielded [13].
Li and Oldenburg [9,14] used an objective function that penalize both the deviation of the
recovered model from a reference model and the structural complexity in three spatial
directions. A focusing method is developed to reconstruct a compact and sharper image of
the subsurface [11,15,16]. A fuzzy c-means clustering algorithm [17–20] is applied to induce
the recovered physical properties to gather around clusters determined by some priori
information. In addition, a depth weighting function is vital to recovering the model at a
proper depth on structured grids. Li and Oldenburg [9] firstly introduce a depth weighting
function in the Tikhonov formulation. Portniaguine and Zhdanov [16] have introduced
a nonlinear depth weighting that equalizes the sensitivity of the observed data to cells
located at different depths and horizontal positions. In a mathematically less rigorous way,
Commer [21] directly applied a weighting function to the gradient of data misfit functional
and the results revealed a great improvement in depth resolution. However, when these
methods are directly used to gravity inversion on unstructured grids, a discontinuous
and hollow model is more likely to be yielded. This arises because volume distinction
of unstructured grids also has a considerable effect on model distribution besides depth
variation of grids. This is more pronounced when the local refinement or coarsening of the
unstructured mesh is used.

In this paper, by analyzing the gradient of objective functional, we find that the
distribution of density is related to the conventional gradient formulation of objective
functional. Subsequently, two mechanisms of depth weighting are compared and analyzed
in detail: (1) a regularization-based strategy: applying a depth weighting to the regular-
ization term [9,11,14,16]; and (2) gradient-based strategy: applying a depth weighting to
the gradient of data misfit [21,22]. The comparative analysis indicates that the second
method would improve gravity depth resolution more directly and effectively, and this
improvement is less influenced by regularization parameters. Moreover, the regularization
terms will have a restraining effect at all depths. Besides, we develop an improved fuzzy
c-means clustering method combined with spatial constraints. Compared with previous
works [17–20], it measures property distribution of inverted models in both the spatial
domain and parameter domain, and it can provide a more continuous distribution of
properties on unstructured grids.

To demonstrate the effectiveness of our algorithm, we tested both on a synthetic and
a field dataset from the Vinton salt dome by Bell Geospace. The forward modeling is
accomplished with the algorithm of Okabe [4] based on unstructured grids, which has
been used in gravity researches [17,23,24]. We use TetGen [25] to generate tetrahedral grids.
TetGen is an open-source software that generates the tetrahedral and Voronoï grids as
required. The algorithms of TetGen are Delaunay-based, which ensures high quality for the
whole grids by maximizing the minimum dihedral angle in the grids. The results show that
the problem in gravity inversion with the anomaly concentration to the surface is largely
solved. The inverted models show sharp boundaries and true positions.

2. Methods

The technical methods of this paper mainly include three issues: forward modeling
algorithm on tetrahedral grids, Fuzzy c-means clustering constraints, and depth weighting.
In this chapter, we will introduce a forward modeling algorithm on tetrahedral grids and
Fuzzy c-means clustering constraints only, and the depth weighting will be described and
analyzed in Section 3.
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2.1. Gravity Forward Modeling Based on Tetrahedral Grids

In the right-handed Cartesian coordinate system, as shown in Figure 1, based on
Barnett [3] and Okabe [4], by successively imposing thrice coordinate rotations on every
edge of the polyhedral body, the gravity anomalies g of a homogeneous polyhedral body
can be converted to the sum of the contributions from all edges, which can be expressed as

g = Gρ
n

∑
i

[
cos ψi

m

∑
j

Jj(i)

]
(1)
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Figure 1. A tetrahedral cell in coordinate system.

