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Abstract: Recently, generative adversarial networks (GANs) have been successfully applied to speech
enhancement. However, there still remain two issues that need to be addressed: (1) GAN-based
training is typically unstable due to its non-convex property, and (2) most of the conventional methods
do not fully take advantage of the speech characteristics, which could result in a sub-optimal solution.
In order to deal with these problems, we propose a progressive generator that can handle the speech
in a multi-resolution fashion. Additionally, we propose a multi-scale discriminator that discriminates
the real and generated speech at various sampling rates to stabilize GAN training. The proposed
structure was compared with the conventional GAN-based speech enhancement algorithms using
the VoiceBank-DEMAND dataset. Experimental results showed that the proposed approach can
make the training faster and more stable, which improves the performance on various metrics for
speech enhancement.

Keywords: speech enhancement; generative adversarial network; relativistic GAN; convolutional
neural network

1. Introduction

Speech enhancement is essential for various speech applications such as robust speech
recognition, hearing aids, and mobile communications [1–4]. The main objective of speech
enhancement is to improve the quality and intelligibility of the noisy speech by suppressing
the background noise or interferences.

In the early studies on speech enhancement, the minimum mean-square error (MMSE)-
based spectral amplitude estimator algorithms [5,6] were popular producing enhanced
signal with low residual noise. However, the MMSE-based methods have been reported
ineffective in non-stationary noise environments due to their stationarity assumption on
speech and noise. An effective way to deal with the non-stationary noise is to utilize a priori
information extracted from a speech or noise database (DB), called the template-based
speech enhancement techniques. One of the most well-known template-based schemes is
the non-negative matrix factorization (NMF)-based speech enhancement technique [7,8].
NMF is a latent factor analysis technique to discover the underlying part-based non-
negative representations of the given data. Since there is no strict assumption on the speech
and noise distributions, the NMF-based speech enhancement technique shows robustness
to non-stationary noise environments. Since, however, the NMF-based algorithm assumes
that all data is described as a linear combination of finite bases, it is known to suffer from
speech distortion not covered by this representational form.

In the past few years, deep neural network (DNN)-based speech enhancement has
received tremendous attention due to its ability to model complex mappings [9–12].
These methods map the noisy spectrogram to the clean spectrogram via the neural net-
works such as the convolutional neural network (CNN) [11] or recurrent neural network
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(RNN) [12]. Although the DNN-based speech enhancement techniques have shown promis-
ing performance, most of the techniques typically focus on modifying the magnitude
spectra. This could cause a phase mismatch between the clean and enhanced speech
since the DNN-based speech enhancement methods usually reuse the noisy phase for
waveform reconstruction. For this reason, there has been growing interest in phase-aware
speech enhancement [13–15] that exploits the phase information during the training and
reconstruction. To circumvent the difficulty of the phase estimation, end-to-end (E2E)
speech enhancement technique which directly enhances noisy speech waveform in the time
domain has been developed [16–18]. Since the E2E speech enhancement techniques are
performed in a waveform-to-waveform manner without any consideration of the spectra,
their performance is not dependant on the accuracy of the phase estimation.

The E2E approaches, however, rely on a distance-based loss functions between the
time-domain waveforms. Since these distance-based costs do not take human perception
into account, the E2E approaches are not guaranteed to achieve good human-perception-
related metrics, e.g., the perceptual evaluation of speech quality (PESQ) [19], short-time
objective intelligibility (STOI) [20], and etc. Recently, generative adversarial network
(GAN) [21]-based speech enhancement techniques have been developed to overcome the
limitation of the distance-based costs [22–26]. Adversarial losses of GAN provide an alterna-
tive objective function to reflect the human auditory property, which can make the distribu-
tion of the enhanced speech close to that of the clean speech. To our knowledge, SEGAN [22]
was the first attempt to apply GAN to the speech enhancement task, which used the
noisy speech as a conditional information for a conditional GAN (cGAN) [27]. In [26],
an approach to replace a vanilla GAN with advanced GAN, such as Wasserstein GAN
(WGAN) [28] or relativistic standard GAN (RSGAN) [29] was proposed based on the
SEGAN framework.

