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Abstract: In order to investigate the seismic performance of prestressed concrete rocking frame
(PCRF), a theoretical model based on rigid body is established for a one-story single-span PCRF.
The PCRF studied in this paper has the connecting interfaces set at the column feet and at the
inner faces of the beam–column joints, allowing the columns to be uplifted with the accompanying
separation of the beam–column interface and rotation of the beam and column around the interface.
The tendons are arranged along the centerline of the beam and columns. The connections between
the beam and columns and the anchoring of columns are accomplished by prestressing the tendons.
The theoretical model consists of a rigid beam, rigid columns and elastic tendons. The governing
motion equation of the PCRF is derived based on the model and a numerical solution of the equa-
tion of motion is obtained. The energy dissipation of the PCRF is analyzed and the calculation
method for the coefficient of restitution is derived. Time history analysis and parameter analysis
of seismic response of the PCRF are conducted and the results show that the PCRF has promising
seismic behavior.

Keywords: prestressed concrete structure; rocking frame; rocking vibration; rigid body; collision;
energy dissipation; seismic response

1. Introduction

The rocking structure concept was first proposed by Housner, based on the surveys
of earthquake damage [1,2]. With continuous research of resilient structures, the rocking
structure has received increasing attention from researchers [3–7]. A rocking structure
generally has minor damage after an earthquake and its main components can even be
undamaged [8]. Frames are a very common form in concrete structures. The energy
dissipation of a traditional frame during an earthquake mainly depends on its structural
ductility. Such an earthquake damaged frame usually requires a long repair time with
great cost. To deal with this problem, a type of rocking frame is presented based on the
conceptual fusion of the rocking structure and frame.

Makris et al. [9] analyzed the rocking response and stability of the rocking frame.
It was found that the stability of the rocking frame is strengthened with an increase in cap
beam mass. The seismic response of a plane rocking frame with geometric asymmetry was
studied by Dimitrakopoulos et al. [10]. Although the rocking mechanism of a symmetrical
rocking frame is very different from that of an asymmetric one, the influence of structural
asymmetry on the stability of the rocking frame is minute. Vassiliou et al. [11] suggested a
new finite element modeling method for a deformable rocking frame based on zero length
fiber cross-section elements and Hilber–Hughes–Taylor energy consumption algorithm.

Prestressed tendons are often arranged in the column or beam of a rocking struc-
ture in actual projects to enhance the self-centering ability of the structure, to increase
the structural stability and to reduce the residual deformation. Based on this measure,
different forms of prestressed concrete rocking frame (PCRF) were presented by researchers.
Priestley et al. [12] proposed a concrete rocking frame derived from a precast unbonded
prestressed concrete frame. Beams can be connected to columns through tendons, and the
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disengagement of the beam from the interface for the beam–column joint can be al-
lowed. A cyclic loading test of beam–column joints for precast PCRF was carried out
by Cheok et al. [13] and the test results demonstrated that the joints had great ductility.
Priestley et al. [14] completed an experimental study on the seismic behavior of joints of
an unbonded PCRF. The failure of joints did not occur in the experiment and the damage
of tested joints was minor, which can be quickly repaired after an earthquake. Nonlinear
static pushover analysis and dynamic time history analysis of an unbonded post-tensioned
PCRF were conducted by El Sheikh et al. [15]. The fiber model and spring model used
for such structural analysis were also presented. The analysis results showed that the
strength, ductility and self-centering ability of an unbonded post-tensioned PCRF can meet
the requirements for resisting rare earthquake.

The rocking response and stability of a prestressed rocking frame was studied theoreti-
cally by Makris et al. [16]. It was found that the effects of prestress on rocking columns with
different sizes are basically the same as that of a single independent prestressed rigid rock-
ing column. The seismic response of a prestressed rocking frame with buckling restrained
braces which has flag-shaped hysteretic behavior was analyzed by Giouvanidis et al. [17].
They revealed that prestress is not always beneficial to the seismic performance of the pre-
stressed rocking frame, but this also depends on the size of the frame columns. Lu et al. [18]
proposed a kind of controlled rocking concrete frame. A reversed cyclic loading test and
shaking table test were accomplished and the corresponding finite element model was
built in the study. The research results proved that the frame has excellent seismic perfor-
mance. A self-centering prestressed concrete frame with web friction devices was devised
by Guo et al. [19,20]. The result of a low-cycle reversed loading test implied that the self-
centering prestressed concrete frame has prominent seismic performance and remarkable
self-centering ability.

Existing studies show that the PCRF has, in general, superior seismic performance and
stability. Nevertheless, the theoretical analysis methods of PCRFs in previous studies are
rare and lack depth. Hence, the theoretical model based on rigid body of a one-story single-
span PCRF is established in this paper. The model consists of a rigid beam, rigid columns
and elastic prestressing tendons. The tendons are arranged along the centerline of the
beam and columns. The connections between the beam and columns and the anchoring of
columns are accomplished by prestressing the tendons. The governing equation of motion
of the PCRF is derived based on the model and a numerical solution of the equation of
motion is obtained. The energy dissipation of the PCRF is analyzed and the calculation
method for the coefficient of restitution is proposed. The time history and parameter
analysis of the seismic response of the PCRF are presented.