In Equation (1), G is Newton’s gravitational constant, and ρ is the density of the cell.
n is the facet number of the polyhedral body. m is the edge number of the ith facet. For
tetrahedral grids, n = 4 and m = 3. ψi is a rotation angle of the ith facet, while Jj(i) is the
contribution of jth edge in the ith facet, which is expressed as

Jj(i) =

[(
X sin θj −Y cos θj

)
ln
(
X cos θj + Y sin θj + R

)
− 2Z tan−1 (1 + sin θj)(Y + R) + X cos θj

Z cos θj

](Xj+1,Yj+1)

(Xj ,Yj)

(2)

where  X
Y
Z

 =

 cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ

•
 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

•
 x′ − xobs

y′ − yobs
z′ − zobs

 (3)

R = (X2 + Y2 + Z2)
1/2

(4)

In the above equations, ϕ, ψ, and θ are respectively three rotation angles for the jth
edge, and can be calculated as follows [4],

cos ϕ = −
Syz(

S2
yz + S2

zx

)1/2 (5)

sinϕ = − Szx(
S2

yz + S2
zx

)1/2 (6)

cosψ = −
Sxy(

S2
yz + S2

zx + S2
xy

)1/2 (7)
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sin ψ =
S2

yz + S2
zx(

S2
yz + S2

zx + S2
xy

)1/2 (8)

cos θ =
Xj+1 − Xj[

(Xj+1 − Xj)
2 + (Yj+1 −Yj)

2
]1/2 (9)

sin θ =
Yj+1 −Yj[

(Xj+1 − Xj)
2 + (Yj+1 −Yj)

2
]1/2 (10)

In the above Equations (5)–(8), Syz, Sxz, and Sxy are the projected areas of the ith facet
respectively onto the y-z-, z-x-, and x-y- planes. It should be pointed out that the vertices
of the facet must be arranged clockwise in the X-Y-plane before Equation (3) is calculated.
However, the generation of tetrahedral meshes is automatic and vertices are arranged and
stored randomly. Therefore, we introduce a judgment and rearrangement of vertices before
the gravity contribution of each facet is calculated. For more details about the rotations
and judgment, please see Appendix A.

2.2. Fuzzy C-Means Clustering Inversion with Spatial Constraints

The inverse problem is solved by minimizing the Tikhonov parametric functional [13].
Fuzzy c-means clustering method (FCM) is used as the regularization term [18,19]. The
objective function of gravity inversion is formulated as follows:

Φ = Φd + λΦm = ‖Fm− dobs‖2 + λ
p

∑
k
‖W f /2

Ck
(m− Ck)‖

2
(11)

where F is a forward modeling operator. m are density parameters of all cells. dobs are
observed data. Φd is a data misfitting term, and Φm is a regularization term to constrain

model structure. λ is a trade-off parameter. Φm =
p
∑
k
‖W f /2

Ck
(m− Ck)‖

2
is the clustering

term to classify the physical property values into distinct clusters C = {Ck|k = 1, 2, · · · , p}.
In this paper, we assume that p and C are determined from a priori information. The
parameter f, known as fuzzification parameter, is generally set to 2.0 [26]. Here, WCk is a
diagonal matrix that measures the degree of the physical property values belonging to the
kth cluster,

WCk = diag

 (m− Ck)
− 2/( f − 1)

p
∑
k
(m− Ck)

− 2/( f − 1)

 (12)

Φm can effectively classify the physical property values into distinct clusters in the
parameter domain, however, it has no effect on the spatial distribution of density. As
a result, the property spatial distributions may be discontinuous and discrete. So, on
structured grids, Sun and Li [18,19] added the smoothness regularization term to promote
continuous in the spatial domain. However, it is difficult to balance the smoothness and
clustering term and reconstruct a continuous model on unstructured grids.

Thus, we combine spatial constraints into the FCM term to help recover spatial
continuity of physical property. We reset component wise of m as follows:

m′ j =

(
mj +

qj

∑
l

ml

)/(
qj + 1

)
(13)

where qj is set to be the adjacent cells number of jth cell, and it is usually equal to 4 except
for the cells at boundaries. m′ j denotes the average of properties in the jth cell and its
adjacent cells. The new Φm can measure the inverted model in both spatial domain and
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parameter domain. When the new Φm is minimized, it induces the properties of the jth cell
and its adjacent cells to gather a certain cluster Ck. So, a continuous property distribution in
spatial domain and a focused property distribution in parameter domain can be obtained.