Even though the GAN-based speech enhancement techniques have been found suc-
cessful, there still remain two important issues: (1) training instability and (2) a lack in
considering various speech characteristics. Since GAN aims at finding the Nash equi-
librium to solve a mini-max problem, it has been known that the training is usually
unstable. A number of efforts have been devoted to stabilize the GAN training in im-
age processing, by modifying the loss function [28] or the generator and discriminator
structures [30,31]. However, in speech processing, this problem has not been extensively
studied yet. Moreover, since most of the GAN-based speech enhancement techniques
directly employ the models used in image generation, it is necessary to modify them to
suit the inherent nature of speech. For instance, the GAN-based speech enhancement
techniques [22,24,26] commonly used U-Net generator originated from image processing
tasks. Since the U-net generator consisted of multiple CNN layers, it was insufficient to
reflect the temporal information of speech signal. In regression-based speech enhancement,
the modified U-net structure adding RNN layers to capture the temporal information of
speech showed prominent performances [32]. In [33] for the speech synthesis, an alterna-
tive loss function depended on multiple sizes of window length and fast Fourier transform
(FFT) was proposed and generated a good quality of speech, which also considered speech
characteristics in frequency domain.

In this paper, we propose novel generator and discriminator structures for the GAN-
based speech enhancement which reflect the speech characteristics while ensuring stable
training. The conventional generator is trained to find a mapping function from the noisy
speech to the clean speech by using sequential convolution layers, which is considered
an ineffective approach especially for speech data. In contrast, the proposed generator
progressively estimates the wide frequency range of the clean speech via a novel up-
sampling layer.

In the early stage of GAN training, it is too easy for the conventional discriminator to
differentiate real samples from fake samples for high-dimensional data. This often lets GAN
fail to reach the equilibrium point due to vanishing gradient [30]. To address this issue,
we propose a multi-scale discriminator that is composed of multiple sub-discriminators
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processing speech samples at different sampling rates. Even if the training is in the early
stage, the sub-discriminators at low-sampling rates can not easily differentiate the real
samples from the fake, which contributes to stabilize the training. Empirical results showed
that the proposed generator and discriminator were successful in stabilizing GAN training
and outperformed the conventional GAN-based speech enhancement techniques. The main
contributions of this paper are summarized as follows:

• We propose a progressive generator to reflect the multi-resolution characteristics of speech.
• We propose a multi-scale discriminator to stabilize the GAN training without addi-

tional complex training techniques.
• The experimental results showed that the multi-scale structure is an effective solution

for both deterministic and GAN-based models, outperforming the conventional GAN-
based speech enhancement techniques.

The rest of the paper is organized as follows: In Section 2, we introduce GAN-based
speech enhancement. In Section 3, we present the progressive generator and multi-scale dis-
criminator. Section 4 describes the experimental settings and performance measurements.
In Section 5, we analyze the experimental results. We draw conclusions in Section 6.

2. GAN-Based Speech Enhancement

An adversarial network models the complex distribution of the real data via a two-
player mini-max game between a generator and a discriminator. Specifically, the generator
takes a randomly sampled noise vector z as input and produces a fake sample G(z) to fool
the discriminator. On the other hand, the discriminator is a binary classifier that decides
whether an input sample is real or fake. In order to generate a realistic sample, the generator
is trained to deceive the discriminator, while the discriminator is trained to distinguish
between the real sample and G(z). In an adversarial training process, the generator and the
discriminator are alternatively trained to minimize their respective loss functions. The loss
functions for the standard GAN can be defined as follows:

LG = Ez∼Pz(z)[log(1− D(G(z)))], (1)

LD = −Ex∼Pclean(x)[log(D(x))]−Ez∼Pz(z)[log(1− D(G(z)))] (2)

where z is a randomly sampled vector from Pz(z) which is usually a normal distribution,
and Pclean(x) is the distribution of the clean speech in the training dataset.