2. Rigid Body Model of the PCRF

The PCRF has the connecting interfaces set at the column feet and at the vertical inner
faces of the beam–column joints, allowing the columns to be uplifted with the accompany-
ing separation of the beam–column interface and rotation of the beam and column around
the interface. The theoretical model based on rigid body of a one-story single-span PCRF
is shown in Figure 1, which consists of two columns, a beam and prestressing tendons.
Relative slips between the rigid members on each interface are not allowed. The tendons
are arranged along the centerline of the beam and columns. The connections between the
beam and columns and the anchoring of columns are accomplished by prestressing the
tendons. The column has a mass mc, height 2h and width 2b. Its semi-diagonal and slen-
derness ratios are Rc =

√
h2 + b2 and b/h = tan α, respectively. The beam has a mass mb,

height 2hb and length 2Lb. Its half-diagonal length is Rb =
√

h2
b + L2

b and its height span
ratio is hb/Lb = tan γ. The inclined angle between line AB and AD is β. The coordinate
system and other geometric parameters are shown in Figure 1 and the clockwise rotation
of the beam and column are positive. The mass centers of the columns and beam are GAB,
GCD and GBC.
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The rocking mechanism and planar four-bar linkage mechanism of the PCRF during coun-
terclockwise rotation are shown in Figure 2. The dotted lines in Figures 1 and 2 are used 
to illustrate the four-bar mechanism presented in Figures 3 and 4. Hence, the planar four-
bar linkage model can be used to obtain the relationship between the angles of the beam 
and columns. That is, the motion of the columns and beam when the PCRF is rocking can 
be represented by the motion of the bars in the four-bar linkage model. The governing 
equation of motion of the PCRF can be derived by the Lagrangian equation method. The 
angles of rotation of bars AB, BC and CD are denoted as 1q , 2q and 3q , respectively. 
Figure 4 illustrates the planar four-bar model for the case 1 0q <  and the case 1 0q > . 
The angle 2q  is positive and 3q  is negative in the case 1 0q < , while the opposite is 
positive for the case 1 0q > . 

 
Figure 2. Rocking mechanism and planar four-bar linkage mechanism of PCRF during counter-
clockwise rotation. 

Figure 1. Rigid body model of prestressed concrete rocking frame (PCRF).

The motion law of the PCRF is the same as that for the planar four-bar linkage
mechanism shown in Figures 2–4 when the PCRF is rocking. The rigid body model of
the PCRF is a single degree of freedom system and can be described by a generalized
coordinate. The rocking mechanism and planar four-bar linkage mechanism of the PCRF
during counterclockwise rotation are shown in Figure 2. The dotted lines in Figures 1 and 2
are used to illustrate the four-bar mechanism presented in Figures 3 and 4. Hence, the planar
four-bar linkage model can be used to obtain the relationship between the angles of the
beam and columns. That is, the motion of the columns and beam when the PCRF is rocking
can be represented by the motion of the bars in the four-bar linkage model. The governing
equation of motion of the PCRF can be derived by the Lagrangian equation method.
The angles of rotation of bars AB, BC and CD are denoted as θ1, θ2 and θ3, respectively.
Figure 4 illustrates the planar four-bar model for the case θ1 < 0 and the case θ1 > 0.
The angle θ2 is positive and θ3 is negative in the case θ1 < 0, while the opposite is positive
for the case θ1 > 0.
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3. Kinematics of the PCRF

The geometrical relationship of the planar four-bar linkage mechanism for θ1 < 0
is shown in Figure 3. Firstly, θ1 is assumed as a known angle, and ϕi(i = 1, 2, 3) are
calculation auxiliary angles. From the geometry relationships, we have

θ2 = ϕ2 + γ− ϕ1 θ3 = ϕ2 + ϕ3 − π/2 (1)

The equations below can be obtained from sine and cosine law:

BD2
(θ1) = (2L)2 +

(
2R′c

)2 − 8R′cL cos(β− θ1) (2)

(2h)2 = BD2
(θ1) + (2Rb)

2 − 4RbBD(θ1) cos ϕ1 (3)

BD(θ1)

sin(β− θ1)
=

2R′c
sin ϕ2

(4)

2h
sin ϕ1

=
2Rb

sin ϕ3
(5)

The expressions for θ2 and θ3 can be derived from Equations (1)–(5). The expressions
are written as

θ2 = arcsin
[

2R′c
BD(θ1)

sin(β− θ1)

]
+ γ− arccos

[
4R2

b + BD2
(θ1)− 4h2

4RbBD(θ1)

]
(6)

θ3 = arcsin
[

2R′c
BD(θ1)

sin(β− θ1)

]
+ arcsin

{
Rb
h

sin

{
arccos

[
4R2

b + BD2
(θ1)− 4h2

4RbBD(θ1)

]}}
− π/2 (7)
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Substituting Equation (2) into Equations (6) and (7) yields

θ2(θ1) = arcsin
[

R′c√
L2+R′2c −2R′cL cos(β−θ1)

sin(β− θ1)

]
+ γ

−arccos
[

R2
b+L2+R′2c −2R′cL cos(β−θ1)−h2

2Rb

√
L2+R′2c −2R′cL cos(β−θ1)

] (8)

θ3(θ1) = arcsin
[

R′c√
L2+R′2c −2R′cL cos(β−θ1)

sin(β− θ1)

]
+arcsin

{
Rb
h sin

{
arccos

[
R2

b+L2+R′2c −2R′cL cos(β−θ1)−h2

2Rb

√
L2+R′2c −2R′cL cos(β−θ1)

]}}
− π/2

(9)

Differentiating Equations (8) and (9) with respect to time t, the corresponding angular
velocities can be obtained and expressed for simplicity as

.
θ2

(
θ1,

.
θ1

)
=

∂θ2

∂θ1

.
θ1 = ∂θ1 θ2(θ1) ·

.
θ1

.
θ3

(
θ1,

.
θ1

)
=

∂θ3

∂θ1

.
θ1 = ∂θ1 θ3(θ1) ·

.
θ1 (10)

where
.
θ1 is the angular velocity of bar AB and the upper dot denotes differentiation with

respect to time t. The symbol ∂θ1 denotes a partial derivative with respect to θ1. Similarly,
the second partial derivatives of θ2 and θ3 with respect to θ1 can be written as

∂2θ2

∂θ2
1

= ∂2
θ1θ1

θ2(θ1)
∂2θ3

∂θ2
1

= ∂2
θ1θ1

θ3(θ1) (11)

