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Abstract: In the field of structural health monitoring (SHM), vibration-based structural damage
detection is an important technology to ensure the safety of civil structures. By taking advantage
of deep learning, this study introduces a data-driven structural damage detection method that
combines deep convolutional neural networks (DCNN) and fast Fourier transform (FFT). In this
method, the structural vibration data are fed into FFT method to acquire frequency information
reflecting structural conditions. Then, DCNN is utilized to automatically extract damage features
from frequency information to identify structural damage conditions. To verify the effectiveness
of the proposed method, FFT-DCNN is carried out on a three-story building structure and ASCE
benchmark. The experimental result shows that the proposed method achieves high accuracy,
compared with classic machine-learning algorithms such as support vector machine (SVM), random
forest (RF), K-Nearest Neighbor (KNN), and eXtreme Gradient boosting (xgboost).

Keywords: structural health monitoring; FFT-DCNN; structural damage detection; deep learning;
civil structures

1. Introduction

Due to environment and load acting on structures, civil structures can produce differ-
ent levels of damage, such as degradation, corrosion, and fatigue. It reduces the building
service life, leading to threats to public safety [1]. Structural health monitoring (SHM) is
a critical technology to assure the safety of civil engineering [2,3]. SHM is mainly clas-
sified into two categories: data-driven methods based on statistical pattern recognition
and physics-based methods based on finite element model updating [4]. Compared with
physics-based methods building a numerical model, data-driven methods have many
advantages over physics-based methods while identifying structural damage under load
and environmental influence such as temperature and moisture effect [5]. Thus, many re-
searchers have focused on data-driven methods for structural damage detection to protect
the safety of civil structures. The data-driven method is usually decomposed into several
steps: data acquisition, feature extract, damage detection method, and decision-making,
where damage detection methods are a big challenge for SHM [6–8].

With the development of computing power, machine learning (ML) algorithms have
been widely used in the SHM field. Since vibration signals can reflect structural damage
conditions, ML algorithms usually utilize structural vibration data to recognize structural
damage, especially in handling vibration data with small datasets [9,10]. For example,
Seyedpoor [11] adopted a support vector machine (SVM) and differential evolution al-
gorithm (DEA) to identify the structural damage in moment frame connections. Using
semi-rigid beam simulated damage in structural connections, and then the vibration data
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of structures with damaged connections were generated by the analytical model. Then,
these data were fed into the SVM model to update the model’s parameters and weight.
The result showed that the SVM-DEA had an excellent performance for structural damage
detection. Guo [12] proposed a method based on Bayesian theory and immune genetic
algorithm (IGA) to recognize structural damage where Bayesian was applied to identify
damage sites, and then improved IGA was utilized to identify the damage level. This
study provided a two-stage method that can effectively assess the damage locations and
extent. Wu [13] utilized the parson correlation coefficient to select essential information
features, and then the features were fed into Ensemble Generalized Multiclass Support-
Vector-Machine (EGMSVM) to recognize structural damage. To verify the effectiveness of
the proposed method, different algorithms such as LDA, random forest, SVM, was tested
on a simulated hydraulic platform. The result showed that the EGMSVM achieved high
accuracy and low variance and deviation.

However, these methods, such as support vector machine, ensemble algorithm,
Bayesian algorithm, belong to "shallow" machine learning. In addition, although "shallow"
ML algorithms recognize structural damage and location with high accuracy for small
datasets, it is poor performance in handling the massive vibration data from SHM systems.

With the development of sensors technology and data acquisition, SHM systems can
collect an amount of data from various sensors installed on civil structures. Since deep
learning methods effectively handle massive data, it has attracted much attention from
many researchers in many fields such as image classification [14,15] and natural language
processing [16]. In these methods, vibration-based convolutional neural networks (CNN)
algorithms are widely utilized in civil engineering since it is powerful in extracting the
feature from raw vibration data to recognize structural damage. For example, Nur Sila [17]
adopted CNN to capture abstract features and complex classifier boundaries and then
classified the damaged and healthy condition of structures. The experimental result showed
that CNN accomplished real-time damage diagnosis and location with high accuracy,
robustness, and computational efficiency. Bao [18] proposed a computer vision method
that detects structural damage using the CNN model. The obtained vibration data were
transformed into time and frequency domain images via visualization method, and then
these images were fed into CNN to classify structural damage. The accuracy of classification
can refer to 93.5%. Abdeljaber [19] and Zhang [20] proposed a one-dimensional CNN with
data-processing techniques that utilized a small training sampling to identify structural
damage location and mass changes effectively. However, the above methods have some
limitations in handling contaminated or noisy data using the CNN methods because they
may regard the contaminated information from acceleration data as fault information.
More importantly, contaminated time-sequence data such as acceleration data cannot
effectively reflect structural damaged conditions. Thus, many scholars have studied
methods based on frequency information. To be specific, time signal is transformed
into frequency information, which can reduce the influence from contaminated data and
improve the accuracy of damage identification in noisy environments.