Since GAN was initially proposed for unconditional image generation that has no
exact target, it is inadequate to directly apply GAN to speech enhancement which is a
regression task to estimate the clean target corresponding to the noisy input. For this
reason, GAN-based speech enhancement employs a conditional generation framework [27]
where both the generator and discriminator are conditioned on the noisy waveform c that
has the clean waveform x as the target. By concatenating the noisy waveform c with the
randomly sampled vector z, the generator G can produce a sample that is closer to the
clean waveform x. The training process of the cGAN-based speech enhancement is shown
in Figure 1a, and the loss functions of the cGAN-based speech enhancement are

LG = Ez∼Pz(z),c∼Pnoisy(c)[log(1− D(G(z, c), c))], (3)

LD = −Ex∼Pclean(x),c∼Pnoisy(c)[logD(x, c)]−Ez∼Pz(z),c∼Pnoisy(c)[log(1− D(G(z, c), c))] (4)

where Pclean(x) and Pnoisy(c) are respectively the distributions of the clean and noisy speech
in the training dataset.
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Figure 1. Illustration of the conventional GAN-based speech enhancements. In the training of
cGAN-based speech enhancement, the updates for generator and discriminator are alternated over
several epochs. During the update of the discriminator, the target of discriminator is 0 for the clean
speech and 1 for the enhanced speech. For the update of the generator, the target of discriminator is 1
with freezing discriminator parameters. In contrast, the RSGAN-based speech enhancement trains
the discriminator to measure a relativism score of the real sample Dreal and generator to increase that
of the fake sample D f ake with fixed discriminator parameters.

In the conventional training of the cGAN, both the probabilities that a sample is from
the real data D(x, c) and generated data D(G(z, c), c) should reach the ideal equilibrium
point 0.5. However, unlike the expected ideal equilibrium point, they both have a tendency
to become 1 because the generator can not influence the probability of the real sample
D(x, c). In order to alleviate this problem, RSGAN [29] proposed a discriminator to
estimate the probability that the real sample is more realistic than the generated sample.
The proposed discriminator makes the probability of the generated sample D(G(z, c), c)
increase when that of the real sample D(x, c) decreases so that both the probabilities
could stably reach the Nash equilibrium state. In [26], the experimental results showed
that, compared to other conventional GAN-based speech enhancements, the RSGAN-
based speech enhancement technique improved the stability of training and enhanced the
speech quality. The training process of the RSGAN-based speech enhancement is given in
Figure 1b, and the loss functions of RSGAN-based speech enhancement can be written as:

LG = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(x f )− C(xr)))], (5)

LD = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(xr)− C(x f )))] (6)

where the real and fake data-pairs are defined as xr , (x, c) ∼ Pr and x f , (G(z, c), c) ∼ P f ,
and C(x) is the output of the last layer in discriminator before the sigmoid activation func-
tion σ(·), i.e., D(x) = σ(C(x)).

In order to stabilize GAN training, there are two penalties commonly used: A gradient
penalty for discriminator [28] and L1 loss penalty for generator [24]. First, the gradient
penalty regularization for discriminator is used to prevent exploding or vanishing gradients.
This regularization penalizes the model if the L2 norm of the discriminator gradient moves
away from 1 to satisfy the Lipschitz constraint. The modified discriminator loss functions
with the gradient penalty are as follows:
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LGP(D) = Ex̃,c∼P̃

[
(|| 5x̃,c C(x̃, c))||2 − 1)2

]
, (7)

LD−GP(D) = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(xr)− C(x f )))] + λGPLGP(D) (8)

where P̃ is the joint distribution of c and x̃ = εx + (1− ε)x̂, ε is sampled from a uniform
distribution in [0, 1], and x̂ is the sample from G(z, c). λGP is the hyper-parameter that
controls the gradient penalty loss and the adversarial loss of the discriminator.

Second, several prior studies [22–24] found that it is effective to use an additional
loss term that minimizes the L1 loss between the clean speech x and the generated speech
G(z, c) for the generator training. The modified generator loss with the L1 loss is defined as

L1(G) = ‖G(z, c)− x‖1, (9)

LG−L1(G) = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(x f )− C(xr)))] + λL1 L1(G) (10)

where ‖·‖1 is L1 norm, and λL1 is a hyper-parameter for balancing the L1 loss and the
adversarial loss of the generator.

3. Multi-Resolution Approach for Speech Enhancement

In this section, we propose a novel GAN-based speech enhancement model which
consists of a progressive generator and a multi-scale discriminator. The overall architecture
of the proposed model is shown in Figure 2, and the details of the progressive generator
and the multi-scale discriminator are given in Figure 3.