If point A is the coordinate origin, the positions after the deformation of the left
column mass center GAB, beam mass center GBC and right column mass center GCD are

xG
AB = Rc sin(α + θ1) yG

AB = Rc cos(α + θ1)

xG
BC = 2R′c cos(β− θ1) + Rb cos(γ− θ2) yG

BC = 2R′c sin(β− θ1) + Rb sin(γ− θ2)

xG
CD = 2L + Rc sin(α + θ3) yG

CD = Rc cos(α + θ3)

(12)

4. Rocking Motion Equation

The governing equation of motion of the PCRF can be derived from the Lagrangian
equation:

d
dt

(
∂T

∂
.
θ1

)
− ∂T

∂θ1
+

∂V
∂θ1

= Q (13)

where T and V are the kinetic energy and potential energy of the PCRF. If the mass of the
tendons is neglected, the potential energy of the PCRF can be calculated by

V = VF + VT (14)

where VF is the gravitational potential energy of frame members, and VT is the elastic
potential energy due to the elongation of tendons. If AD is regarded as the zero potential
energy surface, then VF is expressed as
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VF = g
[
mcRc cos(α + θ1) + 2mbR′c sin(β− θ1) + mbRb sin(γ− θ2) + mcRc cos(α + θ3)

]
(15)

During rocking motion, the elastic potential energy VT can be derived as

VT =
1
2

kb(eb + eb0)
2 +

1
2

kc

[
(ecL + ec0)

2 + (ecR + ec0)
2
]

(16)

The additional elongation ecL of the tendon at the base of the left column can be
obtained from the cosine law and the geometry relationship shown in Figure 5. We have

e2
cL = b2 + b2 − 2b2 cos θ1 (17)
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Then the expression of ecL can be written as

ecL =
√

2b
√

1− cos θ1 = −
√

2b sin(θ1/2) (18)

Similarly, the additional elongation ecR of the tendon at the right column base is

ecR =
√

2b
√

1− cos θ3 = −
√

2b sin(θ3/2) (19)

The additional elongation eb of the beam tendon can be derived from the cosine law
and the geometry relationships shown in Figure 2:

eb =
√

2hb

√
1− cos(θ2 − θ1) +

√
2hb

√
1− cos(θ2 − θ3) (20)

The expression of eb can be rewritten as

eb = 2hb

[
sin
(

θ2 − θ1

2

)
+ sin

(
θ2 − θ3

2

)]
(21)

For simplicity, the two column tendons have the same parameters. Assuming Pc0 is
the initial pretension force of the column tendons, the initial elongation ec0 of the column
tendon is

ec0 = Pc0/kc = 2hPc0/EAcs (22)

where kc = EAcs/2h is the stiffness of the column tendon, E is the Young’s modulus of the
tendon and Acs is the cross-section area of the column tendons. Assuming Pb0 is the initial
pretension force of the beam tendon, the initial elongation eb0 of the beam tendon is

eb0 = Pb0/kb = Pb0(2L + 2b)/EAbs (23)

where kb = EAbs/(2L + 2b) is stiffness of the beam tendon and Abs is the cross-section
area of the beam tendon.
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The kinetic energy of the PCRF can be calculated by Equation (24):

T =
1
2

Ic
.
θ

2
1 +

1
2

IG
b

.
θ

2
2 +

1
2

mbv2
b +

1
2

Ic
.
θ

2
3 (24)

where vb is the velocity of the beam mass center. Ic = (4/3)mcR2
c is the mass moment of

inertia of the column with respect to the pivot point A or D. IG
b = mbR2

b/3 is the mass
moment of inertia of the beam with respect to its mass center. The expression of vb can
derived from Equation (25):

v2
b = v2

bx + v2
by =

( .
xG

BC

)2
+
( .

yG
BC

)2
=
[(

2R′c
)2

+ 4R′cRb cos(β− γ− θ1 + θ2)∂θ1 θ2 +
(

Rb∂θ1 θ2
)2
] .
θ

2
1 (25)

where vbx is the velocity along the x-axis of the beam mass center. vby is the velocity along
the y-axis of the beam mass center. Substituting Equation (25) into Equation (24) yields the
kinetic energy of the PCRF:

T = 1
2 Ic

.
θ

2
1 +

1
2 IG

b

(
∂θ1 θ2

)2 .
θ

2
1 +

1
2 Ic
(
∂θ1 θ3

)2 .
θ

2
1

+ 1
2 mb

[
(2R′c)

2 + 4R′cRb cos(β− γ− θ1 + θ2)∂θ1 θ2 +
(

Rb∂θ1 θ2
)2
] .
θ

2
1

(26)

During an admissible rotation δθ1, Equation (27) can be derived by the principle of
virtual work

δW = Qδθ1 (27)

The virtual work caused by the external field forces is

δW = − ..
ug

(
mcδxG

AB + mbδxG
BC + mcδxG

CD

)
(28)

where
δxG

AB = Rc cos(α + θ1)δθ1

δxG
BC =

[
2R′c sin(β− θ1) + Rb sin(γ− θ2)∂θ1 θ2

]
δθ1

δxG
CD = Rc cos(α + θ3)∂θ1 θ3δθ1

(29)

Substituting Equations (28) and (29) into Equation (27) yields the generalized force Q:

Q = − ..
ug
{

mcRc
[
cos(α + θ1) + cos(α + θ3)∂θ1 θ3

]
+ mb

[
2R′c sin(β− θ1) + Rb sin(γ− θ2)∂θ1 θ2

]}
(30)

The substitution of Equations (15), (16), (26) and (30) into Equation (13) results in the
motion equation of the PCRF:

I(θ1)
..
θ1 + J(θ1)

.
θ

2
1 + G(θ1)g + K(θ1) = S(θ1)

..
ug (31)

The terms I, J, G, K and S in Equation (31) are nonlinear functions of the generalized
coordinate θ1 and are expressed as Equation (32):