For example, Hoshyar [21] converted vibration signal to frequency information and
then utilized machine learning algorithms such as support vector machines to localize
concrete cracks based on obtained frequency information. The experimental results showed
that the proposed method had high accuracy. Tehrani [22] utilized an artificial intelligence
method based on fast Fourier transform (FFT) to recognize structural damage degree. The
results showed that FFT was suitable for nonstationary vibration signals. Nguyen [23]
proposed a method by combining FFT analysis and artificial learning to evaluate damaged
changes of structures through the discrete model. The result gained higher accuracy
compared with using only other models or analyses. However, the accuracy of FFT
combined with traditional methods such as support vector machines needs to be further
improved. Although FFT has many advantages in handling time-sequence, the existing
methods do not fully consider the advantages of combining FTT with deep learning, such
as DCNN for structural damage detection.
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In this paper, high precision and robust structural damage detection method are
proposed based on FFT-DCNN. In this method, FFT is utilized to analyze the frequency
information, reducing the influence of contaminated data [24,25]. DCNN automatically
extracts features from structural frequency information [26,27]. Finally, a three-story
building structure [28,29] and ASCE benchmark [30] are usually utilized to evaluate the
ability of structural damage detection based on our proposed method.

The following are the primary contributions of this paper: (1) A novel sensor data-
driven structural damage detection method is proposed by combining FFT with DCNN,
which can effectively handle the vibration signal to recognize the structural damage condi-
tion. (2) Compared with traditional damage detection such as FFT-SVM and SVM, KNN,
random forest, and XGBoost, the experimental result shows that the proposed method
achieves higher accuracy damage detection. (3) Since FFT-DCNN takes a short time on test
datasets, it indicates that the proposed method can be utilized for the online detection of
structural damage conditions in the field of SHM.

The rest of the paper is organized as follows. Section 2 introduces the proposed
FFT-DCNN architecture. Section 3 describes the structural damage detection method based
on the proposed method. The experimental setup is introduced in Section 4. FFT-DCNN is
carried out on a three-story building structure and ASCE benchmark in Sections 5 and 6,
respectively. Finally, Section 7 summarizes some conclusions based on FFT-DCNN and
potential topics for future research.

2. Proposed FFT-DCNN Architecture

Figure 1 illustrates the architecture of the designed FFT-DCNN. It has five layers:
input layer, FFT layer, convolutional neural network (Conv1, Conv2, MP1, Conv3, Conv4,
and MP2), fully connected network (FC1, FC2), and output layer. In the CNN algorithm,
Conv1 represents the first convolutional operation, and MP1 represents the first pooling
operation. In this frame, raw vibration data are transformed into frequency information
via FFT method. Considering that the CNN can be powerful in capturing the spatial
features, frequency information with one dimension is transformed into a feature map
with two dimensions via dimension transformation, improving the ability of features
extraction for DCNN. Then, convolutional and max-pooling layers are utilized to capture
spatial features from frequency information. Finally, the extracted features are fed into a
fully connected network with a “softmax” activation function to recognize the damaged
conditions of the structure. In addition, DCNN is powerful in handling two-dimension data.
However, the frequency information data that are transformed by the FFT method is one-
dimension. DCNN cannot effectively extract the feature from the frequency information.
Thus, the dimension transformation concept is referenced to transform one dimension into
two dimensions.

2.1. Fast Fourier Transform Layer

Fast Fourier transform (FFT), as a discrete Fourier transform algorithm, was first
proposed by Cooley and Tukey in the year 1965. It can reduce the number of computations
needed for N points from O

(
N2) to O(N log N). With the increasing of sampling points,

this method can save more computational resources.
Features extraction of FFT is shown in Figure 2. First of all, utilizing a sliding window

acquires n consecutive time-domain data from the original signal. Then, every window
data are transformed frequency information via FFT method, which is described as:

Xk =
N−1

∑
n=0

xne−i2πkn/N k = 0, . . . , N − 1 (1)

where x0, . . . , xN−1 is a complex number and Xk is time-domain data. N represents the
number of sampling points.
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2.2. Convolutional Layer

In this study, the DCNN has two main layers, which are a convolutional layer and
a pooling layer, respectively. The convolutional layer of DCNN is mainly utilized to
extract features from building structures via convolution operation. In this procedure,
convolutional kernels slide on the input sample via using the same size convolution kernel
(hC, wC) where hC, wC, and sC represent the length, width, and step size of the convolution
kernel, respectively. After finishing the convolutional operation, the output matrix can be
obtained, and the number of kernels is the same as the output matrix. Output matrix of the
convolutional layer is described as:

Cj = f
(

Xi ∗Wj + Bj

)
(2)

C =
[
C1, C2, · · · , CKC

]
(3)

where ∗ represents the convolutional operation. Wj and Bj represent the j-th (j ∈ 1, 2, · · · , KC)

convolution kernel and bias, respectively. f (·) denotes activation function. Cj and C are
the j-th output and the entire output, respectively. In addition, the important information
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is lost due to dimensional reduction of input data Xi, when the input sample Xi carries
out a convolutional operation leading to a change of the feature dimension. To solve the
problem, “same padding” is utilized in this study, which can keep the same dimension
between input and output. After the convolutional operation, the dimensional operation
of the output result can be described as:

R
(
Cj
)
=

[
nl − hC + 2× p

sc
+ 1

]
×

[
ml − wC + 2× p

sc
+ 1

]
× KC (4)

where wC and hC are length and width of the frequency information via FFT transformation,
respectively. KC denotes the number of convolutional kernels. nl and ml are length and
width of convolutional kernels. sc represents the sliding step.

2.3. Pooling Layer

After convolution operation, the dimensions and parameters of the input matrix can
increase, leading to required computing resources. Thus, a pooling layer is utilized to
perform operations of dimension reduction, while it can save the important information of
extraction features. In addition, a pooling layer can solve some problems such as overfitting
or the long training time. The pooling procedure is described as:

Pj = MaxPooling
(

Cj

)
(5)

P =
[
P1, P2, · · · , PKP

]
(6)

where Cj is convolutional layer and Pj presents pooling result of j-th convolutional layer. P
describe all pooling layers.

2.4. Fully Connected Layer

After convolutional and pooling layers, the obtained two-dimensional matrix is trans-
formed into a one-dimensional vector via flattened operation. Then, the vector is fed into a
fully connected layer, which is described as:

F = f
(
∑ P×WF + b

)
(7)

where P represents input vector. WF and b represent weights and bias, respectively. f (·)
denotes activation function. F is the outputs of fully connected layers.

2.5. Classification Layer

The classification layer adopts the output feature from the fully connected layer to
predict different structural damage via a softmax activation function. More specifically, for
every input vector F, the classification layer can predict the probability of F belonging to
different categories. The range of predicted F is between 0 and 1, and the sum of probability
values is 1. Then j-th predicted category is expressed as:

Yj =
exp

(
Fj

)
n
∑

j=1
exp

(
Fj

) (8)

where Fj represents probability belonging to different categories. Yj is the probability of
predicting j-th categories via softmax classifier. n represents the number of entire categories.

3. Structural Damage Detection Method Using Proposed FFT-DCNN Architecture

This study proposes an FFT-DCNN method where FFT converts one-dimensional
vibration signal into frequency information that reflects the structural damage, and the
dimension of frequency information is M× 1. Considering that DCNN is powerful for
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extracting spatial features of input data, the frequency information M × 1 is converted
to FreM =

√
M ×

√
M the matrix via dimension transformation, which can reflect the

spatial information. Then, FreM are fed into the DCNN model to distinguish different
structural damage condition. Figure 3 shows the specific process of structural damage
detection. Firstly, a sliding window is utilized to split the raw acceleration signals to obtain
more samples, which is the term of data augmentation means [31]. Then, to make the
data dimension transformation more convenient, the sliding window is set to 324 points,
considering that the sampling frequency is 322.58 Hz. In addition, a sliding window with a
fixed size is utilized to split the raw acceleration signals. Thus, the length of every segment
is the same. Frequency information with 324 points can be acquired by utilizing the FFT
method, and every segment includes frequency information of acceleration data.
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The obtained datasets are randomly divided into training datasets, validation datasets,
and testing datasets with a ratio of 6:2:2. Then, the frequency feature matrix FreM is then fed
into the DCNN model. The loss function and optimizer are used to continuously iterate and
update model parameters via training datasets. To reduce the overfitting training process,
the model finishes the renewal of model parameters and training process when the training
model obtains a preferred result of structural damage detection on verification datasets.

During the training process of FFT-DCNN model, the vibration data are fed into FFT
to analyze the frequency information. Then, the FreM matrix is fed into convolutional
layers extracting spatial features and max-pooling layers reducing trained parameters in
the DCNN model. To avoid overfitting problems and improve the ability of features extrac-
tion, dropout is added into a fully connected network [32]. After the four convolutional
layers and two max-pooling layers extracting features from vibration signals, the features
are fed into two fully connected networks with 300, 200 neurons to predict structural
damage conditions.