1D conv.

𝑐

Transposed conv.

𝐺𝑒𝑛𝑐

𝐺𝑑𝑒𝑐
Up-sampling

block

Noisy signal

Enhanced signal

1
D

 C
o

n
v.

𝐷16𝑘

𝐷8𝑘

𝐷4𝑘

𝑧 𝑁 (0,1)

Figure 2. Overall architecture of the proposed GAN-based speech enhancement. The up-sampling
block and the multiple discriminators Dn are newly added, and the rest of the architecture is the
same as that of [26]. The components within the dashed line will be addressed in Figure 3.
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Figure 3. Illustration of the progressive generator and the multi-scale discriminator. Sub-
discriminators calculate the relativism score Dn(Gn, xn) = σ(Cn(xrn ) − Cn(x fn )) at each layer.
The figure is the case when p, q = 4k, but it can be extended for any p and q. In our experiment,
we covered that p and q were from 1k to 16k.

3.1. Progressive Generator

Conventionally, GAN-based speech enhancement systems adopt U-Net generator [22]
which is composed of two components: An encoder Genc and a decoder Gdec. The encoder
Genc consists of repeated convolutional layers to produce compressed latent vectors from
a noisy speech, and the decoder Gdec contains multiple transposed convolutional layers
to restore the clean speech from the compressed latent vectors. These transposed con-
volutional layers in Gdec are known to be able to generate low-resolution data from the
compressed latent vectors, however, the capability to generate a high-resolution data is
severely limited [30]. Especially in the case of speech data, it is difficult for the transposed
convolutional layers to generate the speech with a high-sampling rate because it should
cover a wide frequency range.

Motivated from the progressive GAN, which starts with generating low-resolution
images and then progressively increases the resolution [30,31], we propose a novel gen-
erator that can incrementally widen the frequency band of the speech by applying an
up-sampling block to the decoder Gdec. As shown in Figure 3, the proposed up-sampling
block consists of 1D-convolution layers, element-wise addition, and liner interpolation lay-
ers. The up-sampling block yields the intermediate enhanced speech Gn(z, c) at each layer
through the 1D convolution layer and element-wise addition so that the wide frequency
band of the clean speech is progressively estimated. Since a sampling rate is increased
through the linear interpolation layer, it is possible to generate the intermediate enhanced
speech at the higher layer while maintaining estimated frequency components at the lower
layer. This incremental process is repeated until the sampling rate reaches the target sam-
pling rate which is 16kHz in our experiment. Finally, we exploit the down-sampled clean
speech xn processed by low-pass filtering and decimation as the target for each layer to
provide multi-resolution loss functions. We define the real and fake data-pairs at different
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sampling rates as xrn , (xn, cn) ∼ Prn and x fn , (Gn(z, c), cn) ∼ P fn , and the proposed
multi-resolution loss functions with L1 loss are given as follows:

LG(p) = ∑
n≥p

n∈NG

LGn + λL1 L1(Gn), NG ∈ {1k, 2k, 4k, 8k, 16k},

= ∑
n≥p

n∈NG

−E(xrn ,x fn )∼(Prn ,P fn )
[log(σ(Cn(x fn )− Cn(xrn )))] + λL1‖Gn(z, c)− xn‖1

(11)

where NG is the possible set of n for the proposed generator, and p is the sampling rate at
which the intermediate enhanced speech is firstly obtained.

3.2. Multi-Scale Discriminator

When generating high-resolution image and speech data in the early stage of training,
it is hard for the generator to produce a realistic sample due to the insufficient model
capacity. Therefore, the discriminator can easily differentiate the generated samples from
the real samples, which means that the real and fake data distributions do not have substan-
tial overlap. This problem often causes training instability and even mode collapses [30].
For the stabilization of the training, we propose a multi-scale discriminator that consists of
multiple sub-discriminators treating speech samples at different sampling rates.