I(θ1) = Ic + IG
b
(
∂θ1 θ2

)2
+ Ic

(
∂θ1 θ3

)2
+ mb

[
(2R′c)

2 + 4R′cRb cos(β− γ− θ1 + θ2)∂θ1 θ2 +
(

Rb∂θ1 θ2
)2
]

J(θ1) =
{

IG
b ∂θ1 θ2∂2

θ1θ1
θ2 + Ic∂θ1 θ3∂2

θ1θ1
θ3

+mbRb

[
2R′c sin(β− γ− θ1 + θ2)

(
1− ∂θ1 θ2

)
∂θ1 θ2 + 2R′c cos(β− γ− θ1 + θ2)∂

2
θ1θ1

θ2 + Rb∂θ1 θ2∂2
θ1θ1

θ2

]}
G(θ1) = −

[
mcRc sin(α + θ1) + 2mbR′c cos(β− θ1) + mbRb cos(γ− θ2)∂θ1 θ2 + mcRc sin(α + θ3)∂θ1 θ3

]
S(θ1) = −

{
mcRc

[
cos(α + θ1) + cos(α + θ3)∂θ1 θ3

]
+ mb

[
2R′c sin(β− θ1) + Rb sin(γ− θ2)∂θ1 θ2

]}
K(θ1) = kc

{
b2(sin θ1 + sin θ3∂θ1 θ3

)
−
√

2bec0
[
cos(θ1/2)+ cos(θ3/2)∂θ1 θ3

]
/2
}

+kbhb

{[
hb sin(θ2 − θ1) + eb0 cos

(
θ2−θ1

2

)](
∂θ1 θ2 − 1

)
+ 2hb sin

(
θ2 − θ1+θ3

2

)(
∂θ1 θ2 −

1+∂θ1 θ3

2

)
+
[
eb0 cos

(
θ2−θ3

2

)
+ hb sin(θ2 − θ3)

](
∂θ1 θ2 − ∂θ1 θ3

)
− hb sin

(
θ3−θ1

2

)(
∂θ1 θ3 − 1

)}

(32)
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By considering the inherent symmetry of the PCRF, the motion equation of the PCRF
for θ1 > 0 can be written in the same form as Equation (31), while the expressions of I, J, G,
K and S in this case are instead

I(θ1) = Ic + IG
b
(
∂θ1 θ2

)2
+ Ic

(
∂θ1 θ3

)2
+ mb

[
(2R′c)

2 + 4R′cRb cos(β− γ + θ1 − θ2)∂θ1 θ2 +
(

Rb∂θ1 θ2
)2
]

J(θ1) =
{

IG
b ∂θ1 θ2∂2

θ1θ1
θ2 + Ic∂θ1 θ3∂2

θ1θ1
θ3

+mbRb

[
2R′c sin(β− γ + θ1 − θ2)

(
∂θ1 θ2 − 1

)
∂θ1 θ2 + 2R′c cos(β− γ + θ1 − θ2)∂

2
θ1θ1

θ2 + Rb∂θ1 θ2∂2
θ1θ1

θ2

]}
G(θ1) = −

[
mcRc sin(α− θ1) + 2mbR′c cos(β + θ1) + mbRb cos(γ + θ2)∂θ1 θ2 + mcRc sin(α− θ3)∂θ1 θ3

]
S(θ1) = −

{
mcRc

[
cos(α− θ1) + cos(α− θ3)∂θ1 θ3

]
+ mb

[
2R′c sin(β + θ1) + Rb sin(γ + θ2)∂θ1 θ2

]}
K(θ1) = kc

{
b2(sin θ1 + sin θ3∂θ1 θ3

)
+
√

2bec0
[
cos(θ1/2)+ cos(θ3/2)∂θ1 θ3

]
/2
}

+kbhb

{[
hb sin(θ1 − θ2) + eb0 cos

(
θ1−θ2

2

)](
1− ∂θ1 θ2

)
+ 2hb sin

(
θ1+θ3

2 − θ2

)( 1+∂θ1 θ3

2 − ∂θ1 θ2

)
+
[
eb0 cos

(
θ3−θ2

2

)
+ hb sin(θ3 − θ2)

](
∂θ1 θ3 − ∂θ1 θ2

)
− hb sin

(
θ1−θ3

2

)(
1− ∂θ1 θ3

)}

(33)

The simplified and conservative starting condition for the calculation program can be
obtained by ignoring the influence of the prestressing force on the triggering-off condition
of the rocking motion for the PCRF. With this assumption, the lower bound solution of the
minimum ground acceleration

..
ug,min that initiates the rocking motion of the frame can be

derived by substituting the initial conditions
..
θ1 = 0,

.
θ1 = 0 and θ1 = 0 into Equation (31):

λg =

..
ug,min

g
=

G(0)
S(0)

(34)

The calculation of λg can be obtained based on the expression of G and S in Equation (32)
or Equation (33):

λg =

..
ug,min

g
=

G(0)
S(0)

=
mcb

(
1 + ∂θ1 θ3

∣∣
θ1=0

)
+ mb

(
2b + Lb ∂θ1 θ2

∣∣
θ1=0

)
mch

(
1 + ∂θ1 θ3

∣∣
θ1=0

)
+ mb

(
2h′ + hb ∂θ1 θ2

∣∣
θ1=0

) (35)

5. Calculation of Collision Energy Dissipation

It is assumed that energy dissipation occurs only during the collisions when the PCRF
is rocking, that is, there is no energy consumption in the process of rotation. Considering
that the duration of impact is extremely short, it can be assumed that the PCRF is always
in a horizontal state during impacts. Collisions occur at the column feet and the inner
faces at the beam-column joint in the case of a one-story single-span PCRF. Regardless of
the plastic deformation of the tendons, the elongation of the tendons at the moment of
collision is the initial elongation. The forces in the tendons are constant during the collision,
which will not affect the momentum moments of the PCRF before and after the collision.
The following assumptions are introduced to simplify the analysis and calculation of the
collision energy dissipation of the PCRF. It is assumed that the collision forces on each
collision surface concentrate on one point which is the postimpact rotation point of the
identical rigid body. Relative slips between rigid members on each collision surface are
not allowed. Non-collision forces such as gravity and the inertial force of members can be
ignored compared to the collision force.

