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Abstract: With the ever-progressing development in the field of computational and analytical science
the last decade has seen a big improvement in the accuracy of electroencephalography (EEG) technol-
ogy. Studies try to examine possibilities to use high dimensional EEG data as a source for Brain to
Computer Interface. Applications of EEG Brain to computer interface vary from emotion recognition,
simple computer/device control, speech recognition up to Intelligent Prosthesis. Our research pre-
sented in this paper was focused on the study of the problematic speech activity detection using EEG
data. The novel approach used in this research involved the use visual stimuli, such as reading and
colour naming, and signals of speech activity detectable by EEG technology. Our proposed solution is
based on a shallow Feed-Forward Artificial Neural Network with only 100 hidden neurons. Standard
features such as signal energy, standard deviation, RMS, skewness, kurtosis were calculated from the
original signal from 16 EEG electrodes. The novel approach in the field of Brain to computer interface
applications was utilised to calculated additional set of features from the minimum phase signal.
Our experimental results demonstrated F1 score of 86.80% and 83.69% speech detection accuracy
based on the analysis of EEG signal from single subject and cross-subject models respectively. The
importance of these results lies in the novel utilisation of the mobile device to record the nerve signals
which can serve as the stepping stone for the transfer of Brain to computer interface technology from
technology from a controlled environment to the real-life conditions.

Keywords: electroencephalography; mobile EEG device; speech detection; feed-forward neural
network; visual stimuli

1. Introduction

The interest in the field of speech detection and recognition has been on the increase
through the last decade thanks to the new possibilities of its application in the technology
that can improve our lives. New speech recognition approaches focus on communication
without an audio signal. Technologies which use other signals to detect speech processes
include electromyography for recording the movement of facial and articulatory muscles,
invasive electrocorticography for recording electrical activity on the surface of the brain,
or electroencephalography for recording brain electrical activity from the surface of the
head, and others. These technologies represent a wide range of possibilities for speech
recognition and detection for the physically or mentally disadvantaged and for their use in
environments where sound cannot be used. Possibilities of using speech detection on the
revelation of a speech pattern of the brain are based. That pattern can be excluded when
examining other brain activities or used to improve speech recognition from brain activity.
Following international publications and studies concerning electroencephalography (EEG)
technology served as the background research for our own initiative.

In Reference [1], the non-speech state of the brain activity was examined. The research
focused on the existence of silence signatures in EEG and its identification. The main area
of examination is the classification of brain activity regions during heard and imagined
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speech. The best accuracy of the classifier detection was about 50%. In the work, the
4-channel Muse EEG headset and a 128 channel EGI device were used.

Automatic real-time voice activity detection was examined in Reference [2]. This
study was focused on magnetoencephalography (MEG) signals. Data was collected by
the NeuroVAS device in a medical environment. The study offers a method of classifying
speech and silence intervals using a support vector machine, which achieves an average
accuracy of 88%.

Further studies investigating speech detection from MEG signals [3] used the Gaussian
mixture model and artificial neural network. In the experiment, the speech was detected
on whole phrases. The best classification accuracy was achieved at 94.54%.

From a neurological point of view, we can categorise human speech according to
the role it represents. The similarities in EEG signals in the induction of various speech
activities such as perception, production, and imagination of speech is the subject of an
experimental study [4]. Studies reported results higher than the chance level for EEG
classification using machine learning with a data set that includes 30 subjects.

One of the first online classifications to covert speech from EEG signals has been
described in Reference [5]. This work deals with the distinction of the mentally spoken
words. The research involved 20 subjects who were tasked to mentally repeat the words
“yes” and “no”. Using support vector machine (SVM) classification an average accuracy of
75.9% was achieved.

The use of speech activity detection from EEG is discussed in Reference [6]. The
experiment deals with the improvement of speech recognition in a noisy environment using
EEG signals. The data sets used for the experiment were recorded in a noisy environment,
which was classified using Recurrent Neural Network. The results showed that the EEG
signal can help improve the voice activity detection and can also be helpful as a predictor
of the decision to talk or not.

In our research, we dealt with the detection of speech that is associated with visual
stimuli. The classification of the state of inactivity and the state when the subject was
exposed to a visual stimulus has been described in Reference [7]. This paper details an
experiment where the researched subjects were presented in a visual stimuli in the form of
a single colour image on the screen followed by a state of relaxation. The output EEG brain
signals were measured and classified to detect a state of inactivity and an exposure to a
visual stimulus state. The classifiers used were SVM and random forest. The result of the
classification of the state of inactivity and the state of exposure to the image stimulus was
on average 94.6%.