In addition, the optimizer, Adam, is used to update the DCNN model parameters in
every iteration. The dropout value is set to 0.5, and the batch size is set to 512. The initial
learning rate is 0.001. In this study, the cross-entropy loss function is utilized to assess the
training results, which is shown as:
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CrossEntropy = −
N

∑
K=1

(PK × log Qk) (9)

where Qk is the predicted value and PK represents the real value. Finally, after finishing
the training, the testing dataset is fed into the DCNN model to identify the degree of
structural damage. If the accuracy metric is high, it represents that the FFT-DCNN has
excellent performance, and the proposed methods can be applied to actual structural
damage detection.

4. Experimental Setups and Data Description

This section mainly introduces datasets, experimental settings, and evaluation criteria.

4.1. Data Description

Figure 4 shows a three-story building structure is made of aluminum columns and
plates assembled using bolted joints with a rigid. The building structure has three floors
where the top and bottom of the building (30.5 cm × 30.5 cm × 2.5 cm) structure are
connected by utilizing four aluminum columns (17.7 cm × 2.5 cm × 0.6 cm) to form a
four-degree of freedom system. Moreover, a center column is installed on the top floor,
shown in Figure 4b, which can change the degree of nonlinearity via changing the distance
between the column and the bumper [33]. To collect data from the structure, the structure
has five channels, including a force transducer and four acceleration sensors obtaining
vibration signals. The sampling frequency is set to 322.58 Hz. Because temperature has a
significant influence on the dynamic parameters of the structure monitored, considering
that the three-story frame structure was tested in the LOS ALAMOS national laboratory,
the temperature should be constant. Thus, the temperature generating influence can
be ignored.
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According to different damage and nonlinear degree in Table 1, there are some 13 struc-
tural conditions. Then, each scenario is repeated ten times, and these data sensors are
recorded by sensors. Structural conditions (1–5) represent structural damage caused by
nonlinearity, which imitates effects from crack opening and closing. Structural conditions
(6–7) are designed as mass and nonlinearity changes, which represent impact-induced
damage. Structural conditions (8–13) denote stiffness changes, where structural conditions
(11–13) are more severe than (8–10) due to more stiffness reduction of structure.

Table 1. Different scenarios of the structure.

Structural Conditions Label Description

1 State#08 Gap = 0.13 mm
2 State#09 Gap = 0.10 mm
3 State#10 Gap = 0.05 mm
4 State#11 Gap = 0.15 mm
5 State#12 Gap = 0.20 mm
6 State#14 Gap = 0.20 mm + mass on the 1st floor
7 State#15 Gap = 0.10 mm + mass on the 1st floor
8 State#17 Column: 1BD − 50% stiffness reduction
9 State#21 Column: 3BD − 50% stiffness reduction

10 State#24 Column: 2BD − 50% stiffness reduction
11 State#18 Column: 1AD + 1BD − 50% stiffness reduction
12 State#22 Column: 3AD + 3BD − 50% stiffness reduction
13 State#23 Column: 2AD + 2BD − 50% stiffness reduction

It can be seen from Table 2 that 13 structural conditions can be divided into six
scenarios that represent a different degree of structural damage, namely 10% damage
condition, 20% damage condition, 30% damage condition, and 40% damage condition.
Then, these four damaged conditions can be divided into the training set, testing set, and
validation set with radio 6:2:2. In addition, every state includes 8192 time domain data
points. The sampling time is 25.44 s because the sampling frequency is set to 322.58 Hz.

Table 2. Description of used datasets.

Condition Type State Selection Dataset Division
(Training/Validation/Testing)

10% damaged condition State 08, State 09, State 10,
State 11, State 12 3033/1012/1012

20% damaged condition State 14, State 15 1212/404/404
30% damaged condition State 17, State 21, State 24 1819/607/606
40% damaged condition State 18, State 22, State 23 1819/607/606

4.2. Crossvalidation for Datasets

Datasets dividing into the training dataset, validation dataset, and testing dataset
with 6:2:2 ratio and the validation are utilized to evaluate the performance of the proposed
deep learning algorithm. However, the single split cannot ensure achieving an optimal
result of identifying structural damage conditions among subdataset. Therefore, the K-fold
crossvalidation method is adopted to reduce the bias during the testing process. More
specifically, the datasets are divided into the training and testing datasets with a ratio of
8:2. Then, the training dataset is split into K equal portions where one portion is validation,
and the remaining datasets are training. In this study, the K = 4 is selected, and the
crossvalidation of datasets is shown in Figure 5.