The case θ1 < 0 is taken as an example for analysis. The collision analysis model of
the PCRF is shown in Figure 6 and the frame has returned to a zero-rotation state at this

time. It is assumed that the angular velocity
.
θ
−
1 just before the collision is known of the

frame column represented by bar AB. There are five unknowns: impulse IAx and IAy at

collision point A’, IDx and IDy at collision point D’ and the postimpact angular velocity
.
θ
+

1
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of the frame column represented by bar C’D’. The impulse Ii at an arbitrary collision point
i is defined as

Ii = lim
∆ti→0

∫
∆ti

Fcidt (36)

where Fci is the impact force and ∆ti is the duration of impact. The ratio of angular

velocity after and before the collision is defined as the coefficient of restitution r =
.
θ
+

1 /
.
θ
−
1 .

The solution of simultaneous Equations (37)–(41), which are derived in the following,
returns the coefficient of restitution r.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 26 
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Figure 6. Collision energy dissipation of PCRF for θ1 < 0.

• Linear momentum conservation along the x-axis for the whole frame

IAx + IDx =
[
mch(1 + λ13) + mb

(
2h′ − hbλ L

)]( .
θ
+

1 −
.
θ
−
1

)
(37)

• Linear momentum conservation along the y-axis for the whole frame

IAy + IDy = [mc(1 + λ13) + mb]b
(

.
θ
+

1 +
.
θ
−
1

)
(38)

• Conservation of moment of momentum about point A′ for the whole frame

−2LIDy =
[
(1 + λ13)

(
IG
c + mch2 + mcb2)− 2Lbmc − λ L IG

b + mb(2h− hb)(2h′ − hbλ L)−mbbLb
] .
θ
+

1

−
[
(1 + λ13)

(
IG
c + mch2 −mcb2)+ 2λ 13Lbmc − λ L IG

b + mb(2h− hb)(2h′ − hbλ L) + mbbLb
] .
θ
−
1

(39)

• Conservation of moment of momentum about point B′ for the left column

− 2hIAx =
[

IG
c −mc

(
h2 − b2

)]
λ 13

.
θ
+

1 −
[

IG
c −mc

(
h2 + b2

)] .
θ
−
1 (40)

• Conservation of moment of momentum about point C′ for the right column

−
(
2h′ IDx + 2bIDy

)
=
[

IG
c −mc

(
h2 − 2hhb + b2

)] .
θ
+

1 −
[

IG
c −mc

(
h2 − 2hhb − b2

)]
λ 13

.
θ
−
1 (41)

where IG
c = mcR2

c/3 is the moment of inertia of the column with respect to its mass center.
The calculated expression for the coefficient of restitution r is shown as

r =

.
θ
+

1
.
θ
−
1

=
c1 − c3 − c5 + c6

c2 − c4 − c5 + c7
(42)

where
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c1 = tan α
[
2(1 + λ13)

(
2− tan2 α

)
+ 6λ 13λ tan α− λ Lκ

(
λ2

h + λ2 − 2λ tan α + tan2 α
)

+3κ
(
4λH − 2λHλh − 2λhλ L + λ2

hλ L + tan αλ− tan2 α
)]

c2 = tan α
[
4(1 + λ13)

(
1 + tan2 α

)
− 6λ tan α− λ Lκ

(
λ2

h + λ2 − 2λ tan α + tan2 α
)

+3κ
(
4λH − 2λHλh − 2λhλ L + λ2

hλ L − tan αλ + tan2 α
)]

c3 = 2λλ 13
(
3λh − 1 + 2 tan2 α

)
c4 = 2λ

(
3λh − 1− tan2 α

)
c5 = 6λλH[(1 + λ13) + κ(2λH − λhλ L)]

c6 = 2λλH
(
1 + tan2 α

)
c7 = 2λλHλ 13

(
1− 2 tan2 α

)
(43)

The dimensionless parameters in Equation (43) are the mass ratio of beam to column
κ = mb/mc, span-height ratio λ = L/h and height coefficient λh = hb/h for the beam and
λH = h′/h for the column.

6. Time History Analysis of Seismic Response of the PCRF

The seismic response analysis of the PCRF is based on a basic model. The sections of
the beam and columns are square. The frame is in the zero-rotation state without initial
angular velocity and angular acceleration. The parameters of the basic model are shown in
Table 1.

Table 1. Parameters of the basic model.

Parameter Value Parameter Value

L (m) 3 Apc (m2) 5.6 × 10−4

b (m) 0.3 Apb (m2) 3.5 × 10−4

h (m) 1.5 σpc0 (Pa) 3 × 108

hb (m) 0.3 σpb0 (Pa) 3 × 108

ρc (kg/m3) 2400 Ep (N/m2) 1.95 × 1011

mc (kg) 2592 mb (kg) 4665.6

The term ρc is the density of concrete, and the fracture elongation of the tendons is
taken as 1%. The set of earthquake motion records recommended by the ATC-63 project [21]
is selected as the source of earthquake records. The information of the earthquakes is shown
in Table 2. Records ER1 to ER11 are far-field earthquakes, records ER12 to ER18 are pulse
near-field earthquakes and the rest are no-pulse near-field earthquakes. The values of
the peak ground acceleration (PGA) and peak ground velocity (PGV) of each earthquake
record are also shown in Table 2.

Table 2. Earthquake records.