A precursor work to this research was carried out in 2017 [8]. This work was aimed at
the recognition of the commands from the EEG signal, however only low level of accuracy
was achieved. The data set of EEG signals was compiled using 20 subjects who pronounced
50 different commands and a cross-subject Hidden Markov model was trained to recognize
the spoken commands. The best recognition accuracy was more than 5%, which is more
than the chance level, but many false alarms occurred during the recognition. However,
this work had paved the way to the idea of improving the speech recognition from EEG
signals by adding a speech detector that can increase the overall accuracy.

The above work was followed by a research summarised in Reference [9], This re-
search was focused on the speech activity detection from EEG using the Feed-Forward
Neural network with a single-subject model. The research has achieved a considerable
improvement in the detection accuracy averaging at 77% for F1 results.

2. Motivation

In this work is aimed at the investigation of the speech activity present in the EEG
signals. The main focusing on the cooperation of several areas of the brain, especially
speech activity that is associated with visual stimuli. The stimuli used in the experiment
were images and written text. According to the study in Reference [10], the visual stimulus
can generate inner speech. In speech communication, a person uses the visual area of the
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brain which accelerates the speech generation. The human brain often works with the visual
or textual form of objects, to identify the correct grammatical, audio, and articulatory form
of the word. Such cooperation of several areas of the brain improves the communication
process.

As mentioned we expected increased activity of the two main areas of the brain
during EEG signal acquisition which are the speech area, and the visual area. During EEG
recording the subjects were presented with both images with showing specific colours and
the text forms of individual colours. By presenting the subjects with these images their
visual and imaginary parts of the brain became activated. The important fact to realised
is that the brain areas which control what we see and what we can imagine are the same.
When communicating, we often involve these visual areas in addition to speech areas. The
relationship between imagination and vision is very close and hence these two actions
elicit similar signals. The main difference between visual and mental images lies in the
communication of the cerebral pathway, which started from the eye, leads to the primary
visual cortex [11,12]. The study in Reference [13] assumes that image recognition and
image naming involves the activity of occipitotemporal and prefrontal areas.

Speech production is created by a so-called conversational loop that moves the infor-
mation signal to different parts of the brain tin order to compose a word pattern before it is
pronounced. Such a phonological loop involves the processing of the linguistic-auditory
signal which is in the first instance formed in the auditory cortex followed by the transfer
of the audio form of the word to the Wernicke’s area. In the Wernicke’s area the sound
pattern is processed and from there it travels to the Broca’s area where syntax, morphology,
and articulation instructions are generated. This information is sent to the motor cortex
finally where the movements of the vocal cords, tongue, diaphragm, and other voicing
muscles are controlled [14].

3. An Experimental Database
3.1. Materials

Although considerable research has been done in modeling human speech detection
and recognition, it is difficult to use this information to create a speech recognition model
that works on a mobile EEG device. Working with mobile devices is often more difficult
due to the inferior signal acquisition conditions. However, mobile EEG devices bring many
benefits to end-users such as lower price, easier connection, easier to place on the head or
the use of dry electrodes, to name few. In our research the database of EEG signals was
recorded using the OpenBci Ultracortex Mark III EEG headset. Bluetooth signal was used
to both control the mobile EEG head cap via a computer and to transfer the recorded EEG
signal. The sampling frequency of 125 Hz was used to capture the brain signal via the EEG
headset.

The headset configuration consisted of 16 dry electrodes that recorded the signals
in different areas of the brain. The channels used were namely Fp1, Fp2, F3, F4, F7, FS§,
C3,C4, T3, T4, P3, P4, T5, T6, O1, O2, according to the international 10/20 system. The
decision to apply the electrode configuration to the entire head area was made based on
the reasons given in Section 2. Since the research focused on the brain activity during an
overt speech associated with visual stimuli it is important to capture the signals coming
from areas of the brain not just the speech area. Figure 1b shows the side view of the
location of the sensors use in our research and the iodine of the brain is shown. Due to the
limited possibilities of positioning the electrodes on the Ultracortex EEG headset, we tried
to cover the following areas: Speech areas (Broca’s and Wernicke’s area), Auditory areas,
Visual areas and Motor areas. Another reason to use EEG signals coming from multiple
areas is that, despite the well-known knowledge that Broca’s and Wernicke’s areas are
located on the left hemisphere in about 95% of right-handers and 70% of left-handers [15],
observations in the previous experiment [8] did not show a significant improvement for the
machine learning based on the modeling with left hemisphere EEG signals. The experiment
in Reference [14], showed that the classification of EEG signals from the left hemisphere
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shows just slightly better accuracies compared to signals from the right hemisphere signals
classification.
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Figure 1. (a) Electrode configuration according to 10/20 international system used in the experiment.
(b) Lateral view of the electrode configuration, compared with the brain areas (motor, auditory, visual,
and speech).