As presented in Figure 3, the intermediate enhanced speech Gn(z, c) at each layer
restores the down-sampled clean speech xn. Based on this, we can utilize the intermediate
enhanced speech and down-sampled clean speech as the input to each sub-discriminator
Dn. Since each sub-discriminator can only access limited frequency information depending
on the sampling rate, we can make each sub-discriminator solve different levels of dis-
crimination tasks. For example, discriminating the real from the generated speech is more
difficult at the lower sampling rate than at the higher rate. The sub-discriminator at a lower
sampling rate plays an important role in stabilizing the early stage of the training. As the
training progresses, the role shifts upwards to the sub-discriminators at higher sampling
rates. Finally, the proposed multi-scale loss for discriminator with gradient penalty is
given by

LD(q) = ∑
n≥q

n∈ND

LDn + λGPLGP(Dn), ND ∈ {1k, 2k, 4k, 8k, 16k},

= ∑
n≥q

n∈ND

−E(xrn ,x fn )∼(Prn ,P fn )
[log(σ(Cn(xrn)− C(x fn)))] + λGPEx̃n ,cn∼P̃n

[(|| 5x̃n ,cn C(x̃n, cn))||2 − 1)2]
(12)

where P̃n is the joint distribution of the down-sampled noisy speech cn and
x̃n = εxn + (1− ε)x̂n, ε is sampled from a uniform distribution in [0, 1], xn is the down-
sampled clean speech, and x̂n is the sample from Gn(z, c). ND is the possible set of n for
the proposed discriminator, and q is the minimum sampling rate at which the interme-
diate enhanced output was utilized as the input to a sub-discriminator for the first time.
The adversarial losses LDn are equally weighted.

4. Experimental Settings
4.1. Dataset

We used a publicly available dataset in [34] for evaluating the performance of the
proposed speech enhancement technique. The dataset consists of 30 speakers from the
Voice Bank corpus [35], and used 28 speakers (14 male and 14 female) for the training set
(11572 utterances) and 2 speakers (one male and one female) for the test set (824 utterances).
The training set simulated a total of 40 noisy conditions with 10 different noise sources
(2 artificial and 8 from the DEMAND database [36]) at signal-to-noise ratios (SNRs) of 0,
5, 10, and 15 dB. The test set was created using 5 noise sources (living room, office, bus,
cafeteria, and public square noise from the DEMAND database), which were different from
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the training noises, added at SNRs 2.5, 7.5, 12.5, and 17.5 dB. The training and test sets
were down-sampled from 48 kHz to 16 kHz.

4.2. Network Structure

The configuration of the proposed generator is described in Table 1. We used the U-Net
structure with 11 convolutional layers for the encoder Genc and the decoder Gdec as in [22,26].
Output shapes at each layer were represented by the number of temporal dimensions
and feature maps. Conv1D in the encoder denotes a one-dimensional convolutional layer,
and TrConv in the decoder means a transposed convolutional layer. We used approximately
1 s of speech (16384 samples) as the input to the encoder. The last output of the encoder
was concatenated with a noise which had the shape of 8× 1024 randomly sampled from
the standard normal distribution N(0, 1). In [27], it was reported that the generator usually
learns to ignore the noise prior z in the CGAN, and we also observed a similar tendency in
our experiments. For this reason, we removed the noise from the input, and the shape of
the latent vector became 8× 1024. The architecture of Gdec was a mirroring of Genc with
the same number and width of the filters per layer. However, skip connections from Genc
made the number of feature maps in every layer to be doubled. The proposed up-sampling
block Gup consisted of 1D convolution layers, element-wise addition operations, and linear
interpolation layers.

Table 1. Architecture of the proposed generator. Output shape represented temporal dimension and feature maps.

Block Operation Output Shape

Input 16, 384× 1

Encoder Conv1D
(filterlength = 31, stide = 2)

8192× 16

4096× 32

2048× 32

1024× 64

512× 64

256× 128

128× 128

64× 256

32× 256

16× 512

Latent vector 8× 1024

Decoder

Trconv
(filterlength = 31, stide = 2)

16× 1024

32× 512

64× 512

128× 256

256× 256

512× 128

Trconv
(filterlength = 31, stide = 2)

Conv1D
(filterlength = 17, stide = 1)