Appl. Sci. 2021, 11, 9345 9 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 23 
 

validation set with radio 6:2:2. In addition, every state includes 8192 time domain data 
points. The sampling time is 25.44 s because the sampling frequency is set to 322.58 Hz. 

Table 2. Description of used datasets. 

Condition Type State Selection 
Dataset Division 

(Training/Validation/Testing) 

10% damaged condition 
State 08, State 09, State 10, State 11, 

State 12 3033/1012/1012 

20% damaged condition State 14, State 15 1212/404/404 
30% damaged condition State 17, State 21, State 24 1819/607/606 
40% damaged condition State 18, State 22, State 23 1819/607/606 

4.2. Crossvalidation for Datasets 
Datasets dividing into the training dataset, validation dataset, and testing dataset 

with 6:2:2 ratio and the validation are utilized to evaluate the performance of the proposed 
deep learning algorithm. However, the single split cannot ensure achieving an optimal 
result of identifying structural damage conditions among subdataset. Therefore, the K-
fold crossvalidation method is adopted to reduce the bias during the testing process. More 
specifically, the datasets are divided into the training and testing datasets with a ratio of 
8:2. Then, the training dataset is split into K equal portions where one portion is validation, 
and the remaining datasets are training. In this study, the K = 4 is selected, and the 
crossvalidation of datasets is shown in Figure 5. 

Dataset

iteration

iteration

iteration

iterationst1

nd2

rd3



K-fold Cross-validation

Training(80%) Testing(20%)

Validation





thK
 

Figure 5. K-fold crossvalidation method. 

4.3. Evaluation Metrics 
Four evaluation metrics, including Accuracy, Precision, Recall, and F1-sore, are 

selected to evaluate the proposed method and compared algorithms. The above four 
metrics are defined as follows: 

1
  2
  

Pr ReF
Pr Re

×= ×
+

 (10)

ˆRecall( , ) TPy y
TP FN

=
+

 (11)

Figure 5. K-fold crossvalidation method.

4.3. Evaluation Metrics

Four evaluation metrics, including Accuracy, Precision, Recall, and F1-sore, are se-
lected to evaluate the proposed method and compared algorithms. The above four metrics
are defined as follows:

F1 = 2× Pr× Re
Pr + Re

(10)

Recall(y, ŷ) =
TP

TP + FN
(11)

Precision(y, ŷ) =
TP

TP + FP
(12)

Accuracy(y, ŷ) =
TP + TN

TP + FP + TN + FN
(13)

where y and ŷ represent the true labels and predicted labels. TP and FP are the number of
true positives and are the number of false positives. TN and FN are true negatives and
false negatives, respectively.

5. Experimental Results and Discussion for Three-Story Building Structure

The section uses a three-story building to evaluate the effectiveness of the proposed
method.

5.1. Experimental Setup and Data Description

Because the sliding window length is set to 324, every one-dimensional vibration
signal with 324 sampling length is obtained. The vibration signal are transformed into
frequency information with 324 × 1 via FFT method. Then, frequency information is con-
verted to FreM = 18× 18 features matrix via shape dimension transformation, considering
that DCNN is adopted at extracting spatial features. Finally, DCNN extracts damaged
features from FreM matrix to identity structural damage. Figure 6 shows the process of
features transformation of four different damage condition, including that damaged degree
is 10%, damaged degree is 20%, damaged degree is 30%, and damaged degree is 40%.
The frequency information of different damage conditions is different with increasing
damage degree.
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Table 3 shows the configuration of the proposed method. The size of the convolutional
kernel is 7 × 7 in the first layer, and the size of the convolutional kernel is 5 × 5 in the
second. The maximum pooling layer is 2 × 2 in the third layer, the size of the convolutional
kernel in the fourth layer is 3 × 3 in the fifth layer, and the size of the convolutional kernel
is 3 × 3 in the sixth layer, and the maximum pooling layer is 2 × 2 in the seventh layer.

Table 3. Parameters configuration of DCNN.

Number Layer Name Filter Size Kernel Size Stride Padding Output Size

First layer Convolution 1 8 7 × 7 1 × 1 1 18 × 18
Second layer Convolution 2 12 5 × 5 1 × 1 1 18 × 18
Third layer Dropout 1 – – – – 18 × 18

Fourth layer Max-pooling 1 12 2 × 2 1 × 1 1 9 × 9
Fifth layer Convolution 3 16 3 × 3 1 × 1 1 9 × 9
Sixth layer Convolution 4 20 3 × 3 1 × 1 1 9 × 9

Seventh layer Max-pooling 2 20 3 × 3 1 × 1 1 3 × 3

Table 4 shows the four-fold crossvalidation result on three three-story building struc-
tures using the proposed method. In the four-fold crossvalidation, the accuracy of training
datasets is 93.48% on average, and the accuracy of testing datasets is 93.29% on average. It
shows that FFT-DCNN is suitable for identifying structural damage degree effectively.