In Equation (11), depth weighting function is not involved as it does in gravity
inversion based on structured grids. Compared with structured grids, cell volumes are
no longer the same as a constant. The dual effects of volume and depth difference of
grids would result in a discontinuous and hollow model. While, the local refinement
or coarsening of the mesh is an important advantage of unstructured grids, which will
inevitably lead to different mesh volumes. So, it’s crucial to solve this problem before
gravity inversion based on unstructured grids used widely in field data. We will discuss
the depth weighting in the next section.

3. Analysis of Depth Weighting on Unstructured Grids

In gravity inversion, the depth resolution is a serious issue. Different kinds of depth
weighting have been proposed to counteract the decay of kernel function for improving
the depth resolution. Typically, Li and Oldenburg [9,27] introduced a weighting function
of cell depth,

WL&O =
1

(z + z0)
β/2 (14)

where z is the cell depth, β is usually 2 for gravity inversion, z0 is a constant.
Besides, Portniaguine and Zhdanov [16] proposed a weighting function as the inte-

grated sensitivity matrix, i.e.,

WZh = diag

(
∑

i
F2

ij

)1/2

(15)

where Fij denotes the element of the kernel function F.
On structured grids, the above two depth weighting functions are widely used in

gravity inversions. While on unstructured grids, Figure 2 shows the variations of above 2
depth weighting functions with the depth.
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Results in Figure 2 are calculated over an area of 500 m × 500 m × 500 m composed of
tetrahedral grids. z0 is chosen to be 20 in Equation (14). As volume of grids are different for
tetrahedral meshes, the depth weighting WZh is normalized by cell volumes. In Figure 2,
similar tendencies can be seen from two weightings. WL&O is only related to depth, and all
cells at the same depth have the same weightings. However, WZh are different for cells at
the same depth, especially near the surface, which is caused by difference of cell volume.
On unstructured grids, if cells at the same depth have the same weightings, it will result
in that the cells with larger volumes have the priority to change their densities first to fit
the observed data. So based on unstructured grids, WZh is better than WL&O to improve
resolution of gravity inversion.

Stabilized gradient-based inversion methods prove to be efficient for 3D imaging
problems with highly parameterized models. Based on the principle of gradient-based
inversion methods, setting the gradient to near zero can minimize the objective function
efficiently [21]. The gradient of Equation (11) can be expressed as

∇Φ = ∇Φd + λ∇Φm = FT(Fm− dobs) + λ
p

∑
i

WzW f
Ci(m− Ci) (16)

Firstly, let’s focus on the gradient of data misfit

∇Φd = FT(Fm− dobs) (17)

It is well known that the gravity forward modeling operator F decays quickly as depth
increases [9,28]. Therefore, when multiplying FT with the data misfit Fm–dobs,∇Φd will be
less sensitive to depth, so densities of shallow cells will first change to fit dobs. As a result,
the inverse model will more easily concentrate to the surface in the traditional gradient-
based inversions. So, from this perspective, the key to improve the depth resolution is how
to counteract the decay of FT in ∇Φd.

In a conventional way, imposing depth weighting into Φm can improve depth resolu-
tion [9,14,16]. Then the gradient of the objective function can be expressed as

∇Φ = ∇Φd + λ∇Φ′m (18)

where Φ′m denotes the regularization term after depth weighting imposed.
Then the weighted ∇Φ′m decays quickly and becomes less sensitive to depth as

∇Φd does. It encourages that properties of shallow cells will first satisfy the constraint
of Φ′m, such that the property differences of shallow cells in smooth inversion or the
relative properties of shallow cells in focus inversion tends to zero. As a result, this
feature encourages the properties of shallow cells to remain unchanged and counteracts the
influence of FT on shallow cells. So the depth resolution can be improved to some extent,
but the improvement is affected by the balance of∇Φd and∇Φ′m, i.e., trade-off parameter
λ. With a small λ, ∇Φ′m is not powerful enough to offset the decay of FT in ∇Φd, so
the recovered model may be shallower than the true model. While with an overlarge λ,
the recovered model may be deeper than the true model. What’s worse, as ∇Φ′m decays
quickly with increasing depth, its effect on deep cells is weakened.