Our EEG headset has been modified to use soft electrodes to improve the subject’s
comfort. Fitted measuring electrodes are based on a flexible conductive, elastic main body
with a conductive coating covering the contact area. The functionality of the electrodes
with the OpenBClI headset was discussed in Reference [16]. Our solution for the connection
of the electrodes to the headset resulted in the snap connectors being soldered to wires to
which electrodes were connected.

The EEG signals was recorded on four healthy, right-handed native Slovak speaking
subjects. They signed an informed consent form in which they were acquainted with
the purpose of the experiment and with the use and management of the personal data.
The research was carried out in accordance with the Code of Ethics for employees of the
Technical University in Kosice.

During the experiment the subjects followed an experimental protocol. Their task was
to sit motionlessly in a comfortable position while focusing on the screen in front of them
and processing the word pronunciation. During the EEG signal recording the audio signal
was also gathered, which were used for speech labels creating.

3.2. Acquisition Protocol

An acquisition protocol for EEG signals recording was partly inspired by the experi-
ment in Reference [7]. The acquisition protocol was designed to activate the speech, visual
and imaginary areas of the brain. EEG signals recording was performed in two sessions,
each lasting about 10 min. In the first session specific colours were displayed on the screen
as pictures, while in the second session, the colours were displayed as text on the screen.
The recorded subject was tasked to focus on the displayed colours and to name them. In
the first session the focus was on the activation of the subject’s imaginary areas of the
brain. These areas help to create the image form of the word or to transform the seen
image into a verbal form. The second session of the experiments was focused on activating
the area of the brain responsible for understanding the written text, where the written
text is transformed into a verbal form and vice versa. In the above exercise, 10 easily
distinguishable colours were displayed randomly one by one with short breaks represented
by a plain black colour. The colours spectrum selected for this protocol were yellow, green,
red, blue, orange, violet, white, pink, grey, and brown.
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4. Methods

The audio and EEG signals were recorded together. The audio recording was used
to create speech and non-speech labels. EEG signals recorded using the graphical user
interface OpenBCl, and stored in a text file format, where the individual channels are
written in columns. The file format also contains an additional column which contains
the information about the Unix time of recording each sample. The main challenge was
in the synchronisation of the recorded EEG and audio signals in the post processing. To
solve is was created a simple script which, after starting the audio recording, automatically
stored the Unix time of record start. This was used to synchronize an audio with EEG in
post-processing.

For the experiment, 9 basic features was assembled based on which the models in the
shallow Feed-Forward Artificial Neural Network was created. The important part of the
signal processing was the conversion of the signal into minimum-phase signal. Ttures were
calculated for the raw EEG signal as well as for the minimum-phase signal. In summary,
for the total of 16 recorded EEG channels in the experiment a calculation was completed
for ehe assigned feaach channel identifying 9 features from the raw signal and 9 features
for the minimum-phase signal. All input features composed an input vector of size 288.

4.1. Labeling

The voice of each subject was captured during the EEG recording. The audio recording
was used to identify and time aligns labels. The audio recordings were downsampled to
match the sampling frequency of the EEG record and the individual speech and non-speech
state samples were marked as 1 or 0.

4.2. Signal Pre-Processing

The recording of EEG signals according to the protocol described in Section 3.2 was
performed. The pronunciation of individual words was alternated by longer pauses of
inactivity. Parts with pronunciation are considered to be an active state of the brain when
speech is produced, and pauses between words are considered to be the non-speech state.
The average pronunciation time for one word was 0.75 s, while the average pause time
lasted up to 4.25 s (Figure 2) and the average number of words in one recording was
120. In summary, it is clear that the speech time in one recording was about 90 s and
the silence time was about 510 s. As a result, the overall length of the silence segments
dominates significantly. Such a disproportion in the data would causes the model to be
trained on the dominant target (non-speech) which would result in the creation of an
erroneous and unacceptable speech detection model. To overcome this issue the data were
balanced by random undersampling of majority labels (non-speech state labels) before
further processing. Indexes of samples belonging to the zero labels were selected based on
the indexes of the selected zero samples, the samples from both the EEG and the label data
were marked and deleted, thus shortening the total length of the signal, but the data were
balanced.
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Figure 2. Protocol for electroencephalography (EEG) signal acquisition. On-screen presentation times
and average speech times. Individual colours or colour names were displayed with breaks created
by black colour on screen.