Element-wise addition
Linear interpolation layer

1024× 128 1024× 1

2048× 64 2048× 1

4096× 64 4096× 1

8192× 32 8192× 1

16, 384× 1
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In this experiment, the proposed discriminator had the same serial convolutional lay-
ers as Genc. The input to the discriminator had two channels of 16,384 samples, which were
the clean speech and enhanced speech. The rest of the temporal dimension and feature-
maps were the same as those of Genc. In addition, we used LeakyReLU activation function
without a normalization technique. After the last convolutional layers, there were a
1× 1 convolution, and its output was fed to a fully-connected layer. To construct the
proposed multi-scale discriminator, we used 5 different sub-discriminators, which were
D16k, D8k, D4k, D2k, andD1k trained according to in Equation (12). Each sub-discriminator
had a different input dimension depending on the sampling rate.

The model was trained using the Adam optimizer [37] for 80 epochs with 0.0002
learning rate for both the generator and discriminator. The batch size was 50 with 1-s audio
signals that were sliced using windows of length 16,384 with 8192 overlaps. We also applied
a pre-emphasis filter with impulse response [−0.95, 1] to all training samples. For inference,
the enhanced signals were reconstructed through overlap-add. The hyper-parameters
to balance the penalty terms were set as λL1 = 200 and λGP = 10 such that they could
match the dynamic range of magnitude with respect to the generator and discriminator
losses. Note that we gave the same weight to the adversarial losses, LGn and LDn , for all
n ∈ {1k, 2k, 4k, 8k, 16k}. We implemented all the networks using Keras with Tensorflow [38]
back-end using the public code (The SERGAN framework is available at https://github
.com/deepakbaby/se_relativisticgan). All training was performed on single Titan RTX
24 GB GPU, and it took around 2 days.

4.3. Evaluation Methods
4.3.1. Objective Evaluation

The quality of the enhanced speech was evaluated using the following objective metrics:

• PESQ: Perceptual evaluation of speech quality defined in the ITU-T P.862 standard [19]
(from −0.5 to 4.5),

• STOI: Short-time objective intelligibility [20] (from 0 to 1),
• CSIG: Mean opinion score (MOS) prediction of the signal distortion attending only to

the speech signal [39] (from 1 to 5),
• CBAK: MOS prediction of the intrusiveness of background noise [39] (from 1 to 5),
• COVL: MOS prediction of the overall effect [39] (from 1 to 5).

4.3.2. Subjective Evaluation

To compare the subjective quality of the enhanced speech by baseline and proposed
methods, we conducted two pairs of AB preference tests: AECNN versus the progressive
generator and SERGAN versus the progressive generator with the multi-scale discriminator.
Two speech in each pair were given in arbitrary order. For each listening test, 14 listeners
participated, and 50 pairs of the speech were randomly selected. Listeners could listen to
the speech pairs as many times as they wanted and were instructed to choose the speech
with better perceptual quality. If the quality of the two samples was indistinguishable,
listeners could select no preference.

5. Experiments and Results

In order to investigate the individual effect of the proposed generator and discrim-
inator, we experimented on the progressive generator with and without the multi-scale
discriminator. Furthermore, we plotted L1 losses at each layer L1(Gn) to show that the
proposed model makes training fast and stable. Finally, the performance of the proposed
model is compared with that of the other GAN-based speech enhancement techniques.

5.1. Performance of Progressive Generator
5.1.1. Objective Results

The purpose of these experiments is to show the effectiveness of the progressive
generator. Table 2 presents the performance of the proposed generator when we minimized

https://github.com/deepakbaby/se_relativisticgan
https://github.com/deepakbaby/se_relativisticgan
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only the L1(Gn) in Equation (11). In order to better understand the influence of the
progressive structure on the PESQ score, we conducted an ablation study with different p in
∑n≥p L1(Gn). As illustrated in Table 2, compared to the auto-encoder CNN (AECNN) [26]
that is the conventional U-net generator minimizing the L1 loss only, the PESQ score of
the progressive generator improved from 2.5873 to 2.6516. Furthermore, for the smaller
p, we got a better PESQ score, and the best PESQ score was achieved when p was the
lowest, i.e., 1k. For enhancing high-resolution speech, we verified that it is very useful
to progressively generate intermediate enhanced speech while maintaining the estimated
information obtained at lower sampling rate. We used the best generator p = 1k in Table 2
for the subsequent experiments.