Another solving method is to directly apply a depth weighting function to ∇Φd
instead of Φm in a mathematically less rigorous way [21]. In this way, the gradient of
objective function can be expressed as

∇Φ = ∇Φ′d + λ∇Φm = WzFT(Fm− dobs) + λ∇Φm (19)

where Wz is a depth weighting function that increases quickly as depth increases, which is
just adverse to the decay of FT in ∇Φd. Compared with Equation (18), ∇Φd is multiplied
by Wz in Equation (19) instead of a depth weighted Φ′m. Therefore, Wz can counteract
the effect of FT in ∇Φd directly and effectively. Besides, different with ∇Φ′m, ∇Φm is not
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related to depth, which means that λ would have less effect on the improvement of depth
resolution as it does in Equation (18).

From the perspective of objective function gradient, above analyses indicate that the
gradient-based strategy in Equation (19) is more effective to improve depth resolution than
the method shown in Equation (18).

4. Results

To demonstrate the effectiveness of our algorithm, we tested both on a synthetic and a
field dataset from the Vinton salt dome by Bell Geospace [29] and compared the improved
FCM clustering inversion with focusing inversion and conventional FCM clustering inver-
sion in the examples. In the following examples, the open-source software TetGen [25] is
used to generate tetrahedral grids. The conjugate gradient method is implemented to solve
the gravity inverse problems.

4.1. Inversions of Simulation Data

The synthetic gravity data were generated for a 3D homogeneous structure with a
relative density of 1 g/cm3, as shown in Figure 3. The top bury depth is 100 m. The gravity
data were calculated at the Earth’s surface on a grid with 50 m spacing and a total of 320
locations. We discretized the survey area (1000 m× 800 m× 600 m) into 237,298 tetrahedral
grids with maximum cell volume of 5000 m3 when using the program TetGen [25]. Two
depth weighting strategies with different inversion methods were respectively applied to
recover the synclinal structure. A uniform relative density model of 0 g/cm3 was used as
the initial model. A constraint on the upper-lower limit of density [0 g/cm3, 1.0 g/cm3]
was used in these experiments. We carried out the FCM clustering gravity inversion with
C = {0 g/cm3, 1 g/cm3} and p = 2. The inversion was taken as converged when the data
misfit or relative model norm update was below their respective predetermined thresholds.
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Figure 3. A V-shaped structure with a relative density of 1 g/cm3 on unstructured grids.

The inversion results of two weighting strategies without regularization terms (λ = 0)
are shown in Figure 4, where the section passing the center in y-direction is shown only.
The dashed boxes in the figure outline the true boundaries of the anomalous body. With no
model structure constraints, the result with a conventional strategy in Equation (16) (as
shown in Figure 4a) demonstrates a concentration near the surface, while it is improved by
using gradient-based strategy in Equation (17) (as shown in Figure 4b). Then using different
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λ, we implemented smooth inversions, and the improved FCM clustering inversions with
two strategies. Respectively, the results of two inversions are respectively shown in
Figures 5 and 6. It should be pointed out that, in order to better perform the influence of λ,
we set λ as a constant in different inversions. In FCM clustering inversion, λ is a constant.
From Figures 4–6, one can find that the depth resolution improvement of the conventional
strategy is closely related to the regularization parameter. Increasing λ can improve the
depth resolution to some extent, while an improper λ will result in an incorrect depth,
such that a shallow model was yielded with a small λ (in Figures 5a and 6a). What’s more,
since the regularization terms decay as depth increases, model constraints are weakened
and the inverted models become blurred and fuzzy at depth in FCM clustering inversions
(as shown in Figure 5a,b and Figure 6a,b). When λ further increases, the data fit becomes
deteriorated. On the contrary, in Figure 5c,d and Figure 6c,d, the model is well recovered
and the top depth is well determined with gradient-based strategy in two kinds of inversion
methods. It indicates that the depth resolution is less related to the regularization parameter.
Besides, the constraints of regularization terms are not weakening when depth increases.
These results correspond with the above analyses of depth resolution.
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In Figure 7, focusing inversion and conventional FCM clustering inversion are im-
plemented with gradient-based strategy to compare with the improved FCM clustering
inversion. We set a large initial λ, and then used the c to gradually reduce it. One can find
that all these three methods can reconstruct a compact model. However, from Figure 7a,b,
it is shown that focusing inversion and conventional FCM clustering inversion yield the
inverted models into segments or with holes on unstructured grids. Focusing inversion
is to reconstruct the model with minimum volume, and it has no constraint in spatial
domain. In conventional FCM clustering inversion, one may increase smooth constraint
to yield a continuous model, while the constraint of FCM clustering is weakened and the
inverted model will not be focusing and compact. But in Figure 6, the models are more
compact and no holes inside with the improved FCM clustering method. That is because
the new method induces cells and their adjacent cells to tend to the same value except for
the constraint of smooth regularization term.
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Table 1 shows a clear perspective of inversion results with different methods, strate-
gies, and trade-off parameters. The comparative analysis indicates that the second method
would improve gravity depth resolution more directly and effectively, and this improve-
ment is less influenced by regularization parameters. Moreover, the regularization terms
will have a restraining effect at all depths.