Number Year Record Magnitude Duration(s) PGA (g) PGV (cm/s)

ER1 1994 Northridge 6.7 29.98 0.52 63
ER2 1994 Northridge 6.7 19.98 0.48 45
ER3 1999 Duzce, Turkey 7.1 55.89 0.82 62
ER4 1979 Imperial Valley 6.5 39.03 0.38 42
ER5 1995 Kobe, Japan 6.9 40.95 0.51 37
ER6 1999 Kocaeli, Turkey 7.5 27.18 0.36 59
ER7 1989 Loma Prieta 6.9 39.95 0.53 35
ER8 1989 Loma Prieta 6.9 39.94 0.56 45
ER9 1987 Superstition Hills 6.5 22.29 0.45 36
ER10 1992 Cape Mendocino 7.0 35.98 0.55 44
ER11 1999 Chi-Chi, Taiwan 7.6 89.995 0.44 115
ER12 1979 Imperial Valley-06 6.5 36.815 0.46 108.9
ER13 1972 Cape Mendocino 7.0 35.98 0.63 82.1
ER14 1992 Landers 7.3 48.12 0.79 140.3
ER15 1994 Northridge-01 6.7 19.9 0.87 167.3
ER16 1994 Northridge-01 6.7 39.98 0.73 122.8
ER17 1999 Chi-Chi, Taiwan 7.6 89.995 0.82 127.7
ER18 1999 Duzce, Turkey 7.1 25.88 0.52 79.3
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Table 2. Cont.

Number Year Record Magnitude Duration(s) PGA (g) PGV (cm/s)

ER19 1976 Gazli, USSR 6.8 16.26 0.71 71.2
ER20 1979 Imperial Valley-06 6.5 37.6 0.76 44.3
ER21 1985 Nahanni, Canada 6.8 20.56 1.10 43.9
ER22 1989 Loma Prieta 6.9 25 0.64 55.9
ER23 1992 Cape Mendocino 7.0 29.98 1.50 119.5
ER24 1994 Northridge-01 6.7 47.765 0.93 70.1
ER25 2002 Denali, Alaska 7.9 89.995 1.16 115.1

According to the calculation results, the time tRI of the rocking motion triggering-off,
the time tEP of peak ground acceleration (PGA), the maximum rotation θ1,max and its
occurrence time tRM, as well as the maximum angular velocity

.
θ1,max and its occurrence

time tVM, can be obtained as shown in Table 3, where the maximum values of rotation and
angular velocity are given in absolute values without the consideration of direction.

Table 3. Time history analysis results of seismic response.

Number tRI (s) tEP (s) θ1,max (rad) tRM (s)
.
θ1,max(rad/s) tVM (s)

ER1 3.340 4.540 0.0224 5.3358 0.4801 5.2497
ER2 4.020 5.030 0.0198 4.1588 0.4512 5.176
ER3 9.760 10.800 0.0179 11.2637 0.4041 9.97
ER4 5.950 10.465 0.0118 6.4653 0.3113 6.5353
ER5 4.940 7.250 0.0216 8.2107 0.4930 7.5844
ER6 7.040 9.170 0.0124 7.285 0.3078 7.2108
ER7 2.690 6.025 0.0284 5.6652 0.6038 5.5797
ER8 4.425 5.120 0.0168 4.8086 0.3823 4.6292
ER9 4.040 6.250 0.0139 4.2969 0.3641 4.3665

ER10 4.240 5.180 0.0178 5.406 0.3988 5.4908
ER11 32.320 36.885 0.0193 32.4585 0.4237 32.5385
ER12 4.815 4.990 0.0165 5.2269 0.4042 5.1482
ER13 2.720 3.280 0.0136 2.9608 0.3003 3.4143
ER14 5.880 14.860 0.0210 6.0186 0.4533 6.0991
ER15 0.780 2.740 0.0248 4.7134 0.5326 4.6309
ER16 3.320 4.200 0.0346 5.0913 0.6778 5.1786
ER17 26.310 47.515 0.0122 26.563 0.3180 26.4905
ER18 2.795 3.420 0.0086 2.9158 0.2555 2.9762
ER19 2.550 8.640 0.0211 2.6878 0.4623 2.9058
ER20 2.665 6.795 0.0208 7.4363 0.4865 7.5139
ER21 1.320 9.160 0.0177 3.2637 0.4117 3.1822
ER22 7.830 10.585 0.0130 8.3379 0.3309 8.0201
ER23 2.520 3.000 0.0340 3.2384 0.6620 3.1545
ER24 2.890 7.775 0.0208 3.8558 0.4960 3.930
ER25 29.840 37.100 0.0175 30.2572 0.3985 30.0497

The result of ER15 is illustrated here to explain the characteristics of the seismic re-
sponse of the PCRF. The time history curve of ER15 is shown in Figure 7 and the calculation
results are presented in Figure 8. As shown in Figure 8a,b, tEP does not exactly coincide
with tRM and tVM. After the appearance of PGA and local maximum values of acceleration,
the amplitudes of responses decay rapidly. At a time around 10.5 s, the frame motion ap-
proached the high-frequency vibration stage, in which the vibration amplitude is small and
the peak of angular velocity is basically stable. It can be observed from Figure 8c,d that the
phase orbit finally formed a spindle-shaped limit cycle which was centered on the origin in
the phase diagram. The energy dissipation in the collisions of the PCRF is continuously
supplied by the earthquake. Although the frame vibration in the high-frequency vibra-
tion stage is similar to steady-state vibration, it is named pseudo-steady-state vibration,
considering that its external excitation is a random earthquake. It can be seen that the
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influence of external excitation on the frame motion is weakened significantly during this
pseudo-steady-state vibration.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 26 
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Figure 8. Calculation results of basic frame model under ER15: (a) time history of rocking rotation;
(b) time history of angular velocity; (c) phase orbit; (d) limit cycle.