Table 2. Comparison of results between different architectures of the progressive generator. The best
model is shown in bold type.

Model ∑n≥p L1(Gn) PESQ

AECNN [26] p = 16k 2.5873

Proposed

p = 8k 2.6257
p = 4k 2.6335
p = 2k 2.6407
p = 1k 2.6516

5.1.2. Subjective Results

The preference score of AECNN and the progressive generator was shown in Figure 4a.
The progressive generator was preferred to AECNN in 43.08% of the cases, while the
opposite preference was 25.38% (no preference in 31.54% of the cases). From the results,
we verified that the proposed generator could produce the speech with not only higher
objective measurements but also better perceptual quality.

25.38% 31.54% 43.08%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Preference Test

AECNN No Preference Progressive

(a) AECNN versus Progressive generator

26.31% 31.69% 42.00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Preference Test

SERGAN No Preference Proposed method

(b) SERGAN versus Proposed method

Figure 4. Results of AB preference test. A subset of test samples used in the evaluation is accessible
on a webpage https://multi-resolution-SE-example.github.io.

5.2. Performance of Multi-Scale Discriminator
5.2.1. Objective Results

The goal of these experiments is to show the efficiency of the multi-scale discriminator
compared to the conventional single discriminator. As shown in Table 3, we evaluated
the performance of the multi-scale discriminator while varying q of the multi-scale loss
LD(q) in Equation (12), which means varying the number of sub-discriminators. Compared
to the baseline proposed in [26], the progressive generator with the single discriminator
showed an improved PESQ score from 2.5898 to 2.6514. The multi-scale discriminators

https://multi-resolution-SE-example.github.io
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outperformed the single discriminators, and the best PESQ score of 2.7077 was obtained
when q = 4k. Interestingly, we could observe that the performance was degraded when
the q became below 4k. One possible explanation for this phenomenon would be that since
the progressive generator faithfully generated the speech below the 4 kHz sampling rate,
it was difficult for the discriminator to differentiate the fake from the real speech. This let
the additional sub-discriminators a little bit useless for performance improvement.

Table 3. Comparison of results between different architectures of the multi-scale discriminator.
Except for the SERGAN, the generator of all architectures used the best model in Table 2. The best
model is shown in bold type.

Model Generator Discriminator LD(q) PESQ RTF

SERGAN [26] U-net Single q = 16k 2.5898 0.008

Proposed

Progressive Single q = 16k 2.6514

0.010
Progressive Multi-scale

q = 8k 2.6541
q = 4k 2.7077
q = 2k 2.6664
q = 1k 2.6700

5.2.2. Subjective Results

The preference scores of SERGAN and the progressive generator with multi-scale
discriminator were shown in Figure 4b. The proposed method was preferred over SERGAN
in 42.00% of the cases, while SERGAN was preferred in 26.31% of the cases (no preference
in 31.69% of the cases). These results showed that the proposed method could enhance the
speech with better objective metrics and subjective perceptual scores.

5.2.3. Real-Time Feasibility

SERGAN and the proposed method were evaluated in terms of the real-time fac-
tor(RTF) to verify the real-time feasibility, which is defined as the ratio of the time taken to
enhance the speech to the duration of the speech (small factors indicate faster processing).
CPU and graphic card used for the experiment were Intel Xeon Silver 4214 CPU 2.20 GHz
and single Nvidia Titan RTX 24 GB. Since the generator of AECNN and SERGAN is the
same, their RTF has the same value. Therefore, we only compared the RTF of SERGAN
and the proposed method in Table 3. As the input window length was about 1 s of speech
(16,384 samples), and the overlap was 0.5 s of speech (8192 samples), the total processing
delay of all models can be computed by the sum of the 0.5 s and the actual processing
time of the algorithm. In Table 3, we observed that the RTF of SERGAN and the proposed
model was small enough for the semi-real-time applications. The similar value of the RTF
for SEGAN and the proposed model also verified that adding the up-sampling network
did not significantly increase the computational complexity.