4.3. Minimum-Phase Signal Calculation

The first step before calculating the features that would define the signal was to
calculate the minimum-phase signal from the obtained EEG recordings. Creating this
equivalent signal is one of the features we want to use to improve speech detection. From
a theoretical point of view, we can describe the minimum-phase signal as follows.

System with a minimal phase has the poles and zeros of its rational transfer function
in the domain of the transformation Z lie inside a unit circle in a complex plane. The
minimum-phase signal is defined as a signal in which the energy is concentrated near the
front of the signal [17].

The method for obtaining the mminimum-phase phase equivalent uses the conversion
of a signal to its real cepstrum using fast Fourier transforms and a recursive process from
its real cepstrum backwards. The real cepstrum is the inverse Fourier transform of the
real logarithm of the magnitude of the Fourier transform of a sequence [18]. First of all,
we calculated the real cepstrum from the signal x(#). The real cepstrum analysis can be
expressed as [19]:

cr(n) = R(Flog| F{x(n)}]). 1)

By a recursive procedure can be found the minimum-phase equivalent of a signal x (1)
from its real cepstrum ¢,(n) :

Xin(n) = R(F exp[F{cr(n)}]). ¢)

From the obtained minimum-phase signal x,,;, (1), the features were calculated ac-
cording to the following chapter.

4.4. Feature Extraction

Selected features were calculated to a signal for a window size of 10 signal samples
with 50% overlap. The features were calculated for a pre-prepared EEG signal, as well as
for the minimum-phase signal. The individual features extracted from the signal x(n) are
listed in the next lines [20].



Appl. Sci. 2021, 11, 674

7 of 12

Mean value of the frame is an average value of signal parties
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Skewness indicates the measured the asymmetry of this distribution around its mean
value. The skewness is defined for a signal x(n) as:

Skew = —_ 3 3 5
ew = Wn;l(x(n)—y) , ()

where y and o are the mean and standard deviation of the signal x (). Distribution of
EEG signal is symmetric if it looks equal on the right and left sides of the centre [21].
Kurtosis is the fourth-order central moment of distribution. EEG signals coefficients
have not normal distribution and have heavy-tailed characteristic justified by kurto-
sis [21]. The kurtosis is defined for a signal x(n) as:

N
Kurt = ﬁ r;(x(n) — )t (6)

Kurtosis characterises comparison of relative peakness distribution and normal dis-
tribution. Positive kurtosis coefficients indicate peaked distribution and the low or
negative coefficients mean a flat envelope [22].
Energy indicate the strength of the EEG signal. Energy used for our signal was
calculated as the sum of all the squared values in the window. The average energy is
define by:

N

Energy = % Y x(n)% 7)

n=1

Bandpower is a method of monitoring amplitude modulations at the frequency range [23].

P — lim i/T x(t)2dt ®)
o 2T J-T ’

T—o0

RMS = L& 2 9
= ﬁn;x(”)- )

Shannon entropy of a signal is a measure of the spectral distribution of the signal. The
Shannon entropy is measure of uncertainty in a random process [24]. It is defined as:

Root mean square

N
Shannon =Y x(n)logox(n). (10)

n=1

Spectral flux describes sudden changes in the frequency energy distribution.It indicates
the rate of change of the power spectrum. Spectral flux is given by formula:

M/2

Spectral flux = Y (S¢(k) — Si—1(k))?, (11)
k=1
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where S;(k) and S;_1(k) are the Fourier transforms of actual frame ¢ and pervous
frame t — 1 of the signal [25,26].

4.5. Training Algorithm

We assume that machine learning models such as feed-forward neural network may
identify patterns in the preprocessed EEG data to predict the desired speech and non-speech
classes. The preprocessed data fed into the feed-forward neural network are transformed
by a number of weights which form the output prediction for each class. At the beginning
of the model training phase, all model weights are randomly initialized which results
in the erroneous output. Later in this phase, the manually labeled classes, which are
paired with the input data, are fed to the feed-forward neural network model. The error
backpropagation algorithm is used to optimize the model weights in order to reduce the
output error.