Table 1. Inversion result list with different methods, strategies, and parameters.

Result Inversion Method Strategy Trade-Off Parameter

Figure 4a NaN Conventional strategy 0
Figure 4b NaN Gradient-based strategy 0
Figure 5a Smooth inversion Conventional strategy 1 × 10−2

Figure 5b Smooth inversion Conventional strategy 5 × 10−2

Figure 5c Smooth inversion Gradient-based strategy 1 × 101

Figure 5d Smooth inversion Gradient-based strategy 5 × 101

Figure 6a New FCM inversion Conventional strategy 1 × 10−3

Figure 6b New FCM inversion Conventional strategy 3 × 10−3

Figure 6c New FCM inversion Gradient-based strategy 3 × 100

Figure 6d New FCM inversion Gradient-based strategy 5 × 100

Figure 7a Focusing inversion Gradient-based strategy method of Lelièvre et al. [17]
Figure 7b Conventional FCM inversion Gradient-based strategy method of Lelièvre et al. [17]

4.2. Field Data Inversion

The survey area Vinton Dome is located in southwestern Louisiana, USA. We used a
subset of the survey area for this study that covers approximately 16 km2 in the middle of
the survey area, which was acquired and processed by Bell Geospace in 2008 [29]. Before
we inverted the data, a second-order trend surface was removed to get rid of background,
and an upward continuation of 100 m was done to eliminate the shallow local anomalies.
The processed gravity data is displayed in Figure 8.
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Figure 8. Field data subset from Vinton Dome area after trend surface removing and upward
continuation (data courtesy of Scott Hammond from Bell Geospace).

Inversion area is 4 km × 4 km × 1 km with 169,949 cells and 1681 survey stations. The
station interval was 100 m. The upper-lower limit of density was assumed to be [0 g/cm3,
0.55 g/cm3] and clusters C = {0 g/cm3, 0.55 g/cm3} was used in our inversions. Smooth
inversion, conventional and improved FCM clustering inversion are implemented with a
gradient-based strategy. We specifically point the x-, y-and z-axis to the East, North, and
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vertically downwards. Figures 9–11 show the slices of the recovered model on x-y-, x-z-,
and y-z-planes of different inversion methods.
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Many surveys and researches have been done at the Vinton Dome. According to
Coker et al. [30], the Vinton salt dome is composed of a well-defined massive cap rock
extending above the salt rock. This cap rock is formed by gypsum and anhydrite that is
embedded in sediments characterized by intercalated layers of sandstone and shale.

These researches indicate that the cap rock has a top depth of 160 m and a density
of 2.75 g/cm3, while the underlying media have a density of 2.20 g/cm3 [31]. Besides,
the sediment around slat dome has a density of about 2.0 g/cm3–2.37 g/cm3. Thus, we
assumed the relative density of cap rock to be 0.55 g/cm3, and the observed gravity data
were predominantly caused by the cap rock. From previous work in this area [30–33], it is
known that the extension of the anomalous body is about 1200 m in the west-east direction,
900 m in the north-south direction, 200 m in z-direction, and the top depth is about 175 m.