5.3. Analysis and Comparison of Spectorgrams

An example of the spectrograms of clean speech, noisy speech, and the enhanced
speech by different models are shown in Figure 5. First, we focused on the black box to
verify the effectiveness of the progressive generator. Before 0.6 s, a non-speech period,
we could observe that the noise containing wide-band frequencies was considerably re-
duced since the progressive generator incrementally estimated the wide frequency range of
the clean speech. Second, when we compared spectrograms of the multi-scale discriminator
and that of the single discriminator, the different pattern was presented in the red box.
The multi-scale discriminator was able to suppress more noise than the single discriminator
in the non-speech period. We could confirm that the multi-scale discriminator selectively
reduced high-frequency noise in a speech period as the sub-discriminators in multi-scale
discriminator differentiate the real and fake speech at the different sampling rates.
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Figure 5. Spectrograms from the top to the bottom correspond to clean speech, noisy speech,
enhanced speech by AECNN, SERGAN, progressive generator, progressive generator with multi-
scale discriminator, respectively.

5.4. Fast and Stable Training of Proposed Model

To analyze the learning behavior of the proposed model in more depth, we plotted
L1(Gn) in Equation (11) obtained from the best model in Table 3 and SERGAN [26] during
the whole training periods. As the clean speech was progressively estimated by the
intermediate enhanced speech, the stable convergence behavior of L1(Gn) was shown in
Figure 6. With the help of L1(Gn) at low layers (n = 1, 2, 4, 8), L1(G16k) for the proposed
model decreased faster and more stable than that of SERGAN. From the results, we can
convince that the proposed model accelerates and stabilizes the GAN training.

5.5. Comparison with Conventional GAN-Based Speech Enhancement Techniques

Table 4 shows the comparison with other GAN-based speech enhancement methods
that have the E2E structure. The GAN-based enhancement techniques which were evalu-
ated in this experiment are as follows: SEGAN [22] has the U-net structure with conditional
GAN. Similar to the structure of SEGAN, AECNN [26] is trained to only minimize L1 loss,
and SERGAN [26] is based on relativistic GAN. CP-GAN [40] has modified the generator
and discriminator of SERGAN to utilize contextual information of the speech. The pro-
gressive generator without adversarial training even showed better results than CP-GAN
on PESQ and CBAK. Finally, the progressive generator with the multi-scale discriminator
outperformed the other GAN-based speech enhancement methods for three metrics.
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× 10−3

× 104

Figure 6. Illustration of L1(Gn) as a function of training steps.

Table 4. Comparison of results between different GAN-based speech enhancement Techniques. The best result is highlighted
in bold type.

Model PESQ CSIG CBAK COVL STOI

Noisy 1.97 3.35 2.44 2.63 0.91
SEGAN [24] 2.16 3.48 2.68 2.67 0.93
AECNN [26] 2.59 3.82 3.30 3.20 0.94
SERGAN [26] 2.59 3.82 3.28 3.20 0.94
CP-GAN [38] 2.64 3.93 3.29 3.28 0.94

The progressive generator without adversarial training 2.65 3.90 3.30 3.27 0.94
The progressive generator with the multi-scale discriminator 2.71 3.97 3.26 3.33 0.94

6. Conclusions

In this paper, we proposed a novel GAN-based speech enhancement technique utiliz-
ing the progressive generator and multi-scale discriminator. In order to reflect the speech
characteristic, we introduced a progressive generator which can progressively estimate the
wide frequency range of the speech by incorporating an up-sampling layer. Furthermore,
for accelerating and stabilizing the training, we proposed a multi-scale discriminator which
consists of a number of sub-discriminators operating at different sampling rates.

For performance evaluation of the proposed methods, we conducted a set of speech
enhancement experiments using the VoiceBank-DEMAND dataset. From the results,
it was shown that the proposed technique provides a more stable GAN training while
showing consistent performance improvement on objective and subjective measures for
speech enhancement. We also checked the semi-real-time feasibility by observing a small
increment of RTF between the baseline generator and the progressive generator.

As the proposed network mainly focused on the multi-resolution attribute of speech
in the time domain, one possible future study is to expand the proposed network to utilize
the multi-scale attribute of speech in the frequency domain. Since the progressive generator
and multi-scale discriminator can also be applied to the GAN-based speech reconstruction
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models such as neural vocoder for speech synthesis and codec, we will study the effects of
the proposed methods.
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