Table 4. Accuracy of four-fold crossvalidation.

Method Validation (%) Testing (%)

Fold-1 93.31 93.72
Fold-2 93.26 92.17
Fold-3 93.38 93.95
Fold-4 93.98 93.31
Mean 93.48 93.29
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Figure 7 shows the accuracy curve for the proposed methods on Fold-1 datasets. The
accuracy of training, testing, and validation reach 0.9 after achieving 200 epochs. The
results show that FFT-DCNN presents an excellent ability of features extraction on the
three-story building structure. In Figure 8, the loss curve of the FFT-DCNN model is
smooth, which shows an excellent fitting ability and training process.
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5.2. Compared with Other Methods

To verify the advantages of our proposed method, classical ML algorithms including
support vector machine (SVM) [34], FFT-SVM, random forest (RF) [35], K-nearest neighbor
(KNN) [36], and eXtreme gradient boosting (XGBoost) [37] are selected to evaluate struc-
tural damage degree and improved accuracy in structural damage detection. The accuracy
of KNN, RF, and XGBoost is 67.64%, 70.24%, and 75.78%, respectively, representing a low
ability for recognizing structural damage detection. For these algorithms, such as SVM,
KNN, RF, and XGBoost, the time-sequence data of acceleration are input datasets. For
FFT-DCNN and FFT-SVM algorithms, the time sequence is transformed into frequency
information by the FFT method, and then frequency information is fed into DCNN or SVM
algorithms. The relative setting of these algorithms are as follows:

SVM: A Gaussian RBF function is used as the SVR kernel function, and a grid search
is used to determine the penalty parameters c and kernel parameters g. The search range c
and g are [10−4, 104] and [2−4, 24] by the grid searching method, respectively. Tolerance for
stopping criterion is set to 1e-3, and it is enough to satisfy the error criterion.

KNN: The number of neighbors is set to 5. The value of function weights is set to
uniform, representing that all points in each neighborhood are weighted equally. The power
parameters. The Minkowski metric is set to 1, and it is equivalent to using Manhattan
distance. The leaf size that affects the construction and query speed is set to 30.

RF: The number of trees in the forest is 100, and the maximum depth is set 3. The min
samples split is set to 2, which denotes the minimum number of samples required to split
an internal node. Min samples leaf represents that training samples in each of the left and
right branches, and the values of Min samples leaf are set to 5. The value of Max features is
set to ‘auto’, representing that the number of features to be considered when looking for
the best split.

XGBoost: The maximum depth of a tree is set to 6, and the minimum child weight
depth of a tree is 1. To making the update step more conservative, the max delta step is set
to 0.1. L2 regularization term on weights is set 1, which can reduce the overfitting problem.
The learning rate is set to 0.3. The fraction columns of random samples for each tree are set
to 1.

Table 5 shows the comparison of damage detection ability between the algorithms
mentioned above and the proposed method. It can be seen from Table 5 that the proposed
method has higher accuracy in 93.38% than classical ML methods. In addition, the FFT-
SVM improves accuracy by 4.56% than SVM when FFT is added to SVM. It shows that the
preprocessing method, for example, FFT method, can reduce the effect of fault or noisy
data and improved accuracy in structural damage detection.

Table 5. Comparison result between the proposed method and ML algorithms.

Method Accuracy (%)