The result of smooth inversion is blur and fuzzy in Figure 9, and the 3D extension size
of the cap rock is much larger than the real geological model. In both Figures 10 and 11,
the maximum relative density is 0.55 g/cm3, and a more compact model is yielded. The
extensions of the anomalous body are well consistent with the known information. But it is
more internal continuous by using the improved FCM clustering inversion in Figure 11.

In brief, the results show that the problem in gravity inversion with the anomaly
concentration to the surface is largely solved. The inverted models show sharp boundaries
and true positions.
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5. Conclusions

In gravity inversion based on unstructured grids, the dual effects of volume and depth
difference of grids would result in a discontinuous and hollow model. However, the local
refinement or coarsening of the mesh, an important advantage of unstructured grids, will
inevitably lead to different mesh volumes. So, it’s crucial to solve this problem before
gravity inversion based on unstructured grids used widely in field data.

From the view of the objective function gradient, we analyzed the cause of poor depth
resolution and two strategies of depth weighting in gradient-based inversion methods.
It indicated that the key to improve the depth resolution is how to counteract the decay
of kernels in the data misfit gradient. The data-based strategy can improve the depth
resolution more directly and effectively than the conventional strategy.

Besides an improved FCM clustering combined with spatial constraints is developed
to obtain a continuous density distribution in the spatial domain and a focused property
distribution in the parameter domain. It will reconstruct a more continuous inverted model
on unstructured grids. With different regularization parameters, two weighting strategies
are compared by applying smooth and the new FCM clustering inversions on synthetic
data sets. The results show that the depth resolution of the gradient-based strategy is
independent of regularization parameters and regularization terms does not weaken with
depth increases. Compared with focusing inversion and conventional FCM clustering
inversion, the improved FCM clustering inversion can provide a more continuous model.

At last, we implemented the gradient-based strategy and the improved FCM clustering
inversion on field data sets. The results show that a compact model can be better consistent
with the known information than smooth inversion. But it is more internal continuous by
using the improved FCM clustering inversion.
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Appendix A

As shown in Equation (1), the gravity anomalies cause by a tetrahedral is equal to the
sum of the contributions from six edges. Taking the edge Q1Q2 in Figure 1 for example, we
can describe thrice rotations as follows:

1. Rotate counterclockwise the x- and y-axes around the z-axis in Figure A1a by the
angle ϕ until the rotated x-axis is coincident with the direction of the outward normal
onto the x-y-plane.

2. Rotate counterclockwise the z- and x-axes around the y-axis by the angle ψ until the
rotated z-axis is coincident with the outward normal direction of the triangle facet
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(Q1Q2Q3). With previous two rotations, we obtain the target coordinate system (X, Y,
Z). Thus, the polygon is in the X-Y-plane, as shown in Figure A1b.

3. Rotate counterclockwise the X-and Y-axes around the Z-axis by the angle θ until the
rotated Y-axis is coincident with the direction of the outward normal on the edge
Q1Q2 (as shown in Figure A1c).
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Refer to Figure A1c, Q1(x1, y1, z1), Q2(x2, y2, z2), and Q3(x3, y3, z3) are three vertices of
the triangle facet. For the three vertices, they can be either clockwise or counterclockwise in
the X-Y-plane, because the grid generator stores these vertices in random order. However,
the algorithm described in Section 2.1 require these vertices to be clockwise.

We use the following method to judge the rank and rearrange vertices. the normal
vector n of the triangle facet is expressed as

n =

∣∣∣∣∣∣∣
→
i

→
j

→
k

x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣ (A1)

Q4(x4, y4, z4) is the last point of tetrahedral but outside the X-Y-plane. Define t as the

scalar product of the normal vector n and vector
→

Q1Q4 = (x4 − x1, y4 − y1, z4 − z1), i.e.,

t = n ·
→

Q1Q4 (A2)

When t > 0, it means that n and
→

Q1Q4 are in the same direction, the three vertices are
clockwise. When t < 0, however, the three vertices are counterclockwise. In this case, we
need to rearrange the three input vertices to make them clockwise. After rearrangement,
calculate the contribution of Q1Q2 as described in previous Section 2.1.

Repeat the above process for every edge, and then we can obtain the gravity anomalies
of a certain tetrahedral.
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