In our experiment, the 2-layer feed-forward neural network was used. Min-max
scaling was performed by network pre-processing. The neural network consists of a single
tanh activated hidden and binary output sigmoid activated output layer. We trained the
network with Scaled conjugate gradient backpropagation, with binary cross-entropy as the
loss function. Output pseudo probabilities were thresholded with a 0.5 decision boundary.
The first layer of the network consisted of one hundred hidden neurons.

The models were created based on 18 features calculated for the frame of 10 signal
samples. In previous experiments, it turned out that such a window size is sufficient and
does not unnecessarily reduce the amount of information in the signal. In the experiment,
a model was created using machine learning modelling, which would be able to recognize
the state of speech production and the state of brain inactivity. Therefore, in the above
classification, all words were explicitly considered as one class.

The experiment was divided into two main parts, in the first we tried to create single-
subject models. In the second part, we created cross-subject models.

5. Experimental Results

In this section, the results of neural network testing are presented. As discussed in
the main body of this report the experiment into was divided into two main part. In the
first part the speech detection models for individual subject data set were created. The
second part. In the second part the focus was on the creation of a model from the cross-
subject data set. One hundred models for each data set were trained using the assembled
neural network. From all of the models created the one with the highest result in the
testing process was selected and the results with the highest values for data set models are
presented here.

5.1. Model Evaluation Metrics

Scoring performance metrics were calculated to evaluate the achieved results. The
data set may be slightly unbalanced due to signal processing where we introduce framing
for calculating features the number of ones and zero targets may not agree. Therefore, the
accuracy metric cannot be the only measure used to evaluate the results obtained. What
we were aiming for was to find positive results for the speech activity state, so we consider
the F1 score to be the most important measure and for completeness, we also provide recall
and precision metrics.

1. Recall: is the ratio of true positive predictions to all positive predictions. Recall is also
known as the True Positive Rate or the sensitivity. We can express it by:

TP

Recﬂll - m

(12)



Appl. Sci. 2021, 11, 674

9of 12

2. Precision: is the actual correct proportion of positive predictions. This can be expressed
by:
TP

Precision = TP+ EP° (13)

3. F1 score: is the harmonic mean of the precision and recall. We can express it by:

Precision x Recall
Precision + Recall”

F =2 x (14)

5.2. Single-Subject Model Experiment

In the first part of the experiment, models for the single-subject models were created,
70% of the data was used for training, 15% for the model validation, and 15% for the test.

As can be seen in Table 1, machine learning learned to detect speech from the EEG
signal for a single subject with an average accuracy of 84%. This accuracy can be considered
relatively high.

Table 1. Experimental results for test set single-subject model.

Subject Precision Recall Accuracy F1 Score
Number [%] [%] [%] [%]

1 87.61 89.11 86.65 88.36

2 73.76 85.16 74.72 79.05

3 89.84 90.68 88.75 90.26

4 88.64 90.43 88.35 89.53
Average 84.96 88.85 84.62 86.80

The best result was recorded for the subject 3. Figure 3 shows the part of the input
labels compared to the output data obtained from model based on data set 3.

Speech Ay oo g o g r——-——- — 1 T

Non-speech [ B — — R R . ‘...x, N —" —— N— ——

Figure 3. Graphical representation of speech labels (a blue shape) compared with predicted labels
(a red crosses) within the range 0 to 1.

5.3. Cross-Subject Model Experiment

In the second part, the aim was to create a cross-subject and a cross-session models.
Creating a model using the EEG signals from the multiple subjects is often very challenging.
Revealing brain activity that shows the same signals for several people encounters a
problem caused by subjective perception. Nevertheless, it can be assumed that if human
speech is created and controlled in the same areas of the brain, it may also show similar
brain waves, and these similarities can be revealed by machine learning.

In this part we selected data sets from combination of 3 subjects which were divided
into 80% training set and 20% validation set. The created model was tested on the data set
from the 4th subject.
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5.3.1. Colour Naming Session

Table 2 lists the machine learning results for cross-subject models. In this experiment,
we created a model for speech detection using signals from 3 subjects and tested on the rest
quarter. The data used for these models were selected only from the first session, where
the subjects were presented with colours in the form of an image and they named them.

Table 2. Cross-subject model, colour naming session.