In order to investigate the relationship between the key time points tRI, tEP, tRM and
tVM of the basic model under different earthquakes, the tRI of each response are all set as 1 s.
The corresponding unified key time points can be obtained. The unified key time points of
far-field and near-field earthquake records are shown in Figures 9 and 10, respectively.

Figure 9 illustrates that, under the far-field earthquakes, tRM is very close to tVM and
they generally occur shortly after tRI or near tEP. In most of the cases that tRM and tVM
appeared shortly after tRI, the frame vibration has entered the pseudo-steady-state vibration
stage or a stage with very small amplitudes of responses before tEP. The amplification
effect of PGA on frame response is no longer significant in this situation. When the time
interval between tRI and tEP is small, the peak values of frame response appear around
tEP, or the tRM, and tVM are in close proximity to tRI and tEP, respectively. Figure 10
suggests that the difference between tRM and tVM is very small when the earthquakes are
near-field earthquakes and they appear around tRI or tEP simultaneously. It can be found
that the relationships between tRI, tEP, tRM and tVM are strongly dependent on the specific
earthquake. The variety of earthquakes should be considered in the analysis of the PCRF.

The maximum elongations of prestressed tendons can be calculated based on the
maximum rotation of the PCRF, as shown in Figure 11. It can be observed from Figure 11
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that the maximum elongations of prestressed tendons are less than 0.5%, which have a large
surplus from the 1% value of the fracture elongation of prestressed tendons. That is to say,
the reserve of deformation capacity is sufficient and the seismic performance of the PCRF
is prominent. It is worth emphasizing that the member connections of the PCRF proposed
in this study depend mainly on the prestressed tendons and prestressing forces. Therefore,
the structure failure of the PCRF will be led by the fracture of the prestressed tendons.
Special attention should be given to the calculation of the deformation and elongation of
prestressed tendons in analysis and design.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 26 
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Figure 10. Unified key time points in the case of near-field earthquakes.
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Figure 11. Maximum elongations of prestressed tendons.

7. Parameter Analysis of PCRF Seismic Response

Eight independent dimensionless parameters can be proposed naturally during the
derivation of the motion equation of the PCRF, which are the mass ratio of beam to
column κ, span-height ratio λ, column aspect ratio tan α, height coefficient λh, initial
prestressing force of beam tendon Πσb = σpb0 Abs/mcg, initial prestressing force of column
tendon Πσc = σpc0 Acs/mcg, linear stiffness of beam tendon ΠEb = Ep Abs/mcg and linear
stiffness of column tendon ΠEc = Ep Acs/mcg. These are kept because any reduction
of independent dimensionless parameters will inevitably influence the precision of the
analysis in consideration of the nonlinearity of the rocking motion for the PCRF. The values
of the dimensionless parameters for the basic frame model are λ = 2, tan α = 0.2, λh = 0.2,
κ = 1.8, Πσb = 4.13, Πσc = 6.61, ΠEb = 2684.1 and ΠEc = 4294.6. Earthquake record ER15
is used as a test record and a parameter analysis of the PCRF seismic response is conducted.

A frame with a larger κ has a smaller response in the early stage of vibration, as shown
in Figure 12. However, the responses of the frame are changed dramatically with the
emergence of a large acceleration pulse at 2~3 s. In the meantime, the frame with a larger
κ has a significantly larger angle and angular velocity compared with the smaller ones.
A number of acceleration pulses appeared around 4 s, which increase the responses of the
frame with κ = 1.8 further. The other frames have a smaller rotation before encountering
multiple acceleration pulses and the amplification effect of multiple acceleration pulses on
their response is limited. Different frames with different κ got into the pseudo-steady-state
vibration eventually, while the frames with smaller κ entered earlier.

The excessive increase in the response for the frame with κ = 1.8 caused by the first
large acceleration pulse is counterintuitive. The mechanism of this phenomenon can be
explained by the frame with larger κ having greater inertia force and energy after the
acceleration pulse, causing a sudden increase in its response. The subsequent multiple
acceleration pulses made the system response increase further. This phenomenon can be
considered to suggest that the acceleration pulse has amplitude sensitivity to the amplifica-
tion effect of the response of the PCRF. That is, when the vibration amplitude of the frame is
large enough or greater than a threshold, the acceleration pulse has an amplification effect
on the system response similar to resonance. The magnification of the system response
increases with the enlargement of the system amplitude.

For further study of the influence of κ and the influence of earthquake characteristics,
the far-field earthquake record of the Northridge earthquake in 1994, named ER2, is selected
for analysis. The time history curve of ER2 and similar calculation results are illustrated in
Figure 13. It can be seen that the frame with larger κ had a smaller vibration response in the
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whole vibration process and entered into pseudo-steady-state vibration earlier. Based on
the above analysis, cases of different ground motion types should be fully considered in
the analysis of PCRFs and time history analysis of various earthquake records is necessary.

It can be found in Figure 14 that the responses of frames with different λ are substan-
tially close at the initial stage of vibration and the differences between responses are not
changed significantly with the increase in vibration duration. When multiple consecutive
acceleration pulses occurred, the response of the frame with smaller λ is obviously reduced,
but the response of the frame with larger λ is increased significantly. Frames with differ-
ent λ have different amplitudes when multiple continuous acceleration pulses are input.
The accumulation of response amplification caused by acceleration pulses results in a large
difference in subsequent calculation results. Parameter κ is a constant when λ is variational
so the inertia forces of beam and columns are consistent in the analysis for λ. The variation
range of λ is not very large in the research. It is for the above reasons that the influence of
λ on the dynamic response of the PCRF is not similar to κ.
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As shown in Figure 15, the frames with different tan α have different values of motion
triggering-off time, which signifies that the frame with a larger column aspect ratio is more
likely to be excited. A frame with a smaller column aspect ratio tends to stop at a faster
speed. After the occurrence of multiple continuous acceleration pulses, the response of
the frame with tan α = 0.175 has a very obvious amplification effect. The response of
the frame with tan α = 0.225, which entered the state of pseudo-steady-state vibration,
hardly fluctuates.
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Figure 16 illustrates that the frame with a larger λh tends to become motionless faster
than the smaller λh ones. When the first acceleration pulse is imported, it can be clearly
seen that the response amplification of the frame with small amplitude is apparently
weaker than that of the other frames. The acceleration pulse basically has no response
amplification effect on the frame which is in the state of pseudo-steady-state vibration
before the appearance of the acceleration pulse. The response of the frame with λh = 0.2
has a very obvious amplification phenomenon.
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Figure 16. Effect of variation in λh: (a) time history of rocking rotation; (b) time history of
angular velocity.