FFT-DCNN 93.29
FFT-SVM 90.15

SVM 85.59
KNN 67.64

RF 70.27
XGBoost 75.78

To observing the classification result of every defined pattern for test data based on
different algorithms, evaluation criteria including Precision, Recall, and F1-sore are utilized
in Figures 9–11. Recall represents the number of positive class predictions made out of
all positive examples in the dataset. It can be seen from Figure 9 that the obtained Recall
scores of 10%, 20%, and 30% damaged conditions are approximately over 0.8 using the
FFT-DCNN algorithm, with the exception of 40% damaged conditions, for which the scores
fall approximately 0.5. In addition, using the precision evaluating on test data, similar
results are achieved for FFT-DCNN algorithm. For 10%, 20%, 30%, and 40% damaged
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conditions, the Precision is approximately over 0.7 with a high recognition performance,
which is shown in Figure 10. It can be seen from Figure 11 that the exception of 40%
damaged conditions achieves a low score, and other patterns (such as 10%, 20%, and 30%
damaged conditions) obtain a high score using FFT-DCNN algorithm.
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In order to reveal the classification of different algorithms under four damaged con-
ditions of a three-story building structure, Figure 12 shows the confusion matrix of the
proposed approach and compared algorithms. More specifically, in the FFT-DCNN method,
the accuracy of 10% damaged condition and 40% damaged condition keep a high value
over 95%. For 20% damaged condition, 37 samples are misclassified as 30% damaged
condition, and 11 samples are misclassified as 10% damaged condition. The Precision keeps
a high value of over 86%. The Precision is 86.7% for 30% damaged condition. Finally, the
total accuracy of test data for FFT-DCNN is 93.29%, which illustrates the excellent ability of
the proposed method for recognizing structural damage conditions compared with other
methods, including FFT-SVM (90.15%), SVM (85.59%), KNN (67.64%), RF (70.27%), and
XGBoost (75.78%). In addition, for the FFT-SVM algorithm, the numbers of classification
accuracy in 0–3 damaged conditions are 1003, 239, 468, and 541, respectively, in Figure 12b.
The numbers of classification accuracy in 0–3 damaged conditions are 991, 310, 495, and
575, respectively, in Figure 12c. It indicates that accuracy can be improved when the accel-
eration data are transformed into frequency information. More importantly, the frequency
of the three-story frame generates obvious changes compared to methods based on time
sequence when the structure suffers different damaged degrees. Our proposed method
utilizes frequency information of three-story frame to recognize structural damage with
high performance.

All experimental algorithms are performed in the same Windows server, and the
server is configured as: GPU is GeForce RTX 3080Ti, RAM is 32 GB, and AMD Ryzen
9 5950X 16-Core Processor. It can be seen from Figures 13 and 14 and Table 6 that the
proposed methods cost more time than ML algorithms during training and testing datasets.
It is mainly because FFT-CNN continually updates the parameter of the network using a
number of datasets. In addition, the training process finishes when the network’s loss curve
begins to converge, which can cost a large amount of time in Figure 13. With the increase
in computing ability, the consuming time of algorithms will be reduced in the future. Thus,
the accuracy of structural damage detection should receive the primary attention, which
can affect public safety.
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Table 6. Comparison of cost time between the proposed method and ML algorithms.

Method Training Time (s) Test Time (s)

FFT-DCNN 118.152 0.168
FFT-SVM 1.384 1.207

SVM 3.391 2.038
KNN 0.056 0.368

RF 5.253 0.408
XGBoost 6.754 0.079

Moreover, the test time is an important evaluation metric to judge whether the algorithm
can be utilized in actual engineering. It can be seen that the proposed method takes a short
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time on test datasets, compared with FFT-SVM, SVM, KNN, and RF. Thus, the proposed
method can be designed for recognizing structural damage in actual civil engineering.

6. Experimental Results and Discussion for ASCE Benchmark
6.1. Data Description and Experimental Setup

To verify the effectiveness of the proposed method in a complex environment, the
experimental phase II of the SHM benchmark is utilized for the study. The datasets and
experimental process of the ASCE benchmark were published by the American Society of
Civil Engineers (ASCE) SHM task group. The height of the ASCE benchmark is 3.6 m, and
the footprint dimensions are 2.5 m × 2.5 m, shown in Figure 15. The experiment aimed to
provide a unified test bed for evaluating the ability of structural damage detection using
different methods.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 23 
 

Figure 14. Comparison of test time between the proposed method and ML algorithms. 

Table 6. Comparison of cost time between the proposed method and ML algorithms. 

Method Training Time (s) Test Time (s) 
FFT-DCNN 118.152 0.168 
FFT-SVM 1.384 1.207 

SVM 3.391 2.038 
KNN 0.056 0.368 

RF 5.253 0.408 
XGBoost 6.754 0.079 

6. Experimental Results and Discussion for ASCE Benchmark 
6.1. Data Description and Experimental Setup 

To verify the effectiveness of the proposed method in a complex environment, the 
experimental phase II of the SHM benchmark is utilized for the study. The datasets and 
experimental process of the ASCE benchmark were published by the American Society of 
Civil Engineers (ASCE) SHM task group. The height of the ASCE benchmark is 3.6 m, and 
the footprint dimensions are 2.5 m × 2.5 m, shown in Figure 15. The experiment aimed to 
provide a unified test bed for evaluating the ability of structural damage detection using 
different methods.  

 
Figure 15. Four-story structure of ASCE benchmark. 

The experiment collected acceleration signals from 15 accelerometers under ambient 
excitation, impact hammer excitation, and 5–50 Hz randomly generated shaker excitation. 

Figure 15. Four-story structure of ASCE benchmark.