Subject Numbers Subject Number Precision Recall Accuracy  F1 Score
Model Training Model Testing [%] [%] [%] [%]
1,2,3 4 65.71 92.03 69.44 76.68
2,3,4 1 67.78 88.09 69.97 76.61
1,3,4 2 58.55 96.31 59.40 72.82
1,2,4 3 71.68 88.11 7447 79.05
Average 65.93 91.14 68.32 76.29

5.3.2. Reading Session

Table 3 shows a results for cross-subject models created of data sets from the second
session, where subjects were presented with the names of pictures in textual form and their
task was reading.

Table 3. Cross-subject model, reading session.

Subject Numbers Subject Number Precision Recall Accuracy  F1 Score
Model Training Model Testing [%] [%] [%] [%]
1,2,3 4 80.50 87.14 81.09 83.69
2,3,4 1 58.32 98.94 59.69 73.38
1,3,4 2 69.66 54.76 62.02 61.32
1,2,4 3 66.65 93.30 70.56 77.65
Average 68.78 83.54 68.34 74.01

5.3.3. Cross-Session Experiment

Table 4 was compiled based on results for cross-session speech detection. The data
used for creating cross-session detection model were mixed from all subjects and both
sessions.

Table 4. Cross-session model.

Subject Numbers Subject Number Precision Recall Accuracy  F1 Score
Model Training Model Testing [%] [%] [%] [%]
1,2,3 4 69.61 92.67 73.71 79.50
2,3,4 1 60.14 95.73 62.14 73.87
1,3,4 2 61.70 62.81 57.48 62.25
1,2,4 3 70.37 86.37 72.56 77.56
Average 65.46 84.40 66.47 73.30

6. Discussion and Conclusions

Our research work has demonstrated the possibility of the speech detection using
a novel mobile EEG device which can be utilised in the real-life conditions. Up to now,
there has been a widely accepted scepticism regarding the potential accuracy of the speech
detection based on the EEG signal used outside the controlled environment. The main
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argument against the use of such devices in the real-life conditions was based around the
potential problems associated with the insufficient continuous connection for all channels,
lower sample rate or difficult data transmission via wireless protocol. Our research has
demonstrated good accuracy of such technology based our experiment which was focused
on the speech detection through EEG signals using Feed-Forward Neural Network.

Our experimental work was divided into two main parts. The first part of the experi-
ment was focused on the generation of the Neural Network models for individual subjects.
The detection results for our EEG database were very positive for our research with an
average F1 score of 86.8%. Based on the above results, we can see an improvement in the
speech detection system in comparison with the previous experiment [9], which achieved
F1 score of 77% for the single-model.

In the second part the data sets were set up for cross-subject speech detection. The
cross-subject detection was considered to be an important step in our research. In this
case, we expected that the combination of the brain signals from the different subjects
will show a significant degradation in the accuracy as well as a higher complexity of the
model generalisation. We assessed cross-subject speech detection according to the type
of stimulus. EEG data were recorded in two sessions. In the first session the data were
EEG data were acquired on the subjects who were tasked to pronounce the names of the
colours displayed on the screen in front of them. In the second session, the subjects read the
displayed text of the colours. Following the data acquisition, a comparison was carried out
of the effect of these two types of visual stimuli on the speech detection. Nevertheless, the
best result of speech detection was demonstrated on the data set from the reading session
(F1 score of 83.69%, Table 3), the comparison of average results from all models showed
that different stimuli did not have a significant effect on the detection results. The data
from the colour naming session achieved a higher average F1 score just by 2.28% absolute,
while the accuracy of both detections was at a very similar level. Therefore, we can assume
that the speech detection system in our experiment did not have a high dependency on the
nature/type of the stimulus, or that the EEG device used in the experiment did not have a
sufficient resolution to distinguish between the type of the stimuli: image or text.

By combining the data sets from both sessions, a larger data set was obtained which
was arranged in a number of different configurations which were then further analysed in
the Neural Network. Table 4 shows that the best result was achieved for the configuration
data set on subjects 1, 2 and, 3 in the training model and in the testing the model from the
data on subject 4. The F1 score here reached 79.5%. Although a relatively small number of
subjects was involved in the acquisition of the training data sets the high accuracy of the
archived results provides an incentive for further research in this area.

Our results for the cross-subject speech detection achieved better results than initially
anticipated. Based on our results we plan future work focused on the creation of an optimal
model for the speech detection by involving a larger number of subjects and using deep
machine learning algorithm. Such speech detection model could then be used to create a
speech recognition application suitable for mobile EEG devices.
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