It can be seen from the time history curves in Figures 17–20 that the influence of
dimensionless parameters related to prestressed tendons and initial prestressing forces on
the frame responses are relatively consistent. The increase in dimensionless parameters can
reduce the historical maximum responses of the frame markedly, which also leads to the
earlier appearance of pseudo-steady-state vibration. The difference is that the influences
on the vibration response in the initial stage are miscellaneous. A frame with a large initial
prestressing force has a relatively large response at the initial stage of vibration, while the
cases of the linear stiffness of prestressed tendons are the opposite.



Appl. Sci. 2021, 11, 585 21 of 25

Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 26 

 
(a) 

 
(b) 

Figure 17. Effect of variation in 
σbΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

 
(a) 

Figure 17. Effect of variation in Πσb: (a) time history of rocking rotation; (b) time history of angular
velocity.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 26 

 
(a) 

 
(b) 

Figure 17. Effect of variation in 
σbΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

 
(a) 

Figure 18. Cont.



Appl. Sci. 2021, 11, 585 22 of 25

Appl. Sci. 2020, 10, x FOR PEER REVIEW 23 of 26 

 
(b) 

Figure 18. Effect of variation in 
σcΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

 
(a) 

 
(b) 

Figure 19. Effect of variation in 
EbΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

Figure 18. Effect of variation in Πσc: (a) time history of rocking rotation; (b) time history of angular
velocity.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 23 of 26 

 
(b) 

Figure 18. Effect of variation in 
σcΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

 
(a) 

 
(b) 

Figure 19. Effect of variation in 
EbΠ : (a) time history of rocking rotation; (b) time history of angular velocity. Figure 19. Effect of variation in ΠEb: (a) time history of rocking rotation; (b) time history of angular

velocity.



Appl. Sci. 2021, 11, 585 23 of 25

Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 26 

 
(a) 

 
(b) 

Figure 20. Effect of variation in 
EcΠ : (a) time history of rocking rotation; (b) time history of angular velocity. 

8. Conclusions 

The theoretical model based on rigid body of a one-story single-span PCRF is 

established. The corresponding governing motion equation of the PCRF is derived based 

on the model and the numerical solution of the motion equation is obtained. The energy 

dissipation of the PCRF is analyzed and the calculation method for the coefficient of 

restitution is proposed. Time history analyses of the seismic response of the PCRF are 

carried out with different types of earthquake records. The analysis results show that the 

maximum rotation of the frame is small and the capacity of structural deformation is 

sufficient, which means the PCRF has promising seismic performance. The member 

connections of the PCRF proposed in this study depend on the prestressed tendons and 

prestressing forces. The structure failure of the PCRF will be led by the fracture of 

prestressed tendons so the calculation of the deformation and elongation of prestressed 

tendons should be cautious in analysis and design. 

A pseudo-steady-state vibration of the PCRF may appear after some duration of 

vibration under earthquake excitation, in which case a steady spindle-shaped limit cycle 

is finally formed by phase orbit in the phase diagram. The influence of external excitation 

on the vibration of the PCRF is weakened significantly in the state of pseudo-steady-state 

vibration. The parameter analysis of the PCRF is conducted based on eight dimensionless 

parameters. The results reveal the characteristic influences of the dimensionless 

Figure 20. Effect of variation in ΠEc: (a) time history of rocking rotation; (b) time history of angular
velocity.

8. Conclusions

The theoretical model based on rigid body of a one-story single-span PCRF is estab-
lished. The corresponding governing motion equation of the PCRF is derived based on
the model and the numerical solution of the motion equation is obtained. The energy
dissipation of the PCRF is analyzed and the calculation method for the coefficient of resti-
tution is proposed. Time history analyses of the seismic response of the PCRF are carried
out with different types of earthquake records. The analysis results show that the maxi-
mum rotation of the frame is small and the capacity of structural deformation is sufficient,
which means the PCRF has promising seismic performance. The member connections of
the PCRF proposed in this study depend on the prestressed tendons and prestressing forces.
The structure failure of the PCRF will be led by the fracture of prestressed tendons so the
calculation of the deformation and elongation of prestressed tendons should be cautious in
analysis and design.

A pseudo-steady-state vibration of the PCRF may appear after some duration of
vibration under earthquake excitation, in which case a steady spindle-shaped limit cycle is
finally formed by phase orbit in the phase diagram. The influence of external excitation
on the vibration of the PCRF is weakened significantly in the state of pseudo-steady-state



Appl. Sci. 2021, 11, 585 24 of 25

vibration. The parameter analysis of the PCRF is conducted based on eight dimensionless
parameters. The results reveal the characteristic influences of the dimensionless parameters
on the seismic response of the PCRF. The parameters related to prestressed tendons and
initial prestressing forces have a consistent influence on the seismic response of the PCRF,
and maximum values of seismic response decrease with the increase in the respective
parameters. The influences of dimensionless parameters of mass and geometry on the
seismic response of the PCRF are complicated, in which case the type of earthquake
also needs to be considered. It is worth noting that when the rotational earthquake
component and the translational earthquake component are considered simultaneously
in the analysis, the motion of the rocking frame will be a three-dimensional motion. The
influence of the rotational earthquake component on the seismic response of the PCRF
needs further research.
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