The experiment collected acceleration signals from 15 accelerometers under ambient
excitation, impact hammer excitation, and 5–50 Hz randomly generated shaker excitation.
Moreover, Case 1 was measured for 120 s, Case 6 was measured for 300 s, and the remaining
cases were measured for 360 s. The sampling frequency for all accelerometers were set to
200 Hz. As shown in Table 7 and Figure 16, the damaged degree was increased gradually
from undamaged in Case 1 to very damaged in Case 9. Cases 2–7 removed the inclined
supports at specific locations to generated structural damage, and Cases 8 and 9 loosed
bolts at joint locations. In total, 31,680 samples were acquired by slicing with a window
of 200 points during experimental process. Then, the dataset was divided into training,
verification, and testing datasets according to the ratio of 6:2:2. That sample number for
training, verification, and testing datasets are 19,008, 6336, and 6336, respectively.
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Table 7. Description of the structural cases for the benchmark [30].

Structural Conditions Description

Case 1 Undamaged condition
Case 2 Inclined supports located on the first floor was removed
Case 3 Inclined supports located on the first and fourth floors were removed
Case 4 Inclined supports on all floors were removed in one bay
Case 5 All inclined supports were removed on the west face
Case 6 Case 5 + inclined supports located on the second floor were removed
Case 7 All inclined supports on all faces were removed
Case 8 Loosed bolts on first and second floors of the beam + Case 7
Case 9 Loosed bolts on all floors of the beam on west face + Case 7
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6.2. FFT-DCNN Testing Result for ASCE Benchmark

The historical curve of Fold 4 is presented as an example. It can be seen from Figure 17
that there are training, testing, and validation datasets in each epoch. The accuracies of
validation and testing reach 80% after Epoch 250. It indicates that the FFT-DCNN has a
faster-trained process and convergence speed.

Four-fold crossvalidation results in the ASCE benchmark dataset are shown in Table 8.
In each iteration, the verification accuracy is 88.06% on average, and the testing accuracy is
87.30% on average. The experimental result shows that the FFT-DCNN model is suitable
for structural damage detection.

Table 8. Accuracy of four-fold cross-validation.

Method Validation (%) Testing (%)

Fold-1 87.09 86.78
Fold-2 87.93 86.38
Fold-3 88.11 87.94
Fold-4 89.12 88.10
Mean 88.06 87.30
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Figure 17. Confusion matrix of damage identification for Fold 4.

Figure 18 denotes the best result of Fold-4 for the confusion matrix. It can be seen that
the label C1 is undamaged conditions, and the labels C2–C9 denote the damage conditions.
The overall identification accuracy of 9 structural damage detection is 88.10%, and the error
rate is 11.90%. The accuracy of C2, C6, C7, and C8 is more than 90%. C3, C4, and C9 is
88%, 84%, and 89%, respectively. While the C1 and C5 have wrong identification, but its
accuracy is still over 70%, in addition, because the number of samples reaches 31,680 and it
is large enough. Thus, the accuracy of FFT-CNN reaches 87.30% on average, which can
satisfy the demand for structural damage detection in actual environment.
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6.3. Comparative Analysis for Different Methods

The classic methods can extract sensitive features from acceleration to recognize struc-
tural damage conditions. Table 9 shows the comparison between the proposed methods
and classic methods. It indicates that the proposed method achieves higher performance
than existing methods, including FFT-SVM, SVM, KNN, RF, and XGBoost. The experimen-
tal result shows the proposed method high identification ability in recognizing damaged
conditions of civil structure.

Table 9. Comparison result between the proposed method and ML algorithms.

Method Accuracy (%)

FFT-DCNN 87.30
FFT-SVM 21.29

SVM 18.19
KNN 60.57

RF 71.33
XGBoost 72.80

7. Conclusions and Future Work

This study proposed a novel FFT-DCNN model to identify structural damage detection
and was verified on a three-story building structure and ASCE benchmark. The main
contributions of this paper are summarized as follows.

(1) A novel data-driven method is proposed by combining FFT with DCNN, effectively
handling vibration signals and accurately recognizing structural damage conditions.

(2) Compared with traditional damage detection such as FFT-SVM and SVM, KNN,
Random Forest, and XGBoost, the FFT-DCNN model automatically extracts fea-
tures from the structure under different damage conditions and achieve higher accu-
racy in 93.38% for the three-story building structure and accuracy in 87.30% for the
ASCE benchmark.

(3) For time consumption, FFT-DCNN takes a short time on test datasets, compared with
FFT-SVM, SVM, KNN, and RF. It indicates that the proposed method can be designed
for recognizing structural damage in actual engineering.

(4) This method also has some limitations. Compared with “shallow” ML methods, such
as SVM and XGBoost, this method achieves high accuracy relying on a number of
training datasets. Thus, we might utilize the transfer learning method to reduce
training simple for accurately recognizing structural damage detection in the future.
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